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Dynamic neural networks with recurrent connections were trained by 
backpropagation to generate the differential or the leaky integral of 
a nonrepeating frequency-modulated sinusoidal signal. The trained 
networks performed these operations on arbitrary input waveforms. 
Reducing the network size by deleting ineffective hidden units and 
combining redundant units, and then retraining the network produced 
a minimal network that computed the same function and revealed the 
underlying computational algorithm. Networks could also be trained 
to compute simultaneously the differential and integral of the input on 
two outputs; the two operations were performed in distributed overlap- 
ping fashion, and the activations of the hidden units were dominated 
by the integral. Incorporating units with time constants into model 
networks generally enhanced their performance as integrators and in- 
terfered with their ability to differentiate. 

1 Introduction 

Dynamic neural networks, which incorporate time-varying activity and 
recurrent connections, can be trained to generate a variety of transforms 
between spatio-temporal input and output patterns (Fetz 1993). Bio- 
logically motivated examples include networks that simulate the reflex 
responses of the leech (Lockery and Sejnowski 1992), oscillatory activ- 
ity of pattern generators (Tsung et al. 1990; Rowat and Selverston 1991; 
Williams and Zipser 1989), performance of a manual step-tracking task in 
primates (Fetz et al. 1990; Fetz and Shupe 1990), the vestibulo-ocular re- 
flex (Anastasio 1991; Arnold and Robinson 1991; Lisberger and Sejnowski 
1992a,b), and short-term memory (Zipser 1991 ). Dynamic recurrent net- 
works can be trained to compute specific transforms from examples by 
using a modified form of the backpropagation algorithm (Watrous and 
Shastri 1986; Williams and Zipser 1989). To explore their ability to com- 
pute analytical functions, we trained recurrent networks to generate the 
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differential or the leaky integral of a continuously changing nonrepeating 
input; the resulting networks appropriately transformed any subsequent 
input pattern. 

These networks were not intended to model any particular biological 
systems, although functions analogous to differentiation and integration 
do appear in physiological networks. Many neurons in the visual, au- 
ditory, and somatosensory systems respond preferentially to changes in 
peripheral stimulation (Patton et a/. 19891, with transient responses re- 
sembling the differential of the stimulus. In the motor system, neural 
integrators have been postulated to transform transient commands into 
sustained activity, and to mediate the vestibulo-ocular reflex [as modeled 
by Anastasio (19911, Arnold and Robinson (19911, Cannon and Robinson 
(1985), Fuchs (1981), Lisberger and Sejnowski, (1992a,b), and Robinson 
(1989)l. The purpose of our networks is not to model specific biologi- 
cal circuits but to investigate the mechanisms of neural computation of 
integration and differentiation in networks of sigmoidal units. Biologi- 
cal neurons have history-dependent ionic and membrane properties that 
may help to generate these functions, but for simplicity we did not in- 
corporate such mechanisms. However, we did examine the capacities 
of networks whose hidden units had intrinsic time constants. A further 
purpose of this study was to demonstrate that the underlying neural al- 
gorithm can be elucidated by reducing these networks to their minimal 
size (Mozer and Smolensky 1989; LeCun et 01. 1990). 

2 Methods 

Our models utilized a recurrent network trained by a dynamic backprop- 
agation algorithm (Watrous and Shastri 1986; Williams and Zipser 1989). 
A single input unit provided the time-varying input signal to the hidden 
units, and a bias unit provided a source of constant input. The hidden 
units had either excitatory or inhibitory connections, to each other and 
to the output(s). Self-connections and recurrent connections among the 
inhibitory units were sometimes omitted for efficiency, when their inclu- 
sion did not alter the basic results. The output layer consisted of one 
or two units with a linear input-output characteristic, representing the 
function(s) to be computed. 

