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Abstract

Dynamic recurrent neural networks composed of units with continuous activation functions provide a powerful tool for sim-

ulating a wide range of behaviors, since the requisite interconnections can be readily derived by gradient descent methods. However,

it is not clear whether more realistic integrate-and-fire cells with comparable connection weights would perform the same functions.

We therefore investigated methods to convert dynamic recurrent neural networks of continuous units into networks with integrate-

and-fire cells. The transforms were tested on two recurrent networks derived by backpropagation. The first simulates a short-term

memory task with units that mimic neural activity observed in cortex of monkeys performing instructed delay tasks. The network

utilizes recurrent connections to generate sustained activity that codes the remembered value of a transient cue. The second network

simulates patterns of neural activity observed in monkeys performing a step-tracking task with flexion/extension wrist movements.

This more complicated network provides a working model of the interactions between multiple spinal and supraspinal centers

controlling motoneurons.

Our conversion algorithm replaced each continuous unit with multiple integrate-and-fire cells that interact through delayed

‘‘synaptic potentials’’. Successful transformation depends on obtaining an appropriate fit between the activation function of the

continuous units and the input–output relation of the spiking cells. This fit can be achieved by adapting the parameters of the

synaptic potentials to replicate the input–output behavior of a standard sigmoidal activation function (shown for the short-term

memory network). Alternatively, a customized activation function can be derived from the input–output relation of the spiking cells

for a chosen set of parameters (demonstrated for the wrist flexion/extension network). In both cases the resulting networks of

spiking cells exhibited activity that replicated the activity of corresponding continuous units. This confirms that the network

solutions obtained through backpropagation apply to spiking networks and provides a useful method for deriving recurrent spiking

networks performing a wide range of functions.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Many artificial neural networks employ units that

have continuous activity to represent the firing rate of
neurons and have sigmoidal activation functions to

represent the units’ input–output transform. These sim-

plified representations allow powerful gradient descent

algorithms such as backpropagation [2,28] to be used to
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derive dynamic recurrent networks that simulate many

interesting biological behaviors [7,9]. A major goal of

such networks is to capture the neural mechanisms that

are mediated by modulated firing rates. However, real
biological neurons integrate synaptic input to threshold

and fire discrete spike trains. It is not clear that the net-

work solutions obtained with ‘‘continuous’’ units accu-

rately describe the behavior of networks composed of

interconnected integrate-and-fire spiking cells. If so, a

conversion procedure would be very useful, since there

are no efficient training algorithms for deriving recurrent

dynamic networks with discretely spiking cells. Algo-
rithms for Hebbian learning with spike-time dependent
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Fig. 1. Activation functions of integrate-and-fire spiking cells. Steady-state output frequency (Hz) as a function of synaptic input (V/s, 1V corre-

sponds to 1000 one-mV EPSPs/s). Variation of (A) refractory period (1, 5, 10 ms): limits the maximum firing rate. This parameter can be used to fit

the activation function to experimentally obtained F –I curves. (B) Threshold (10, 15, 20 mV): lowers the firing rate for a given input. (C) EPSP

amplitude (0.3, 0.5, 1, 1.5 mV): changes the maximal slope. (The activation function does not shift towards higher inputs since the x-axis is nor-
malized to the overall input.) (D) EPSP rise time (1, 2, 4, 8 ms): lowers the maximal firing rate and increases output before saturation starts. (E) EPSP

decay time (4, 7, 15 ms): shifts the activation function towards lower input values. (F) Ratio between excitatory and inhibitory input (IPSPs in 17%,

23%, 33% and 44% of the total input): produces a shift somewhat similar to D and E.

