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Dynamic Neural Network Models of
Sensorimotor Behavior

Eberhard E. Fetz

The goal of systems neurophysiology is to understand the neural mecha-
nisms underlying behavior. Traditional approaches toward this goal
have involved anatomical and physiological techniques that reveal the
connectivity or activity of specific components of the system. Yet, de-
spite innumerable studies documenting how lesions affect behavior,
how stimulation evokes movement, and how single units fire in behav-
ing animals, we still have no consensus about how biological neural
networks actually generate movement. The basic reason that the experi-
mental data have not yet converged on a definitive causal explanation
of motor behavior is simple: The traditional techniques inevitably pro-
vide only limited samples of the system. For example, recordings of
single unit activity indicate their response patterns, but nothing about
their relation to the rest of the system. What is missing is what artificial
neural network models can provide: a method of generating working
models of the complete system.

Two general approaches to neural network modeling should be dis-
tinguished at the outset. The bottom-up approach involves synthesizing
experimental details about cellular mechanisms into a working network
model. This approach appeals to physiologists concerned with preserv-
ing biological reality, who wish to demonstrate how physiological neurons
could function when combined into circuits; however, the bottom-up
approach runs into problems dealing with the whole organism, since
many parameters of the nervous system are largely unknown and must
be arbitrarily assigned. Moreover, modeling the whole system with
“realistic” neurons soon becomes prohibitively complex. Alternatively,
recent advances in neural network algorithms now make it possible to
derive top-down simulations of sensorimotor behavior in networks of
appropriately chosen connectivity. The latter techniques provide neural
networks that perform specified behaviors, derived entirely on the basis
of examples of the behavior itself.

The first examples of such top-down simulations involved feedforward
networks trained with backpropagation to transform spatial patterns.
For example, feedforward networks have been trained to classify the
shape of a surface from shaded images (Lehky and Sejnowski 1990).
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Input-output Properties for Sigmoidal Units used in Dynamic Recurrent Networks

Figure 7.1 Each unit | generates a continuous activation y. as output. Its net input x; is
the weighted sum of activities of its input units y; and the bias, weighted by synaptic
connection strengths Wi This sum is transformed by the sigmoidal input-output or
“squashing” function f to limit the output: 0 < y; < 1. The offset 6 reduces output to near
zero in the absence of input.

Another such network combined the retinal coordinates of a visual
stimulus with eye displacement to provide a code for the position of the
stimulus in head coordinates (Zipser and Andersen 1988a). Interest-
ingly, the hidden units in such networks often have response properties
resembling those seen in biological neurons recorded in animals. The
shape-from-shading networks developed hidden units with center-
surround receptive fields like visual cortex cells, even though the simu-
lated task did not explicitly require such properties or present stimuli
with edges. The reasons that units in network simulations of a task often
have such close correspondence with units in biological systems may
be more than coincidental; it may be related to basic properties of
identification models, as discussed by Zipser (1992).

The supervised training procedures have now been extended beyond
feedforward networks, which transform spatial patterns through serial
layers, to dynamic recurrent networks, which can deal with spatiotem-
poral patterns and have feedback connections. Results obtained from
top-down simulations of behavior with dynamic recurrent networks are
the subject of this chapter.

Three key properties distinguish dynamic recurrent networks from
other modeling approaches:

First, the units are dynamic, meaning they can exhibit time-varying
activity. The activation of each unit is a temporal variable, which can
represent the firing rate of neurons, their synaptic potentials or some
relevant time-varying sensory or motor parameters. This means that the
models can incorporate physiologically recorded activity as activation
patterns that the network can be required to generate.

Second, the networks have a recurrent architecture, which allows
unrestricted connectivity. In addition to feedforward connections be-
tween successive layers of units, the networks can have feedback and



cross-connections. Thus, the models can incorporate recurrent anatomi-
cal pathways.

Third, the networks that simulate a particular sensorimotor behavior
can be derived from examples of the behavior by gradient descent meth-
ods such as backpropagated error correction. The resulting network
models provide complete neural network solutions of the behavior,
insofar as they determine all the connections and activations of the units
that simulate the behavior.

Neural networks that emulate particular sensorimotor behaviors—
i.e., that transform spatiotemporal inputs to appropriate outputs—can
be derived by various training strategies. These networks usually com-
prise the units illustrated in figure 7.1, often named “sigmoidal”or “logistic”
for the fact that the unit’s output y is a sigmoidal function of its input
x. The unit’s input consists of the summed output activation of all other
cells connected to that unit times their synaptic weight; a steady input
may also be provided by a bias element:

b
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(see also equation 3.1). The sigmoidal input-output function f mimics
a biological neuron’s property of saturating at maximal rates for high
levels of input, and decreasing to zero at low input levels:
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Additional properties of these units are provided in chapter 3; chapter
5 describes not only the units but also the input-output function. The
function f often includes an offset term 6 to ensure that units generate
negligible output in the absence of input.