The total input to a given unit was the weighted sum of activity of 
its input units and bias, weighted by the respective connection strengths. 
The output of "sigmoidal" hidden units (appearing at the next timestep) 
was derived by the sigmoid squashing function, shifted along the abscissa 
by a constant = 4 (equivalent to a nonshifted sigmoid with a constant bias 
of -4). As described below we also investigated units with intrinsic time 
constants. 

Each network was trained with a nonrepeating quasisinusoidal input 
signal whose frequency was randomly varied (periods between 2 and 60 
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timesteps). The desired target output waveform was calculated as the 
differential or the leaky integral delayed by two timesteps, to accommo- 
date the delays between layers. Each training cycle consisted of an epoch 
spanning a fixed number of timesteps (normally 50). The difference be- 
tween the actual and desired network outputs was summed over the 
entire epoch to calculate the net error, and the weights were changed to 
reduce this error. Both the duration of the training cycle and the number 
of previous timesteps included in the backpropagation could be adjusted 
to optimize the training. Varying the frequency of the training signal 
ensured that the network performed accurately over a broad range of 
frequencies. 

3 Differentiation 

Figure la illustrates a representative network with 16 hidden units that 
differentiates an arbitrary time-varying input. The units are identified 
by number and shown with their activation pattern; from top to bottom 
along the left-hand column, these are the bias, the input (il), excitatory 
hidden units (al-a@, inhibitory hidden units (bl-bg), and the output 
unit (01). Each square of the matrix represents the connection weight 
from the unit in the left-hand column to the unit in the upper row. The 
area of the square represents the magnitude of the weight, and the shad- 
ing designates excitatory (black) or inhibitory (gray) connections. [In 
some cases weights which exceeded the scale (at the top) are given nu- 
merically.] The activity of each unit in response to the illustrated input 
signal is also displayed along the left-hand column and along the top. 
The illustrated input signal is representative of the training waveforms. 
The activity of the output unit is the derivative of the input, shifted for- 
ward by two timesteps to accommodate propagation delays. 

For this network, the nature of the solution can be deduced in part 
from the dominant connections in the weight matrix. Most of the exci- 
tatory units (a2-a7) receive strong input from the input unit and relay it 
directly to the output, with a net delay of two time steps. Many inhibitory 
units produce a time-shifted contribution to the output by receiving a de- 
layed signal from the excitatory units and relaying this to the output for 
a total delay of three time steps (e.g., units bl-b4). The function of other 
inhibitory units (b6-b8) is less obvious, since they also receive input di- 
rectly from il and provide negative feedback to the excitatory layer. In 
general the activations of the hidden units appear to resemble the input 
signal. 

To elucidate the essential operation of differentiating networks we 
reduced them to their minimal form. In incremental stages, we removed 
inactive or ineffective units (e.g., a1 and b5) and combined units with 
similar activity and connectivity (e.g., a5 and a6), each time retraining the 
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Figure 1: Differentiating networks. Each box represents the strength of the 
connection from the unit on the left to the unit at the top of the diagram. 
The scale boxes calibrate connection strengths for the networks below. The 
waveform displayed next to each unit’s name shows that unit’s activity over 
the time course of the input pattern. Unit il  is the input unit, a1 through a8 
are excitatory hidden units, b l  through b8 are inhibitory hidden units, and 01 
is the output unit. (a) Network trained with 16 hidden units and a randomly 
varying sinusoidal input. Continuedfocing page. 



Fi
gu

re
 1

: 
co

nt
in

ue
d.

 @
,c

) R
ed

uc
ed

 n
et

w
or

ks
 w

ith
 m

in
im

al
 h

id
de

n 
un

its
 a

nd
 n

o 
di

re
ct

 c
on

ne
ct

io
n 

fr
om

 th
e 

in
pu

t 
to

 t
he

 o
ut

pu
t u

ni
t. 