602 M.A. Maier et al. / Journal of Physiology - Paris 97 (2003) 601–612
plasticity are being developed [13,26], but these are less

generally applicable to arbitrary dynamic input–output

transformations. We therefore investigated whether

networks of continuous units derived by backpropaga-

tion could be converted to equivalent networks of spik-

ing cells performing the same behaviors. Of course the

backpropagation algorithm is biologically unrealistic as
a learning mechanism [6], but this is entirely irrelevant to

its main purpose: to search efficiently for the network

architectures that generate the required behaviors. Bio-

logically plausible error-driven algorithms equivalent to

backpropagation [21] and reward-based learning [19]

have been developed; these find similar network solu-

tions, albeit more slowly.
We were particularly interested in dynamic recurrent

networks that simulate firing patterns observed in di-

verse neuronal populations in the behaving monkey. We

show results for two well-documented tasks: a short-

term memory task, and a wrist flexion/extension step-

tracking task. The short-term memory task involves an

arbitrary transient cue whose value needs to be sampled
and held in memory during a variable delay period

(‘‘instructed delay’’). This paradigm has been employed

in numerous behavioral studies, and the task-related

activity of cortical neurons has been documented in

several frontal, parietal and temporal areas [1,12,14,24].

The step-tracking task is a visually guided wrist flexion/

extension task for which the activity of various popu-
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lations of neurons in the primate motor system has been
amply documented [3,10,11,17,20,22]. We use these two

examples, denoted �short-term memory’ and �step-
tracking’ task, to demonstrate the feasibility of this

conversion. Results indicate that under appropriate

conditions the recurrent networks found by backprop-

agation provide valid descriptions of networks imple-

mented with �integrate-and-fire’ cells.
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Fig. 2. Conversion from analog to spiking network. (A) Fit of con-

tinuous activation function to the input–output relation of the spiking

cell. Dots: empirical values from the spiking cell; lines: sigmoids for

continuous function. The maximal firing rate, m, is set to 1.0 in the

activation function for training the analog network, then adjusted for

in the conversion to the spiking network. (B) Transformation of

analog to spiking network involves replacing each single continuous

unit by a pool of spiking cells according to its maximal output weight.

(C) ‘‘Membrane potential’’ of integrate-and-fire cell is the sum of

synaptic inputs, and a spike causes delayed EPSPs or IPSPs in target

cells.
2. Materials and methods

2.1. Properties of spiking cells

Our spiking cell is a single-compartment integrate-

and-fire cell without conductances or electrotonic

properties. It incorporates a single potential, represent-
ing the subthreshold membrane potential of a biological

neuron, whose time course depends on the sum of

incoming excitatory and inhibitory postsynaptic poten-

tials (EPSP and IPSP, see Fig. 2C), and (optionally) a

voltage ramp. The spiking cell integrates EPSPs and

IPSPs to threshold (10 mV) for firing an action potential

(whose trajectory is not modeled). The action potential

produces PSPs with specified delays in all the postsyn-
aptic target cells. During a post-spike refractory period

(typically around 3 ms) any incoming PSPs are neglected

and the potential is set to the resting potential (0 mV).

PSPs are modelled by triangular waveforms with a given

amplitude (�1 mV for EPSPs and IPSPs respectively),

and rise- and fall-times [25].

2.2. Mapping procedure between continuous and spiking

model

2.2.1. The input–output function of the continuous units

The backpropagation algorithm requires smooth

differentiable activation functions to represent the in-

put–output relation of continuous units. We found that

the input–output function of spiking cells differs signif-

icantly from the standard symmetric sigmoidal activa-
tion function, and therefore we customized parameters

to facilitate the subsequent transformation. For the

short-term memory model we used a standard sigmoidal

activation function and fitted the PSP parameters to

replicate this input–output function in spiking cells. The

input to a continuous unit ðxÞ consists of the activation
of all other units connected to this unit times their

synaptic weights. The output of the continuous unit is
given by gðxÞ, determined by the standard sigmoid

function:

gðxÞ ¼ 1

1þ eðs�xÞ � T

where x¼ input, and constants s¼ shift, and T ¼ tem-

perature.
For the wrist step-trackingmodel we derived a custom

continuous activation function that fit the input–output

relation of the spiking cell with fixed PSP rise- and fall-

times, i.e. 2 and 7 ms, respectively. We used the fol-

lowing custom sigmoidal activation function for training

the step-tracking analog network of continuous units

(Fig. 2A).