To illustrate the training procedure, figure 7.2 shows a representative
network of such units, with network input and output patterns that
simulate the step-tracking task described below. The four input units
carry signals representing the changing target locations; these signals
are transformed to eight output activation patterns, representing the
firing patterns of typical motor units in the muscles of a monkey track-
ing the target. To train the network, the synaptic weights are initially
assigned randomly, and the output response of the network is deter-
mined; the difference between network output patterns N(f) and the
desired target output activations T(t) is the error E(f). The backpropagation
algorithm modifies the weights in such a way as to optimally reduce
this error. As shown by the equation, the optimal weight change can be
computed from the error when the functions are differentiable. As il-
lustrated by the inset in figure 7.2, this weight change implements a
gradient descent of the error as a function of the weight. After each weight
correction the input patterns are presented again and the new outputs



Input Hidden Layer Output

Network Target Error
* N(t) () E(t) =T(1) - N(t)
R —— -
FIx Ext = SN /R_ [
I | — T e
LIL . AN S
\/_/\
-~ B ] N A
B _~
0N . AN N ——
) LM,:- ya.
B ’ ! awji

Typical Network Architecture and Training Procedure Used with Dynamic
Recurrent Networks

Figure 7.2 This network was used to simulate the step-tracking task (see figure 7.5 for
a specific example). The network input consists of four representations of the step target
position and target change; the output represents the firing patterns of eight represen-
tative motor units in flexor and extensor muscles. The intervening hidden units consist
of excitatory and irhibitory groups, with distributed connections indicated by the arrows.
Network training proceeds by calculating the difference between the network output N(t)
and the desired target activations T(t), and changing the connection weights in such a way
astoreduce the error E(t). Inset at lower left illustrates the error as a function of one weight,
and the use of the gradient of this function to determine the appropriate weight change.

determined. This process of changing the weights in proportion to the
error gradient is repeated iteratively until the network converges on a
solution with minimal error.

Several types of algorithms have been used to implement such gra-
dient descent methods for dynamic recurrent networks. Watrous and
co-workers derived backpropagation techniques to train dynamic net-
works to identify acoustic features from speech data (Watrous and
Shastri 1986). Their temporal flow model involved a hidden unit layer
between input and output that had recurrent connections. Pearlmutter
(1989) developed an algorithm for recurrent networks of units carrying
continuous temporal signals, and applied this to training a network to
generate trajectories in phase space. Williams and Zipser (1989a, 1990)
provided a real-time recurrent learning (RTRL) algorithm for training
recurrent networks carrying time-varying signals. RTRL updates the
weights after each time step, rather than after the end of a sequence,
allowing the training to occur in real time, with less storage require-



ments. A useful variant of this algorithm is teacher-forced learning, in
which the target activations are substituted for the actual unit outputs
during training; this has proven more effective for training networks to
generate oscillations. A comparison of various training methods for
recurrent networks is presented in Williams and Zipser (1990).

APPLICATIONS

The applications for these dynamic recurrent networks can be classified
into three broad categories:

Pattern recognition applications involve identification of spatiotempo-
ral input patterns into discrete categories. A set of input units receiving
time-varying signals can be considered to represent a spatiotemporal
pattern. Pattern recognition applications include speech recognition
(Watrous and Shastri 1986), conditional delay tasks (Williams and Zipser
1989a, b) and recognition of finite state grammars (Smith and Zipser
1989).

Pattern generation networks produce temporal patterns in one or more
output units, either autonomously or under the control of a gating input.
These include oscillating networks (Pearlmutter 1989; Williams and Zipser
1989a, b) and simulations of central pattern generators (Rowat and
Selverston 1991; Tsung et al. 1990), described below.

Pattern transformation networks convert spatiotemporal input patterns
into spatiotemporal outputs. Examples include simulations of the leech
withdrawal reflex (Lockery and Sejnowski 1990, 1992), step-target track-
ing in the primate (Fetz and Shupe 1990; Fetz et al. 1990), the vestibulo-
ocular reflex (Anastasio 1991a, b; Arnold and Robinson 1991; Lisberger
and Sejnowski 1992a), and short-term memory tasks (Zipser 1990, 1991).
Recurrent networks have also been trained to simulate analytical trans-
forms such as integration and differentiation of input signals (Munro
et al. 1991) and to emulate special-purpose Turing machines (Williams
and Zipser 1989b).

Given the generality and power of dynamic recurrent networks, it
seems remarkable that the applications are still sufficiently few to sum-
marize in the scope of this chapter.

Oscillating Networks

Biological systems provide numerous examples of autonomously gen-
erated periodic motor activity: locomotion, mastication, respiration, etc.
The neural circuitry underlying cyclic periodic movements has been
dubbed a central pattern generator (CPG). Additional reviews of CPGs
are discussed in chapters 5 and 6. Besides motor activity, oscillatory
activity of various frequencies also appears in cortical circuitry during
the alpha and gamma waves of neocortex and the theta waves of hip-
pocampus. Networks that generate oscillatory activity have been con-



structed with bottom-up strategies (e.g., Buchanan 1992; Grillner et al.
1991), but our interest here is in networks derived by backpropagation
techniques.

Williams and Zipser (1989a, b) trained dynamic networks of sigmoidal
units to generate oscillatory activity with various specified frequencies.
Boolean oscillations between two binary states were readily achieved,
but only with teacher-forced training. Dynamic networks could also
generate sine-like oscillations with periods of 25 timesteps or less. The
smallest circuit that sustained quasi-sinusoidal oscillations consisted of
two interconnected sigmoidal units. The frequency of the free-running
network was about 10% lower than the trained frequency sustained by
the teacher signal. Selverston and co-workers (Tsung et al. 1990) trained
pairs of sigmoidal units to oscillate with specific phase shifts. The two
units preferred to oscillate with similar (but not identical} phase; train-
ing them to exhibit larger phase shifts involved increasing numbers of
training cycles. A 15-unit interconnected network without sign con-
straints could readily be trained to oscillate with equidistant phases (i.e.,
phase shifts of 27/15, or 24°).

To simulate the oscillatory activity of neurons in the lobster gastric
mill circuit, Tsung et al. (1990) trained a network with the connectivity
and sign constraints of known neurons in the mill circuit; this network
replicated the correct phase relations of the oscillating interneurons.
After its activity was perturbed, the network reverted to the original
pattern, indicating that the weights found by the learning algorithm
represented a strong limit cycle attractor.