T
he

 
di

ag
ra

m
s d

ep
ic

t u
ni

ts
 a

nd
 t

he
ir

 c
on

ne
ct

io
ns

. (
d)

 R
ed

uc
ed

 n
et

w
or

k 
w

ith
 a

 d
ir

ec
t 

co
nn

ec
tio

n 
fr

om
 th

e 
in

pu
t t

o 
th

e 
ou

tp
ut

 u
ni

t. 



410 E. E. Munro, L. E. Shupe, and E. E. Fetz 

network. In some cases, this process was facilitated by implementing an 
automatic uniform weight decay during the training period. Differenti- 
ating networks could be reduced to one of two basic networks, each with 
a single excitatory and inhibitory hidden unit, as illustrated in Figure l b  
and c, and shown with a pulse input. The circuit in Figure l b  relayed the 
input serially via the excitatory units to the inhibitory units, calculating 
the difference between them at the output. The circuit in Figure lc fed 
the input simultaneously to the excitatory and inhibitory units, calculat- 
ing the difference at the excitatory unit. The net result of both pathways 
is that the output represents the input signal minus the input delayed by 
one timestep, which produces the derivative: o(tf2) = i ( f ) - i ( f - l ) .  These 
reduced networks are the smallest that produce an output mediated by 
the hidden layer and delayed by two time steps. An even smaller dif- 
ferentiating network can be constructed if the input is connected directly 
to the linear output; this network consists of the essential differentiating 
triad in Figure Id. These networks have the familiar configurations of 
feedforward and collateral inhibitory circuits commonly found in bio- 
logical sensory systems, which probably contribute to transient sensory 
responses. 

The larger differentiating networks appear to implement the same 
time-shift algorithms, but in a distributed and intermingled form. Thus, 
network la implements primarily the first algorithm (lb), but also incor- 
porates a component of the second. A large number of differentiating net- 
works were obtained, using different starting weights and networks hav- 
ing more complete connectivity (including self-connections and recurrent 
inhibitory connections); all solutions implemented essentially the same 
time-shift subtraction algorithm, with variable combinations of these two 
basic circuits. ‘The algorithm in Figure l b  was usually more prominent 
and more often survived weight reduction. 

4 Integration 

Recurrent networks of sigmoidal units could also be trained to simulate 
leaky integrators with various output decay constants. For the networks 
with longer decays it was necessary to scale down the output to prevent 
saturation with low frequency inputs. 

Figure 2 illustrates a network trained to simulate a leaky integrator 
with an output decay constant of 7 = 20 timesteps, and exemplifies 
the mode of computation for integrating networks. The inhibitory units 
remained essentially unused, since they did not develop effective connec- 
tions or activations. The excitatory units were strongly interconnected, 
and the activity of each resembled the output-viz., the leaky integral 
of the input. A pulse input generated rising and decaying activations 
whose decay constant T (estimated by fitting the falling phase to an ex- 
ponential) were found to be similar for the hidden units and were com- 
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Figure 2: Integrating networks. (a) Full network with 16 hidden units and a 
pulse input. Decay constant 7 = 20 time steps. Continued next puge. 

parable to that of the output. Deleting individual hidden units resulted 
in a uniform reduction of these decay constants across the hidden and 
output units. These observations indicate that the recurrent excitatory 
connections within the hidden layer perform the integration. Again, so- 
lutions obtained from different starting weights differed in their detailed 
connections, but all involved recurrent excitatory connections. 

The integrator networks could also be reduced to a smaller "essential" 
network containing two hidden units with reciprocal excitatory connec- 
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Figure 2: (b) Minimal network which excludes self-connected units (T = 20). 
(c) Minimal network with one self-connected hidden unit (7 = 100). 

tions if self-connections are excluded, as shown in Figure 2b. When 
self-connections are allowed, integration can be performed with a sin- 
gle excitatory hidden unit (Fig. 2c). Indeed, if the linear output unit is 
provided with self-excitation, no hidden unit is necessary and a pure in- 
tegrator can be constructed by making the product of the self-connection 
weight and the slope of the linear activation function equal to one. 