Custom sigmoid: f ðxÞ ¼ 1

1þ ð3=xÞ þ eðs�xÞ � T
2.2.2. Characterization of the input–output function of the

spiking cells

To determine the input–output relation of a single
spiking cell we used 10 independent and exponentially

distributed spike trains to provide excitation (or inhi-

bition) to a test spiking cell. The EPSPs in the test cell
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had the following default properties: 1 mV amplitude
()1 mV for IPSPs), 2 ms rise time, 7 ms decay time. The

test cell had the following default parameters: 5 ms

refractory period, 10 mV threshold and no voltage

ramp. Activation curves were calculated by varying the

firing rate of input spike trains in steps and plotting the

resulting steady-state output rate of the test cell. Fig. 1

shows examples of the input–output curves as a function

of the parameters of the test cell and its �synaptic’ inputs.
In contrast to the standard sigmoidal function of a

continuous unit, the activation function of spiking cells

is variable and depends on the refractory period (Fig.

1A) and threshold (Fig. 1B) of the spiking cell. The

activation of the test cell also varied as a function of PSP

amplitude (Fig. 1C), rise time (Fig. 1D), and fall time

(Fig. 1E), as well as of the ratio between inhibition and

excitation (Fig. 1F).
In order to transform recurrent networks trained with

the standard sigmoidal activation function, we sought

spiking cell parameters that would result in a similarly

sigmoidal activation curve. This involved creating acti-

vation curves using various values for the spiking cells’

refractory period and voltage ramp input in combi-

nation with the connection parameters of PSP delay

time, rise time, and decay time. Using the appropriate
parameters each continuous unit was replaced with a set

of spiking cells, as described below. Parameters that

gave a symmetric sigmoid were 7 ms refractory period,

0.02 mV/ms voltage ramp, 5 ms delay, 5 ms rise, and 7

ms decay. The thresholds of the spiking cells were set at

10 mV. The long refractory period was necessary to

produce a relatively flat upper asymptote (Fig. 1A);

deeming this unrealistic we developed the alternate ap-
proach of deriving a custom sigmoid for more realistic

parameters.

2.2.3. Transformation of the analog wrist step-tracking

network to a spiking network

The following method was used to transform the

trained analog wrist step-tracking network to an equiv-

alent spiking network with identical topology, input
activations, connection delays and similar weights. A

single continuous unit is typically envisioned as repre-

senting mean activity of a group of neurons, so we

transformed each single continuous unit into a pool

of multiple spiking cells, each of which receives from

and projects to all the transformed cells that the single

continuous unit was connected to. The number of

spiking cells within a pool is a function of the weight of
the continuous unit. When the continuous unit is con-

nected to several continuous units with different weights,

the transformation produces a maximal number of

spiking cells (N ) determined by the strongest weight, and

for lesser weights connects an appropriate subset of

these cells (n) to the other target cells according to the

weight of the given projection. Thus the continuous
weight is matched primarily by varying the number of
connected spiking cells and then fine-tuned by scaling

their PSP amplitude. For weight w, the number of

connections required between the pool of presynaptic

spiking cells and each postsynaptic cell is determined by

nðwÞ ¼ jw=ða�mÞj where a is the chosen PSP height (in

microvolts) used in calculating the activation curve, and

m is the maximal output firing frequency of a spiking cell

determined by the activation curve. nðwÞ is converted
to an integer n by rounding up if nðwÞ < 1 or nðwÞ=
Floor½nðwÞ
 > 1:1; otherwise nðwÞ is rounded down to

obtain the integer number of connections, n. The mag-
nitude of the actual PSPs used in the spiking network is

equal to the desired PSP height multiplied by nðwÞ=n. To
replicate the time-varying activity of the continuous

units it was necessary to disperse the arrival of PSPs, in

order to prevent synchronous activation of the spiking
cells. This was accomplished by deriving the connections

to a postsynaptic cell from randomly chosen cells in the

presynaptic pool, and assigning varying conduction de-

lays around the mean delay for the corresponding con-

nection in the analog network.