Rowat and Selverston (1991) have developed learning algorithms to
train oscillations in dynamic recurrent networks of units with biological
properties like gap junctions and membrane currents. They used a
generalization of the Williams and Zipser teacher-forced learning pro-
cedure to train networks to simulate known oscillatory activations and
to observe sign and magnitude constraints on connection weights.

My colleague Larry Shupe and I have also derived autonomous os-
cillators through dynamic recurrent networks. The input was a gating
step that turns network activity on, and the target output was activity
oscillating at a prescribed frequency. Figure 7.3 shows a typical recur-
rent network that generates gated oscillations. The discharge pattern of
each unit is shown along the left, next to the row of output weights of
that unit. From top to bottom these include the bias (a constant), the gate
signal (IN), nine excitatory hidden units (e1-e9), nine inhibitory hidden
units (i1-19) and the oscillating output (OUT). The hidden units and
output are shown again at the top, above the column of weights rep-
resenting the input connections to each unit. The squares in the matrix
symbolize the strength of the synaptic connection from the row unit to
the column unit. Black squares designate excitatory weights and open
squares represent inhibitory weights. (Note that this convention is opposite
from that of the Hinton diagrams in chapter 5.) The size of each square
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Network Trained to Generate Gated Sinusoidal Oscillation

Figure 7.3 The weight matrix gives the strength of connections from the row to column
units (scale at top; excitatory black). The units are represented by name and activation;
from top to bottom: the bias (a constant maximal activation of 1, not illustrated), the input
gate signal (IN), the excitatory hidden units (e’s), inhibitory hidden units (i’s) and output
(OuUT).

is proportional to the strength of the connection, except those that exceed
the calibrated scale at the top, which are designated numerically. In this
simulation the excitatory hidden units are connected to each other, to
the inhibitory group, and reciprocally to the output cell; the inhibitory
hidden units connect only to the output. The network was trained without
teacher forcing and achieved an oscillatory period of 20 time bins.
The network in figure 7.3 has more units than required to generate
the oscillations. Many units have similar activations and connections
(e.g., e4 and €9), and other units have negligible activity (e.g., el and
i6). To simplify the network and elucidate the neural mechanisms, it is



Reduced Network That Generates Oscillations at Different Frequencies, Depending
on the Level of Tonic Input

Figure 7.4 After the network was trained on the two illustrated input levels (0.4 and 0.9),
testing with intervening levels of input generated oscillations at intervening frequencies.

often useful to reduce the network to its minimal size (LeCun et al. 1990;
Mozer and Smolensky, 1989). A network of many hidden units can be
reduced by (1) combining units with similar responses and connections
into one equivalent unit and (2) eliminating units with negligible acti-
vation or weak connections. This can be done manually or by incorpo-
rating an automatic weight decay algorithm. Such reduced networks can
then be retrained to perform the same operation. Figure 7.4 illustrates
a reduced version of a network trained by my co-workers A. Pralle and
L. Shupe to generate oscillations at two different frequencies, depending
on the level of input. This network was trained to oscillate at a low
frequency for an input of 0.9 and a high frequency for an input of 0.4.
When presented with input levels between the training levels, this network
also generates intervening frequencies. The interactions generating the
oscillations can be analyzed by determining how the activation of each
unit is determined by its inputs.

These simulations suggest that recurrent networks of sigmoidal units
are quite robust in generating oscillatory activity, even to the point of
meeting a variety of constraints in phase and period.

Reflex Responses of the Leech

Biological systems provide many examples of spatiotemporal trans-
forms in reflex responses to localized stimuli. The leech withdrawal
reflex has been modeled with dynamic recurrent networks by Lockery
and Sejnowski (1990; 1992). The network inputs were stimuli applied
to dorsal and ventral cutaneous receptors; the output signals were the



postsynaptic potentials evoked in representative motor neurons. These
networks also incorporated electrical synapses and time constants which
generated fast and slow components of synaptic potentials. The trained
networks implemented distributed reflex pathways, as seen in the leech.
Further details are provided in chapter 5.

Primate Step Tracking

The primary interest of my laboratory in dynamic recurrent networks
derives from a desire to understand the neural circuitry controlling
forelimb muscles of the primate. This will be discussed in some detail
to illustrate the types of insights provided by network simulations. In
monkeys performing a step-tracking task, previous experiments have
documented the physiological discharge patterns and output connec-
tions of task-related neurons. The premotoneuronal (PreM) cells which
affect muscle activity were identified in behaving monkeys by post-
spike facilitation of target muscles in spike-triggered averages of elec-
tromyographic recordings. The response patterns of three groups of
PreM cells—corticomotoneuronal (CM), rubromotoneuronal (RM), and
dorsal root ganglion afferents—have been documented during a simple
alternating flexion/extension task designed to relate their activity to
changing and sustained force (Fetz et al. 1989; Flament et al. 1992). The
discharge patterns observed in PreM cells, as well as in single motor
units (MU) of agonist muscles (Palmer and Fetz 1985), fall into specific
classes (Fetz et al. 1989). During a ramp-and-hold movement, all three
groups include cells that show phasic-tonic discharge. The phasic com-
ponent is related to the changing force and the tonic component is
proportional to the amount of static force exerted. All groups also in-
clude tonic cells which show steady discharge throughout the hold
period in proportion to the active force. Each group also has cells with
unique firing properties. A large proportion of motor units show
decrementing discharge, which decreases gradually through the static
hold period. The RM population has cells that fire during both flexion
and extension, and some cells that are unmodulated with the task and
provide a constant bias.