5 Simultaneous Differentiation and Integration 

We also trained networks with sigmoidal units to produce both the dif- 
ferential and leaky integral as two simultaneous outputs for a single 
arbitrary input (Fig. 3). While networks quickly learned to compute 
either the derivative or the leaky integral, generally reaching an error 
level of < 5% within 1000-2000 training cycles, it proved more difficult 
to train networks to compute both functions simultaneously. Such net- 
works generally learned to integrate with ease but failed to develop the 
inhibitory connections necessary for the differentiation, probably because 
the smaller differential signal contributed less to the error used for back- 
propagation. We overcame this problem by increasing the scale of the 
differential output (and therefore the differential error signal) relative to 
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Figure 3: Networks that simultaneously differentiate and integrate the input. 
(a) Full network. (b) Reduced network. 
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the integral output until an acceptable solution was obtained. The num- 
ber of hidden units and the overall number of training cycles required 
to reduce the error below the 5% level were larger for the networks per- 
forming both functions than for the single-function networks. 

Figure 3a illustrates a full network, which integrates and differenti- 
ates the input. The dual-function networks perform this simultaneous 
computation in a distributed manner. In general, a larger number of 
hidden units were actively involved in the dual computation and many 
of these contributed significantly to both outputs, as seen by compar- 
ing the vertical columns of input weights to 01 and 02. The recurrent 
connections of the excitatory units are similar to those obtained for the 
simple integrator network. The activity patterns of most hidden units 
(both excitatory and inhibitory) carry a component that resembles the 
integral output and deletion of individual units produced a reduction of 
activation decay constants across the network, suggesting an integrating 
mechanism similar to the pure integrator. The computation of the differ- 
ential within the dual-function network bears some resemblence to the 
pure differentiator as well. The activation patterns of many hidden units 
carry a component resembling the input. Within this class, excitatory 
units receive a strong direct input whereas inhibitory units receive little 
(cf. Fig. lb). However, the extensive cross-connections among the hidden 
units and their dominant integral signal precludes a clean implementa- 
tion of the same time-shift algorithm used by the pure differentiator. The 
algorithms found in the pure networks appear to be used in a distributed 
and overlapping fashion in the dual-function network. 

Reduced networks could also be derived from dual-function networks. 
In general, the hidden units involved in computing the integral and dif- 
ferential tended to decouple as the networks became smaller. The over- 
lapping nature of the computation could be preserved in these networks 
only at the expense of some residual error. The smallest possible reduced 
network contained four hidden units, three excitatory and one inhibitory 
(Fig. 3b). Units contributing largely to the integral (a1 and a2) are clearly 
distinguished by their activation patterns and connectivity from those 
contributing to the differential (a3 and bl). 

6 Network Size 

Since the small “reduced” networks can compute analytic functions as 
well as the large, it is interesting to consider the rationale for having 
networks with a larger number of units. Larger. networks are essential 
for training, since smaller networks rarely converged on acceptable solu- 
tions. During training small networks usually became stuck in local error 
minima that are avoided by the larger degrees of freedom provided by 
additional connections. Second, for units with sigmoidal input-output 
functions that saturate at the upper and lower levels, additional units 
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are required to extend the linear range of the network operation. For 
example, in the multiunit integrator (Fig. 2a) the activations of the in- 
volved hidden units have a variety of baseline offsets. The sum of these 
activations provides a linear output over a wider range than could be 
achieved by fewer units. Third, the operation of the larger networks 
would obviously be less affected by the loss of any particular units, since 
many would be redundant. Fourth, it seems significant that larger net- 
works can use the same units in several different elemental algorithms 
simultaneously. For example, in Figure la the inhibitory hidden units 
b6-b8 are involved in both of the differentiating algorithms in Figure l b  
and c, and the hidden units in Figure 3a are involved in both differen- 
tiation and integration. Thus the larger networks can have significantly 
increased computational power, including the ability to compute differ- 
ent functions simultaneously. 