2.3. The analog networks

To obtain the dynamic recurrent networks of con-

tinuous units we used the temporal flow algorithm

[27,28], a modified version of the backpropagation

algorithm that incorporates time varying activation

patterns (20 and 144 time steps for the short-term

memory and the step-tracking network, respectively).

The learning rate ðeÞ was limited to a range of 10�1 to

10�4. Starting from a configuration with initially ran-
dom weights, the short-term memory network was

trained for 7000 cycles and the wrist step-tracking net-

work for 10,000 cycles.
3. Results

3.1. Short-term memory network

The short-term memory task has been modeled with

recurrent networks of continuous units without sign

constraint by Zipser [29,30]. Our full analog model of

the short-term memory network contains a total of 27

excitatory or inhibitory units plus a bias unit with con-

stant activity (Fig. 3). The two inputs consist of a sample

gate signal (i1) and a randomly varying input corre-
sponding to the cue (i2). Their activity is fed to 12

excitatory (a1–a12) and 12 inhibitory hidden units (b1–

b12), which in turn project to the output unit (o1). The

excitatory hidden units are connected among themselves

(upper left quadrant of weight matrix) and to the

inhibitory hidden units (upper right quadrant). Inhibi-

tory hidden units are not interconnected among them-
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selves, but are connected to all excitatory hidden units

(lower left quadrant). The output unit maintains a

faithful representation of the analog value of the cue at

the time of the sample gate signal. The final full network

is larger than necessary because many hidden units
exhibited negligible activity or weak connections and

other hidden units resembled each other in activity and

output weights [e.g., inhibitory hidden units]. To elimi-
nate unnecessary and redundant units we implemented a

weight decay algorithm that automatically reduced each

weight by 0.001 for each of the first 5000 cycles; then

extraneous units and weights were deleted and the

resulting network trained for an additional 2000 cycles.
Fig. 4 (left and middle) shows the analog network

reduced by the weight decay algorithm to a smaller

essential configuration of only 8 continuous units with a
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total of 29 weights among them. As in Fig. 3, the two

inputs consist of a sample gate signal (S) and a randomly

varying input corresponding to the cue or analog value
(A). Three excitatory hidden units replace the 12 units in

the full model. The first excitatory hidden unit (SA)

carries a transient signal whose amplitude is propor-

tional to the value of the cue at the time of the sample

gate. Examination of the weights of the inputs to SA

reveals that this activity is derived from the sum of the

excitatory analog input, the excitatory gating input and

the inhibitory constant bias input; the latter effectively
clips the tonic activity provided by (A) leaving a tran-

sient value proportional to A. The value of (SA) is held

in memory by two cross-connected hidden units (M1,

M2) which also feed this value to the output unit (O).

(Had we allowed self-connections, M1 and M2 could be

replaced with a single self-connected unit.) The inhibi-

tory unit (SM) subtracts the previously held value from

the excitatory hidden units and the output. Thus, the
network produces a constant output (O) that corre-

sponds to the value of the input (A) at the time of the

last sample gate (S).

The reduced short-term memory network with 8 units

and 29 weights was transformed into a spiking network

containing 39 integrate-and-fire cells and 1143 connec-

tions. Fig. 4 (right) shows the average corresponding

activity of the spiking cells for the short-term memory
network derived from the reduced analog network. The

fact that the activity profiles of the analog and the spiking

version were essentially identical confirms the success of

the conversion algorithm.