To investigate the possible functional role of all these cells and to
determine what other types of discharge patterns might be required to
transform a step signal to the observed output of motor neurons, we
derived dynamic networks that generated as outputs the average firing
rates of motor units recorded in monkeys performing a step-tracking
task.

Figure 7.5 shows a neural network that simulates the input-output
transformation in the step-tracking task. The monkey sees a step change
in target position, alternating between flexion and extension target zones.
This is represented by sustained step inputs to the network for both
flexion (fs) and extension (es). Since many visual system cells discharge
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Dynamic Network Simulating Step-tracking Behavior Documented in Monkeys

Figure 7.5 The network transforms step and transient inputs to firing patterns of motor
units at output. Unit activations during a flexion-extension cycle are shown at left and
along the top. The rows represent, from top to bottom, the bias (which was eliminated
for this simulation), the input signals (fs to eb), the excitatory hidden units (a’s), inhibitory
hidden units (b’s) and the output flexor and extensor motor units (ft to ep). The target
output patterns for each group are tonic (ft and et), phasic-tonic (fpt and ept), decrementing
(fd and ed) and phasic (fp and ep). Hidden units were sorted in order of contribution to
flexion vs. extension outputs. (Reprinted from Fetz and Shupe 1990, with permission.)



transiently, we also provided brief transient input at the onset of each
target change (fb and eb). The network transforms these input signals
to the observed response patterns of motor units at the output. The four
types of motor unit patterns observed experimentally—tonic, phasic-
tonic, decrementing, and phasic—are generated for both flexor and
extensor movements (ft to ep). The intervening hidden units consist of
twelve excitatory and twelve inhibitory neurons (a and b units,
respectively).

Figure 7.5 illustrates the activation patterns and the connection matrix
of all units after the network produces the eight different output pat-
terns (2000 training iterations were sufficient). The discharge pattern of
each unit is shown along the left, next to the row of output weights of
that unit, and is shown again at the top of the column of weights
representing the input connections to that unit. Self-recurrent connec-
tions (corresponding to weights on the diagonal) were excluded. To
better visualize the relationships between units, the hidden units were
sorted in order of the strength of their contribution to the phasic-tonic
output units. The sorting algorithm used the product of activation and
weight to the flexion phasic-tonic motor unit minus activation times
weight to the extension phasic-tonic unit. Thus, the first hidden unit
(all) makes the largest relative contribution to the flexion phasic-tonic
output unit (fpt). This hidden unit developed the strongest weights to
the flexion tonic output unit (ft), but was also connected to the other
flexor units. Such divergent connections to different motor units, as well
as to synergist muscles are representative of CM cells (Fetz et al. 1989).

The activation patterns of the hidden units show several interesting
features. The discharge patterns in the hidden units involve some rec-
ognizable variants of the output patterns, including tonic, phasic, pha-
sic-tonic, and decrementing patterns. Secondly, although the activation
profiles of the target motor units are identical for the flexion and the
extension groups, the network solution involves a different assignment
of hidden units devoted to each. There are more excitatory and fewer
inhibitory hidden unit activations related to flexion than to extension,
yet they produce essentially identical output effects. In general, differ-
ent network simulations with the same architecture and trained on the
same task, but starting with different initial weights usually converged
on different solutions. (See chapter 3 for a relation of this property to
biological variability.)

Another interesting feature of the weight matrix is the preferentially
strong connections within the sets of units with sustained and transient
activity. Thus, the first two flexor hidden units exhibiting tonic activity
(all and a2) are strongly interconnected with each other and receive
potent input from the flexion step and connect strongly to the tonic
output unit. Similarly, the transient input (fb) is most strongly con-
nected to the phasic hidden units (al and a8), which are strongly inter-



connected with each other and which also have strong reciprocal con-
nections with the phasic output unit (fp).

Despite this tendency for sustained and transient signals to propagate
through segregated pathways, most cells receive a mixture of phasic and
tonic input signals. For example, the phasic flexor motor unit (fp) re-
ceives input not only from the phasic hidden units (al and a8), but also
from cells with sustained activity (all and al0); indeed, some of the
phasic activity of fp is derived from the difference between excitatory
and inhibitory tonic cells with different onset times (e.g., all and bl).
Such a subtraction of a delayed tonic pattern is used to produce phasic
output in network simulations that receive only step inputs (Fetz et al.
1990).

We expected the network to develop reciprocal inhibition between the
flexion and extension groups. Although a few inhibitory units activated
during one phase of movement (e.g., extension) do affect primarily
reciprocally activated motor units (e.g., b8 and b5), just as many units
inhibit coactivated motor units (e.g., b12). Interestingly, the major drive
on the tonic inhibitory units with connections to coactivated motor units
is derived from recurrent feedback from the motor units (e.g., et to b4
and b9, which in turn inhibit ep). This recurrent feedback makes these
inhibitory hidden units more analogous to the Renshaw cells of the
spinal cord than to the la inhibitory neurons. Another group of inhibi-
tory hidden units develop connections to both flexor and extensor motor
units (b1 and b10), a pattern that has no known correlate in physiologi-
cal studies.

The function of hidden units in the network can be tested by making
selective lesions—by eliminating the activation of particular units and
analyzing the behavior of the remaining network. Figure 7.6 illustrates
the effects of removing a phasic hidden unit. The first column shows
the control activations of representative units in the intact network.
Removing the contribution of phasic unit al (middle column) eliminates
the phasic activity of the output flexor units (fpt, and fp), as well as
eliminating activity of the other phasic hidden unit (a8). It also reduces
the sustained activity of the decrementing units (al0 and fd). These
selective lesions have substantial effects because this network has rela-
tively few units carrying a particular pattern, and these units are strongly
interconnected.