7 Unit Time Constants 

Prolonged responses of biological neurons are often modeled by incor- 
porating intrinsic time constants into the hidden units. To see how our 
networks would perform when the hidden units retained some of their 
activity, we redefined the output value of unit i at a given time step X , ( f )  
to be a weighted sum of its value at the previous timestep X , ( t  - l), and 
the output of the sigmoidal transfer function ( F )  defined in section two. 
Thus: 

X , ( t )  = aX,(f - 1) + (1 - a)F[weighted sum of inputs to X I ]  

where a varies between 0 and 1. With this definition, the intrinsic time 
constant of unit i in time steps is given by 

r, = 1/1 - a 

We chose values of (Y from 0 to 0.8, giving time constants in the range of 
1-5 timesteps. 

7.1 Integrator. As the time constants of hidden units was increased, 
the networks generally integrated with a lower level of error for a given 
number of training iterations. Moreover, networks incorporating larger 
time constants accomplished the same integration using smaller net re- 
current weights (i.e., smaller sum of self- and feedback connections). The 
minimal leaky integrator with one self-recurrent unit required a lower re- 
current weight when the time constant was larger, as expected from the 
equivalent effects of these two parameters. Similarly, in larger integrating 
networks the sum of recurrent weights was inversely related to intrinsic 
time constants. 

To further test the frequency responses of networks we documented 
their output response to input sinusoids of different frequencies with the 
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Bode amplitude plot [the log of the output-input amplitude ratio vs. log 
of frequency] and Bode phase plot [the phase of the output relative to 
input vs. log of frequency]. The performance of leaky integrator networks 
was equally good in the training range, whether the hidden units had 
time constants or not; however, outside the training range the networks 
with intrinsic time constants had Bode plots that approximated the ideal 
leaky integrator slightly better. 

7.2 Differentiator. Incorporating units with time constants into net- 
works substantially impaired their ability to differentiate. Networks with 
the same architecture as those in Section 3, but with modest time con- 
stants (e.g., ~i = 21, could no longer be trained to differentiate from ran- 
dom initial conditions. In general, as the time constants of individual 
units increased, the networks took longer to learn to differentiate and 
performed at a greater absolute error level. This error was dispropor- 
tionately due to the higher frequency component of the input signal. For 
networks with pure sigmoidal units without decay (a  = 0)  the Bode am- 
plitude plots approximated the ideal relation fairly closely, but fell off at 
a high frequency limit determined by the time step duration. For dif- 
ferentiating networks with units having time constants ri > 1, the Bode 
amplitude plot reached a maximum at a lower frequency and then began 
to decrease. This inflection frequency was inversely related to the time 
constant of the hidden units. 

We explored several methods to improve the training and perfor- 
mance of differentiator networks with time constants, including (1) in- 
creasing T; by small increments, and retraining between increases; (2) re- 
laxing the sign constraint on hidden unit outputs; and (3) increasing the 
delay between the network's input and output signals from 2 time steps 
to 4. These methods produced additive improvements of network per- 
formance for a given time constant, as reflected by decreases in absolute 
error levels and increases in the high-frequency limit of Bode plots. Like 
differentiators composed of sigmoidal units without time constants, these 
networks appeared to generate a distributed version of the time shift al- 
gorithm described above, although they tended to use only a fraction of 
the units available. Titrating 7, by small increments may improve learn- 
ing performance by allowing the learning network to "track a local error 
minimum as it varies parametrically with the time constant. Relaxing the 
sign constraint on hidden unit outputs allows more degrees of freedom 
for gradient descent, and gives networks a greater range for solutions. 
[Of course a network with unsigned units can be transformed to one 
with twice as many signed units.] The greater delay between input and 
output signals may provide two computational advantages: The larger 
delay could increase the number of paths through which a time shift 
and subtraction could be implemented [e.g., by varying the size of the 
time shift, the length of the path from input to output, and the time step 
at which the subtraction occurs]. It also makes it possible to produce 
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multiple estimates of the derivative in less than 4 time steps, allowing 
additional time to combine these estimates. We have not explored these 
possibilities systematically. 