3.2. The wrist step-tracking network

The much more complex analog model of the primate
pre-motor system (with a total of 98 units and over 2000

weights) was designed to simulate the time-varying
activity of multiple populations of neurons involved in

performing an alternating wrist step-tracking task. Here

we use it primarily as a biologically constrained bench-
mark test: we incorporated architectural constraints

(including the sign of the connections) and constraints

on the time-varying activity of input and representative

output units. Monkeys performing this task transform a

visual signal that indicates the target position (flexion or

extension) into actual wrist flexion or extension.

Accordingly, the model (Fig. 5) receives as input a target

position and is required to provide as output the activity
profiles of the biological motor units (‘‘a’’ in Fig. 5)

recorded in flexor or extensor muscles. This transfor-

mation is achieved within a network of four modules,

each with specific connections within and among them.

These modules correspond to cortical, rubral and seg-

mental networks and to muscle afferents, and they are

interconnected (with different conduction delays) in

accordance with known anatomical pathways or sim-
plifications of them.

The operation of components of the step-tracking

network can be summarized as follows. The input to the

network is provided to the cortical module and is rep-

resented by a step change in target position, alternating

between flexion (during the first half of the 144 time

steps) and extension (second half). Using the abbrevia-

tions in Figs. 6 and 7 the input is represented by both a
sustained step (Sf) and a transient (Df) input to the

cortical network for both flexion (Sf, Df) and extension

(Se, De). A further input representing flexor (TFf) and

extensor (TFe) wrist torque feedback, i.e. the afferent

sensory feedback during correct task completion, is

given to the respective spindle afferents (SP). The cor-

tical and rubral modules consist of excitatory projection

units (CM and RM) and local inhibitory (CL and RL)
units. Within these modules, local recurrent connections

among excitatory units and among inhibitory and
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excitatory units exist and represent local processing

within the cortical and within the rubral module. The

segmental module consists of flexor and extensor a-
(MUf/e) and c-motoneurons (GAf/e) and Ia-inhibitory

interneurons (Iaf/e), all of which receive inputs from the

cortical and rubral projection units. The spinal inter-

connections of these units are based on anatomical and

physiological data [16]. The afferent module represents
spindle afferent units (SPf/e), which are driven by c-
motoneurons (GAf/e) and the equivalent of applied

torque feedback (TFf/e). Afferents feed back to the

segmental level (i.e. to the homonymous a motor units

and their corresponding Ia-inhibitory units) and supra-

spinal levels. The connections provide a coarse corre-

spondence between units in the network and neurons in

specific brain regions. We further constrained the net-
work by incorporating representative profiles of physi-

ological activity (target activity over 144 time steps) in

four subpopulations of units. A summary table of these

experimentally determined response classes can be

found in [17]. Briefly, (i) Corticomotoneuronal cells are

largely comprised of tonic and phasic-tonic cells [3].

Example units with these target profiles for the flexion

period are to be found in target units (CMt1) and
(CMt2) respectively, and in units (CMt3,4) for exten-
sion. (ii) Rubromotoneuronal cells fall mainly into three
classes: phasic-tonic, phasic and unmodulated [20].

Example target units are: (RMt1, RMt2 and RMt5): (iii)

Premotor dorsal root ganglion (DRG) afferents exclu-

sively fall into three categories: tonic, phasic-tonic and

phasic [11] and therefore all corresponding units in the

network do have respective target activations (SPf1-3

for flexion, Spe1-3 for extension). (iv) the discharge

patterns of single motor units (corresponding to the
output units of the network) make up four classes: tonic,

phasic-tonic, phasic and decrementing [22]. Accordingly,

all MU-units are target units (MUf1-4 and MUe1-4).