The output effects of a given unit can also be tested by delivering a
simulated stimulus and analyzing the propagated network response.
The right column in figure 7.6 shows the effect of brief activation pulses
delivered to al during the flexion and extension phase of the activity.
The second pulse, during extension, evokes a response in the phasic
output unit as well as in some of the active inhibitory hidden units. In
contrast, the first pulse, delivered during the flexion phase, evokes a
stronger response in the phasic output unit, as well as more prolonged
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Effect of Lesioning and Stimulating a Hidden Unit in the Network of Figure 7.5

Figure 7.6 The activations of representative units are shown for the intact network
(control, left column); after lesioning the phasic excitatory hidden unit al (middle col-
umn); and after stimulating the phasic excitatory hidden unit al (right column). The
modified activations are shown in black, superimposed on a stippled profile of the control
activations. (Reprinted from Fetz and Shupe 1990, with permission.)

responses in the phasic-tonic and decrementing units (al0, fd), suggest-
ing that the decrementing units carry a leaky integral of the phasic burst.

The fact that evoked responses were larger in certain phases of the
movement than in others is clearly related to the gating function of the
activation of the intervening units. Such modulation of evoked responses
during cyclic motor activity has been well documented in physiological
experiments. Plotting the evoked response as a function of time in the
flexion-extension cycle revealed modulations that were not simply
proportional to the activation of the stimulated or target cell, but were
more complex functions of the activations and connections of the net-
work (Fetz and Shupe 1990).

These networks were trained to generate the appropriate output patterns
in response to specific and repeated inputs. We also investigated a
network’s ability to generalize across different stimulus-response
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magnitudes—to generate output activation patterns proportional to the
input step. In the step-tracking task, monkeys learned to generate force
levels proportional to the size of the target step, and did so by propor-
tionally scaling the discharge levels of the task-related neurons. For
example, the discharge pattern of phasic-tonic motor units was propor-
tional to the active force levels (Palmer and Fetz 1985). Such linearity
was tested in a simple network that transforms a step input to a phasic-
tonic output (figure 7.7). If a network was trained on only one force level
and tested with inputs representing other force levels it typically gen-
erated outputs that deviated drastically from a proportional phasic-
tonic pattern (figure 7.7, left). Going from 200 to 1000 training iterations
produced a slight improvement in accuracy at the training level (0.6)
but resulted in greater deviations at other levels. We obtained a network
that generates a phasic-tonic output pattern in proportion to the input




EHJO000O0o0o o

el 62 o3 od a5 o6 o7 98 11 2 3 4 5 8 7 8

v o «HillmwEENEO-: - O0oOn

()]

288288

DDeOOM -

= 8

R &% I 5 06 X &8 &

Percent Error

Magnitude Scaling in Neural Networks Transforming Step Input to Phasic-tonic

M

O

= uf

nl HEBN:=:Ess

Al Be@ullss anm
Hull] sgEEEsmEEs
EEEs =s-EuesEER
D N
]

OCOoc0ONs= =N
oJo[Sim « 3

coQdanO

120 Training Steps: 0.4, 0.8

100
80
60

40 200

201 1000

0.2 0.4 0.6 0.8 1
Input Step Amplitude

AL WA

Output

Figure 7.7 (Left) Network trained on one step size (0.6). (Right) Network trained from
same starting point on two step sizes (0.4 and 0.8). Bottom graphs give percent error
between the actual output and a phasic-tonic pattern proportional to the step input, after
200 training iterations (white boxes) and 1000 iterations (black circles). Samples below
show normalized outputs (dark lines) superimposed on the phasic-tonic pattern (light
lines) for input step sizes 0.2, 0.6 and 0.9, using the networks after 1000 iterations.

(Reprinted from Fetz et al. 1990, with permission.)

il

A REREL] | [

.8 4

f




step by simultaneous training at two step levels (0.8 and 0.4) (figure 7.7,
right). When tested with intermediate input steps, the second network
still generated proportional outputs. However, when tested with steps
outside the range straddled by the training levels, the output still de-
viates slightly from a proportional response. Interestingly, the network
that generalized the transform had a connection weight matrix similar
to the network trained at a single level (both were trained from the same
initial state); however, the network which generalized had a more equitable
distribution of weights from the excitatory hidden units to the output
(compare left and right networks in figure 7.7).

These simulations are obviously too simplistic to be taken as realistic
models of the primate motor system. Nevertheless, even these highly
abstracted networks reflect many of the features of the biological system
in the monkey. For example, many different combinations of hidden
units contribute to the same output. A phasic output pattern, for in-
stance, has been generated by phasic hidden units, tonic excitatory
activity minus delayed tonic inhibitory activity, and phasic-tonic excitatory
input minus inhibitory bias. Furthermore, some complex activity pat-
terns seen in premotor neurons of monkeys, such as bidirectional re-
sponses of RM cells, also appear in the networks. Even certain apparently
paradoxical relations seen in monkeys, such as cortical units that covary
with muscles which they inhibit, appear in networks and make contri-
butions that are understandable in terms of other units. Thus, the net-
works have been useful in elucidating the function of many puzzling
features of biological networks.