7.3 Combined Differentiator-Integrator. Networks that were previ- 
ously trained to simultaneously differentiate and integrate an input signal 
as described above could be further trained (by successively increment- 
ing T,  and retraining) to both differentiate and integrate at reasonably 
low error levels with T, as high as 4.0. These dual-function networks 
differentiated more accurately than the pure differentiator networks ob- 
tained as described above, particularly at higher frequencies. For the 
dual-function networks without time constants the Bode amplitude plots 
for the differential output approximated the ideal as well as plots for pure 
differentiators without time constants. Increasing ~i up to 4.0 for dual- 
function networks reduced the linearity and the high-frequency cutoff 
of the Bode plot only slightly. For T > 4.0 the high-frequency cutoff 
dropped markedly and the ability to differentiate high frequency sig- 
nals deteriorated. The greater ease with which dual-function networks 
could accommodate increases in time constants compared to pure differ- 
entiators may reflect the fact that hidden units already had effective time 
constants imposed by their simultaneous participation in the integration. 
The combined differentiator/integrator networks tend to use most or all 
of their units in the computation whereas pure differentiators with time 
constants used as few as 10-20% of their units actively. Training net- 
works to both integrate and differentiate may force them to distribute 
their computation of the derivative, which may allow the dual-function 
networks to deal better with the introduction of time constants. 

8 Conclusions 

These simulations have provided several insights into the capacity of 
recurrent dynamic neural networks to compute the analytic functions of 
differentiation and integration. 

1. Using the backpropagation algorithm with nonrepeating input pat- 
terns produced neural networks that differentiated and/or inte- 
grated any subsequent test signal. By eliminating unnecessary units 
and combining redundant units it was possible to derive reduced 
networks that performed the same function. The reduced networks 
often revealed the computational algorithm more clearly. How- 
ever, networks this small could not be trained from random starting 
weights. 

2. The differentiating networks implemented a strategy of delayed 
subtraction of the input, and the hidden units often carried sig- 
nals resembling the input. The integrator networks used recurrent 
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connections between the excitatory hidden units, whose activation 
all resembled the output (i.e., the integral of the input). 

3. Networks could also be trained to produce the integral and dif- 
ferential simultaneously on two separate outputs. These networks 
combined the strategies used by the pure differentiator and inte- 
grator in a distributed and overlapping manner. Reduced networks 
performed these two operations best by dissociating into separate 
subnetworks for each function. 

4. Integrating networks incorporating units with intrinsic time con- 
stants 7; learned faster and performed better as 7; were increased. 
By contrast, performance of differentiating networks deteriorated 
as T; were increased, particularly at high frequencies. Combined 
differentiator-integrator networks that had been trained without 
time constants could be trained to maintain their performance with 
incremental increases of 7, over a limited range. 

5. These circuits have some analogues in biological systems. Many 
neurons in sensory systems exhibit transient responses to stimuli 
(resembling differentiation) that may be sharpened by ubiquitous 
recurrent and feedforward inhibitory connections. The intrinsic 
membrane time constants of neurons (ca. 5 msec) would not com- 
promise differentiation of signals changing at lower rates. In ad- 
dition to network mechanisms, intrinsic receptor mechanisms can 
also generate transient sensory responses. Cells in motor systems, 
notably the oculomotor system, exhibit sustained responses to tran- 
sient input, resembling integration; the network time constants are 
many times longer than intrinsic neural time constants, probably 
due to recurrent connections. In contrast to the recurrent excitation 
of our minimal integrator networks, the oculomotor system also 
uses inhibition in order to integrate push-pull signals without in- 
tegrating baseline activity (Cannon and Robinson 1985; Anastasio 
1991; Arnold and Robinson 1991). 
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