Fig. 6 shows the activity of these units and the con-

nection weights of a typical network solution. Emergent

properties (in the following indicated in italics) primarily

concern the weight space and the time-varying activity

of hidden units, both of which will be compared to
biological data. The analog network transforms the four

input signals into the 8 types of experimentally observed

[22] target response patterns of motor units at the out-

put: tonic (MUf1), phasic-tonic (MUf2), decrementing

(MUf3) and phasic (MUf4), generated for both flexor

(MUf1-4) and extensor motor units (MUe1-4). Neither

phasic-tonic nor decrementing patterns are represented

as such in the network input. Correct profiles are also
generated for premotor target units (Fig. 7): for cortical

(CMt) and rubral (RMt) units, as well as for spindle

afferents (SPf/e). Furthermore, the majority of hidden

cortical (non-target) units, such as CM10, 13, 7 and

others, take on profiles of activity akin to those observed

experimentally.

These results show that the model and its particular

architecture can generate appropriate activity profiles
for ramp-and-hold step-tracking movements. In order to

simulate this behavior, the model developed particular

weights for particular groups of units, independently of

the initial randomization. In the cortical module, most

hidden CM units take on unidirectional activity (similar

to the target CM units) and show preferentially strong

excitatory connections to multiple synergistic MUs

activated in the samemovement phase (e.g. CM10, 13, 1,
8 for hidden units, and CMt1 and 2 for target units).

This synergistic arrangement, an emergent property that

allocates a specific weight configuration to hidden or

target units with particular activity, holds in general for

CM connections to units activated unidirectionally and

in-phase, such as to LC units, RM units, GA units and

to Ia-inhibitory units. In a similar way, bi-directional

CM units are more strongly connected to other bidi-
rectional units but develop more diffuse and weaker

connections to MUs and other unidirectional units. In

contrast, local inhibitory cortical units activated unidi-

rectionally (LC) are preferentially connected to out-of-

phase CM units (e.g. CL7). In the rubral module, all

units show bidirectional activity except the unidirec-

tional target units: local rubral units provide strong
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Fig. 6. Weight matrix for the analog network for the step-tracking flexion/extension of the wrist. First half of time axis: flexion, second half: extension

Same conventions as in Fig. 4. For illustration purposes, we reduced the original 98 units to 64 (and 1600 weights) by eliminating units with negligible

weights and by combining redundant units. Some rows of output weights are staggered for different latencies to different targets. The divergence of

any unit to other units is given by its row of output weights and the convergence to a unit is given by the column of its input weights. Similarly, other

connections and ratios can also be read off from this diagram. For cortical units the ratio of excitatory to inhibitory inputs ranged from 3:2 to 4:1.

Abbreviations given in text.
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inhibition to the unidirectional rubral target units. In the

spinal module, Ia units are preferentially unidirectional

and strongly inhibit the antagonist MUs, whereas the c
motor units take on strictly unidirectional activity, pro-
ject strongly to the spindles (SP), which in turn project to

the in-phase MUs, and provide a feedback to in-phase

cortical and rubral units. In summary, the network

solution demonstrates how motor units are driven by

the combined activity of cortical, rubral, spinal and affer-

ent units with specific activations and particular con-
nections, such as the experimentally observed cortico-
and rubromotoneuronal connections to specific groups

of motoneurons. In particular, unidirectional CM, RM

and afferent units provide excitatory inputs to in-phase

MUs and form two separate positive feedback loops:

one for flexion, one for extension. To prevent out-

of-phase activation of MUs (from bidirectional pre-

motor units), inhibitory cortical (CL) and spinal (Ia)

units provide out-of-phase inhibition.
This analog network of 89 units and 2771 connec-

tions was transformed to a spiking network containing

480 spiking cells and 33,723 connections (on average, a

cortical projection (CM) cell received 72 excitatory and

29 inhibitory connections and provided an output to 61

cells). The response-averaged activation profiles of the

spiking inputs and representative cells are shown in Fig.