Short-term Memory Tasks

Neural mechanisms of short-term memory have been investigated in
many experiments by recording cortical cell activity in animals perform-
ing instructed delay tasks. One variant of these tasks begins with an
instruction cue that the monkey has to remember during a delay period.
At the end of the delay a go stimulus signals the time to execute the
appropriate response indicated by the cue. A simulation of this para-
digm in a dynamic recurrent network is illustrated in figure 7.8. The
network receives three inputs, consisting of the two separate cues and
the go signal; the network has two outputs, corresponding to the re-
sponse appropriate for each cue. Thus, following either cue 1 or 2, the
go signal will generate activation of the corresponding output unit, 1
or 2. Figure 7.8 illustrates activations of the units in a trained network
for several trials involving different delays. The connectivity matrix
shows that the hidden units are configured to form a flip-flop that routes
the go signal to the appropriate output. This network simulates the
operation of short-term memory during the delay; some hidden unit
activations (e.g., b3) carry mixed representations of cue and movement
signals, which has been seen in premotor and prefrontal cortex neurons.
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Figure 7.8 Input pulses on inputs il and i2 are cues for the network to generate outputs
ol and o2, respectively, when the go signal i3 is presented after a delay.

In this simulation the output pulse is a replica of the go signal; this
output pulse can be readily shaped to generate activation profiles re-
sembling muscle activity by further training, or by cascading a second
network that transforms the output pulse (as in figure 7.7).

Another type of instructed delay task involves the requirement to
remember the value of a particular stimulus. Williams and Zipser (1989a)
trained recurrent networks to perform delayed nonmatch to sample
task, in which the sampled variable to be remembered had binary values.
More generally, the remembered variable can range over a continuum
of values. Zipser (1990, 1991) has trained recurrent networks to simulate
short-term memory of an analog value during the delay; in essence the
network implements a sample-and-hold function (figure 7.9, left). The
network has two inputs: an analog signal representing the stimulus



RECURRENT NETWORK_ MODEL EXPERIMENT

Analog In (A)
Gate In  (G)

ouT

=

ACTIVITY

—
]

1 .

l——l__'_ our

TIME STEPS

ACTIVITY

TESTING

n

A

[]

1 .

TIME STEPS

Sample-and-hold Delayed Response Task of Zipser (1990, 1991)

Figure 7.9 (Left) Simplified representation of input-output operation of the model, and
waveforms used for training and testing. (Right) Comparison of activations of hidden
units of the model and neural activity recorded in cerebral cortex of monkeys performing
conditional delay tasks. The brief bar and arrow under the time axes represent the initial
and final gate for the model, and the cues at the beginning and end of the delay period
for the experimental data. The experimental histograms represent: (A) a neuron from
posterior parietal area LIP during a delayed saccade task (Gnadt and Andersen 1988); (B)
an inferotemporal neuron during a visual delayed match-to-sample task (Fuster et al.
1985); (C and E) frontal neurons in the principal sulcus during a delayed match-to-sample
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value to be remembered and a gate signal specifying the sample and
output times. The network output is the value of the analog input at
the time of the previous gate. During the delay the activity of many
hidden units resembles the response patterns of cortical neurons re-
corded in monkeys performing comparable instructed delay tasks (fig-
ure 7.9, right). The activity patterns of hidden units, like those of cortical
neurons, fall into three main classes: activation profiles proportional to
the remembered analog value, often with a decay; activation during the
gate signal; and some combination of the two. The network simulations
allow the function of each of these patterns observed in the animal to
be interpreted in terms of its role in the task.
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Figure 7.10 A larger network with weight constraints was originally trained on the task,
thenreduced to the essential minimum by eliminating redundant and unnecessary hidden
units. The two inputs are the sample signal (S) and a random analog value A; the output
(O) is the sustained value of the last sampled analog value.

My laboratory has also investigated such short-term memory net-
works in order to further analyze their operation. To elucidate the
underlying computational algorithm we have found it useful to con-
strain units to have either excitatory or inhibitory output weights (not
both), and to reduce the network to the minimal essential network that
performs the same function. A reduced network performing the sample-
and-hold function with sign constraints on the weights is illustrated in
figure 7.10. It consists of three excitatory and one inhibitory unit. The
two inputs are the sample gate signal (5) and the analog variable A; the
output (O) is the value of A at the last sample gate. This reduced version
reveals an elegant computational algorithm that exploits the nonlinear
sigmoidal input-output function of the units. The first excitatory unit
(SA) carries a transient signal proportional to the value of A at the time
of the gate. This signal is derived by clipping the sum of the analog and
gating inputs with a negative bias, as shown by the input weights to
SA in the first column. This input sample is then held in memory by
two excitatory units (M1 and M2), which maintain their activity by
reciprocal connections and which feed their summed activity to the
output. The inhibitory unit (5M) carries a transient signal proportional
to the previous value of A. Its value is derived from a clipped sum of
the gate S and the previous values held in M1 and M2. The function of
SM is to subtract the previously held value from the integrating hidden
units and from the output. Thus, the network reveals an elegant use of
nonlinearity and integration to yield the appropriate remembered value.



It seems likely that networks with more units implement a comparable
algorithm in a distributed manner.

Neural Integration and Differentiation

Biological systems provide many examples of networks that integrate
and differentiate neural activity. Munro et al. (1991) trained dynamic
recurrent networks with backpropagation to generate the integral and
differential of arbitrary input patterns. The connectivity of these net-
works was not designed to model any particular biological system;
instead, our purpose was to investigate the mechanisms of neural com-
putation of analytical functions and test the possibility of implementing
multiplexed functions. Recurrent networks with architectures similar to
that in figure 7.2 were trained with inputs of quasi-sinusoidal wave-
forms to produce either the leaky integral or the differential of the input
or both. The nonrepeating input signal was a sinusoidal waveform
whose frequency was varied up and down in random steps. The desired
target output waveforms were calculated as the differential or the leaky
integral delayed by two timesteps. Varying the frequency of the training
signal insured that the network performed accurately over a broad
range of frequencies. The trained networks compute these transforms
for any arbitrary inputs.