7. In this case all continuous units had the same custom
activation function and were transformed into one type

of spiking cell with the following properties: refractory

period: 3 ms, threshold: 10 mV, rise- and decay-time of

incoming PSPs: 2 and 7 ms respectively. During tonic

firing, most spiking cells had ISI distributions that

resembled Poisson events with a refractory period, i.e.,

they rose sharply after a refractory interval (ca. 4.8–5

ms.), representing the sum of absolute refractory period
and integration times, and then fell off quasi-exponen-

tially. The coefficient of variation for spiking cells varied

between 0.2 and 2.48, a larger range than observed

experimentally (0.4–1.2 [23]).

In Fig. 7 the first six traces represent the input cells

driven by random spike trains modulated in proportion

to the appropriate input signals, and the rest show

average activity of representative spiking cells. All
spiking cells in Fig. 7 show a clear unidirectional activity

(either active during flexion or during extension), as do

the continuous units. The only exception is RMt5, a

rubral unit with a correct bidirectional tonic target

activation. The activation profiles of the spiking cells

resemble those of the continuous units: purely tonic and

purely phasic profiles are well reproduced, whereas the

distinction between phasic-tonic and decrementing
profiles, a-priori more similar (cf. continuous MUf2 and

MUf3), is less clear in the spiking cells.
4. Discussion

The primary reasons for transforming a recurrent

neural network of continuous units into a network
of integrate-and-fire cells are (1) to confirm the validity

of the analog solution, (2) to exploit efficient training

algorithms, such as backpropagation, for the former,

and (3) to utilize these spiking networks for further

investigations of temporal coding and plasticity. The

transformation was applied here to two networks with

substantially different complexity: a reduced network
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model of a short-term memory task that retains a pre-
viously sampled value, and a more elaborate, biologi-

cally constrained network model that mimics neural

activation patterns observed during step-tracking flex-

ion/extension wrist movements in various areas of the

primate motor system. We have also succeeded in

transforming networks that simulated other behaviors,

such as generating oscillatory activity, using the basic

strategies described here.

4.1. The short-term memory network

The short-term memory network presents a neural

solution for obtaining persistent activation of neurons in

the absence of the stimulus, as has been observed in

monkeys performing short-term memory tasks [1,12,24].

The solution depends on extracting a transient repre-
sentation of the cue in the SA unit by exploiting the

thresholding property of the sigmoid function––i.e.,

clipping the peak of the sum of S, A, and a negative bias.

It was not clear whether this mechanism is a unique

feature of the properties of continuous sigmoidal units.

We here showed that this solution is also implemented in

networks of spiking cells derived from the analog net-

work. The average firing rates of the equivalent spiking
cells are essentially similar to the activity of the con-

tinuous units.

Zipser et al. [29] also converted analog short-term

memory networks to spiking networks using a funda-

mentally different approach. Their spiking cells fired

probabilistically, in proportion to the weighted inputs

from cells firing in the previous time-step, passed

through an appropriately scaled sigmoid. This assured
that the cells of their stochastic model exhibited firing

rates generally similar to the continuous units. In con-

trast to this probabilistic procedure, our spiking cells

interacted synaptically through delayed EPSPs and

IPSPs, which were integrated to firing threshold. Thus

the activity in our spiking network was generated en-

tirely by these synaptic interactions.

It should be noted that our short-term memory net-
works sustain the value entirely in recurrent activity and

do not employ any intrinsic memory in the units. In

contrast, Compte et al. [5], investigated a recurrent

biophysical network model, and proposed a role for

persistent activity obtained by concurrent excitatory

(NMDA receptor mediated) and inhibitory synaptic

interactions.