By eliminating unnecessary units and combining redundant units and
retraining the remaining network, it was possible to derive reduced
networks that performed integration or differentiation or both. The
computational algorithm was often clearer in the reduced networks.
(However, smaller networks could not be trained from random starting
weights to perform these functions.) The differentiating networks imple-
mented a strategy of delayed subtraction of the input, and their hidden
units often carried signals resembling the input. The integrator net-
works used recurrent connections between the excitatory hidden units,
whose activation all resembled the output—i.e., the integral of the input.

Networks could also be trained to produce the integral and differen-
tial simultaneously on two separate outputs, as in figure 7.11 (Munro
et al. 1991). These networks combined the strategies used by the pure
differentiator and integrator in a distributed and overlapping manner.
In general, a large number of hidden units were actively involved in the
multiplexed computation and many of these contributed significantly
to both outputs (compare vertical column of input weights to ol and
02). The recurrent connectivity of the excitatory units is similar to that
obtained for a simple integrator network. The activity patterns of most
hidden units (both excitatory and inhibitory) carry a component that
resembles the leaky integral of the input.

In biological motor systems, neural integrators have been postulated
to transform transient commands into sustained activity, and to mediate
the vestibulo-ocular reflex (VOR). Arnold and Robinson (1991) modeled



Scale:@DDDDDDDDD s EENEENE

s 3% giiieistlzazzessn sy
bias @D -IDIDDIDIII - W+ mO - O
rLl_____-llII sus - gl | ® ® - .=
—"_._____._lllll-ll sE:N:-E-'-EEENNsEEENsH
2 | g H sl ssEE- s HepEEEEENE*"N-=s>»
aa_-___-l--ll--luillll--Il--IIIII
“ s s S ENE-EEs N sEEEEEElcN:- >
as —.-...--.-I.l--ll.l'l...-'
% | 50 HEuEl B ss: B -H-sEEsH-n
7 | e s B EE sl s:ssmpmuE=nmmunlH
a8 ___‘_______.l-.----.l....-...........
® [ 5 "  EN-usE sEsEH-EENsEsE=sl
a0 | e HEAE s s EREE"EENEEN-NEESEsH -ERNHEN
att | - »m @ s @ s aEsEn+*H':  EsEEHEs=sHEHBER
22 e HEH NN -EsEeEEENsE-H mNecEuns
a13 o= s e n g AEEs s Bl l-- -  =sslHE-~-
os Ny s EEsEes N s EEENENE-EE - sxaEN
os s s sl s s s EsEEENE - EEEEEN-
4 | e Bl s s s g S EENEEN*"EEE =N
P | eemem 00 o000  DOOO0e«O0000Odo0O0dd]0 23
b2 | oodOO0Oo0ee c QoD -QdO| o aoe D oQdle O
63 | c  coO00de0-c 08-ec00O0c0O0oc000 O
b4 DO0Oo000doldeooedooPdo|lOdDe - 0o QAo
b5:DDDD-DuDDuDDDDDDDD“DDDDDB@
e | o000 -0Oo00c0000 -30- 00000«
7 | eem—l] ¢ c 0000000 -0080000 0000|024
b8 | Oo[Jodo odooOoddao»od==00D0Ho0Ooi]
ol
o —

Dynamic Recurrent Network Generating Integral and Differential of the Input

Figure 7.11 Activity of a dynamic recurrent network trained with nonrepeating input
waveforms to generate both the leaky integral (o1) and the differential (02) of the input.
The illustrated input waveform was a pulse, to show the activations of the hidden and
output units.

the vestibulo-ocular integrator with a recurrent network whose connec-
tions resembled those of the vestibulo-ocular system (figure 7.12). The
two input signals were representations of the reciprocal responses of
opposed vestibular afferents to head movement; these connected in
push-pull fashion to four interneurons which were interconnected to
each other and to motor neurons. Since the vestibular afferents carry
tonic activity in the absence of head movement, the integrator had to
be configured so as to integrate only deviations from baseline, but not
the baseline activity itself. The authors used units with an exponential
decay and a rectifying input-output characteristic. To train units with
this nondifferentiable function they used a gradient descent method that
involved tweaking the weights individually by a small amount, deter-
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mining the effect on the error, and using this operationally derived
estimate of the error gradient to update all weights. The resulting network
is shown in figure 7.12 with the activity profiles of vestibular canal
inputs and resultant eye movements. This network allowed units to
have both excitatory and inhibitory output connections. Integration was
performed through positive recurrent connections between the inter-
neurons. Removing a hidden unit in a trained network reduced the time
constant of integration, but the network could be readily retrained. The
network could also mimic more complex responses, such as postsaccadic
drift.

Anastasio {1991a, b) trained dynamic networks of sigmoidal units
with backpropagation to simulate velocity storage in the vestibulo-
ocular system. A three-layer network model was trained to produce
compensatory long-duration activity of oculomotoneurons in response
to brief head velocity inputs. The network learned to produce the pro-
longed response, termed velocity storage, by developing lateral inhibi-
tory interactions between the interneurons. These interneurons exhibited
many of the response properties of VOR interneurons in the vestibular
nucleus—i.e., low baseline firing rates, long time constants, and rectified
and skewed responses. The model indicates that these properties are
related and are the result of lateral inhibition. The model further replecated
the consequences of vestibular lesions.

Lisberger and Sejnowski (1992a) used dynamic networks to investi-
gate mechanisms of learning in the vestibulo-ocular system (see also the
extensive discussion in Churchland and Sejnowski 1992). The network
was constructed to include many anatomical and physiological con-
straints, including pathways through the cerebellar flocculus, with
appropriate delays. The two inputs to the network, head velocity and
target velocity, were converted to a single output: eye velocity. The
network was initially trained to simulate three behaviors: smooth pur-
suit of a moving visual target, the VOR to head movement, and sup-
pression of the VOR (when head and target move together). Then the
network was required to change the gain of the VOR, as occurs after
wearing magnifying or minifying goggles, and also to maintain accurate
smooth pursuit visual tracking. These requirements led to changes in
the weights of connections at two specific sites: the vestibular input to
the flocculus and to the brainstem neurons controlling oculomotoneurons.
A change in the balance of input from phasic-tonic and tonic vestibular
efferents contributed to a change in the gain of the VOR, because the
transient signal was integrated by a positive feedback loop (Lisberger
and Sejnowski 1992a, b). This study exemplifies the insights gained from
a biologically constrained dynamic model that can incorporate the time
course of neural activity observed under different behavioral condi-
tions, and shows the power of such simulations to reveal novel network
mechanisms.



FUTURE DIRECTIONS

These examples illustrate the use of dynamic recurrent networks to
simulate sensorimotor behavior and to elucidate the underlying neural
computations. To better understand the operations of biological net-
works, future development of these techniques can be directed toward
incorporating more realistic neural properties into the units. The sigmoidal
input-output function of the units is a mathematically convenient but
artificial approximation to the response of biological neurons. One
important property of physiological neurons is that their activity de-
pends not only on immediate inputs, but also on their prior activity.
History-dependent unit activity such as adaptation and postinhibitory
rebound arises from the kinetics of time- and voltage-dependent ionic
channels (Schwindt 1992; Spain et al. 1991; see also chapter 2). These
properties have been amply documented for many neuronal types (re-
viewed by Llinds 1988). The activation kinetics of ionic channels make
the neuron’s activity depend on its past behavior as well as on its
instantaneous input. These intrinsic modulations may be quite signifi-
cant for the network solutions. For example, in monkeys performing the
step-tracking task, the decrementing motor units may simply be exhib-
iting an adapting response to a tonic input. Our simulations to date
using sigmoidal units were forced to generate this decrementing pattern
by creating appropriate simultaneous input from the hidden units.
Simulations with adapting units could generate both the decrementing
and tonic motor unit responses to the same tonic inputs. The basic
property of history-dependent activation can be modeled to a first
approximation by passing the summed synaptic input through a leaky
integrator in parallel with a direct gain element (Schwindt 1992). This
has been accomplished by incorporating a passive decay in many simu-
lations (Arnold and Robinson 1991; Lisberger and Sejnowski 1992a;
Lockery and Sejnowski 1992). As physiological information becomes
more detailed it will be possible to incorporate more specific types of
time dependencies into network units.

A second feature of real neurons that may be quite significant for
information processing is discrete spiking. The sigmoidal units transform
a continuous function representing mean firing rate; in this sense, the
units may be more properly interpreted as representing the mean ac-
tivity of a large population of asynchronously spiking neurons. Real
neurons integrate synaptic input to threshold and fire discrete spike
trains, which may have functional consequences. For example, synchro-
nous activity in spiking neurons can enhance the effectiveness of trans-
mission of signals (Kenyon et al. 1990). Unfortunately, networks with
spiking neurons cannot be trained using backpropagation. Other train-
ing methods, reviewed below, could be used to change the network
weights. However, the training is much slower because many iterations



must be averaged before the results of each weight change can be
assessed.

Although backpropagation is very effective in searching out solutions
in weight space, it is fraught with uncertainty about finding the best
solutions, and can only be used with units whose input-output function
f is differentiable. Other training strategies can be used to find network
solutions with more realistic units. For example, random search strategies
(Baba 1989; Choi et al. 1991) sample a number of randomly selected
points distributed in weight space and then pursue the best solutions
with random perturbations of the weights. This strategy is computationally
simpler and faster per step than backpropagation, and can be applied for
networks of units with nondifferentiable response functions.

Another important reinforcement strategy is Ag_p training {for associa-
tive reward-penalty), in which all the weights are modified in proportion
to the output error and in proportion to local presynaptic and postsyn-
aptic activations (Barto and Jordan 1987). This modified Hebb rule has
greater biological plausibility, since reward and punishment would
generally have global effects rather than specifically changing each weight
in the direction of reducing error. In direct comparisons with
backpropagation, Ag p training converged to similar network solutions,
albeit more slowly (Mazzoni et al. 1991a, b). These two training algo-
rithms are both applicable to neurons which have biologically plausible
and nondifferentiable characteristics.

CONCLUSIONS

The unique insights provided by neural network simulations ensure
their continued use in elucidating the operations of neural systems. The
basic limitation of conventional physiological and antomical data is that
they provide a very selective sample of a complex system, leaving a
wide gap between particular glimpses of neural activity or anatomical
structure, and the behavior of the overall system. This gap is usually
bridged by intuitive inferences, often based on selective interpretation
of the data (Fetz 1992). A more objective method of bridging the gap
is with simulations that provide complete network models. These models
can incorporate the observed responses of units and can help explain
the functional meaning of neural patterns. Thus, systems neurophysi-
ologists can profitably use a combination of unit recording techniques
and neural modeling to elucidate the network mechanisms generating
sensorimotor behavior. Unit recordings can provide important informa-
tion on the activity of related neurons, but the network models can
provide working examples of complete solutions to sensorimotor be-
havior. To the extent that models can incorporate anatomical and physi-
ological constraints, they can provide plausible explanations of the neural
mechanisms underlying behavior.
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