4.2. The step-tracking wrist flexion/extension network

The simulation of the major parts of the neural pre-

motor network during the step-tracking task elucidates

the role of various units within the network and hence

suggests possible functional roles of their biological

counterparts (in terms of connectivity and activity).
Corticomotoneuronal hidden and target units (CM,
CMt) showed a variety of activation patterns, due to the

combination of tonic and phasic input to the local and

recurrent cortical network which included inhibitory

cortical units. Many CM units had unidirectional activ-

ity and made selective and strong connections to multiple

synergist motor units, and had negligible connections to

antagonist motor units. This emergent property corre-

sponds to the physiological characteristic of CM cells,
which produced post-spike facilitation in multiple syn-

ergistic muscles, but not in their antagonists [8], and

which facilitated different motor units within a muscle

[18]. Some CM units had bidirectional, predominantly

tonic, activation patterns, but these had negligible direct

connections to motor units; this emergent property also

corresponds to physiological evidence that bidirectional

cortical cells do not produce post-spike facilitation [8]. In
addition, unidirectional CM units developed strong

connections to synergistic rubral units, to Ia-inhibitory

units and to c motor units. The first two kinds of con-

nections have been shown to exist anatomically and phys-

iologically [15,16], and evidence for cortico-fusimotor

connections have been given by Clough et al. [4].

In contrast to the cortical module, most of the hidden

rubral projection units had bidirectional activation
patterns, and some units were unmodulated (i.e., bidi-

rectional tonic units). Physiologically, more bidirec-

tional neurons exist in the red nucleus than in the motor

cortex and more showed co-facilitation of both flexor

and extensor motoneurons [20]. The connection patterns

of unidirectional rubral target units were similar to those

of the unidirectional cortical projection units.

On the spinal level, Ia-inhibitory units showed uni-
directional activations in-phase with their corresponding

MUs, whereas the spindle afferents, with imposed uni-

directional target activation patterns, developed strong

connections to synergistic motor units. These kinds of

connections, i.e. inhibition of out-of-phase motor units

by antagonist Ia units and facilitation by in-phase ago-

nist muscle spindles would be expected from the prop-

erties of their biological counterparts [16].
In summary, the combined input to a MUs consists

primarily of excitatory unidirectional CM and RM

units, excitatory feedback from strictly unidirectional

spindle units and an inhibitory effect from the Ia-

inhibitory units to assure the silence of the a MUs in the

inactive phase. Many hidden units took on activity

profiles resembling those found experimentally and the

resulting weight matrix closely resembled known phys-
iological pathways.

After conversion, the average firing rates of the cor-

responding spiking cells were largely similar, but not

always identical to the profiles of the corresponding

continuous units. The differences are partly due to the

fact that a single fixed activation function of the con-

tinuous units does not adequately represent the range of
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appropriate activation functions for spiking cells, which
depend on the time-varying ratio between inhibitory and

excitatory input and the shapes of the incoming PSPs

(Fig. 1).

A second reason for minor discrepancies between

continuous and spiking rate profiles is the fact that a

minimal number of spiking cells was used to replace each

continuous unit. This generated some synchronization,

with consequences analogous to increasing PSP size.
Networks with larger numbers of spiking cells could

improve this problem by reducing synchronization and

allowing smoother implementation of the average rates.
5. Concluding comments

These network models are based on the assumption
that the essential information processing in recurrent

networks is mediated by the units’ firing rates. It has

been suggested that the timing of spikes could poten-

tially be used in biological networks to process infor-

mation (e.g., [13]). Networks of integrate-and-fire cells

derived by the procedures presented here can be used as

a starting point to investigate such additional mecha-

nisms of temporal coding. Another promising use of
these spiking models is to test the effects of spike-timing

dependent synaptic plasticity.

The present results could be extended in several ways

to derive recurrent networks of biologically more real-

istic spiking cells. Custom sigmoids could be obtained

by matching the input-output properties of units with

biophysical properties, and used to train analog net-

works for subsequent conversion. The conversion also
offers the possibility of using different synaptic param-

eters for particular subsets of units (such as the

equivalents of interneurons, pyramidal neurons or

motoneurons) and the use of corresponding fitted acti-

vation functions in the analog network. These steps

would allow analog networks with intrinsically different

continuous units to be derived with efficient gradient

descent algorithms and converted to spiking networks
with a higher degree of biological realism.
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