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ABSTRACT A novel method to characterize connectivity between sites in the cerebral cortex of
primates is proposed in this paper. Connectivity graphs for two macaque monkeys are inferred from
Electrocorticographic (ECoG) activity recorded while the animals were alert. The locations of ECoG
electrodes are considered as nodes of the graph, the coefficients of the auto-regressive (AR) representation
of the signals measured at each node are considered as the signal on the graph and the connectivity strengths
between the nodes are considered as the edges of the graph. Maximization of the graph smoothness defined
from the Laplacian quadratic form is used to infer the connectivity map (adjacency matrix of the graph).
The cortical evoked potential (CEP) map was obtained by stimulating different electrodes and recording
the evoked potentials at the other electrodes. The maps obtained by the graph inference and the traditional
method of spectral coherence are compared with the CEP map. The results show that the proposed method
provides a description of cortical connectivity that is more similar to the stimulation-based measures than
spectral coherence. The results are also tested by the surrogate map analysis in which the CEP map is
randomly permuted and the distribution of the errors is obtained. It is shown that error between the two
maps is comfortably outside the surrogate map error distribution. This indicates that the similarity between
the map calculated by the graph inference and the CEP map is statistically significant.

INDEX TERMS Brain connectivity, Cortical Connectivity, Electrocorticography (ECoG), Graph Learning,
Graph Signal Processing, Neural Signal Processing

. INTRODUCTION

HE studies conducted over the past few decades prove
T the existence of a large number of highly connected cor-
tical networks, allowing communication between spatially
separated brain regions. Technological developments have
served as catalyst for the growing interest in the detection
and understanding of connectivity in the brain. Brain ac-
tivity is being investigated using hemodynamic techniques
such as functional Magnetic Resonant Imaging (fMRI) [1],
[2], [3] and electrophysiological techniques such as elec-
troencephalography (EEG) [4], [5] and Electrocorticography
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(ECoG) [6], [7]. Analysis of brain connectivity networks has
a potential to advance our understanding of the human brain
and to offer improvements in the management of various
neurological disorders.

Graphs are mathematical representation of networks. In
the last decade, representation of brain as a graph where
different brain regions are considered as vertices and edges
indicate functional dependence between their activities, has
been introduced and used rigorously [8]. Time varying partial
directed coherence on high resolution EEG signals have
been used to demonstrate the significance of brain network
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analysis in revealing the important information regarding
the dynamics of cortical networks [4]. Additional study [9]
proposes a method for computing structural complexity of
the graphs based on their signal transformations. In this
method, the connectivity graphs are constructed using time-
varying phase locking value in EEG signals. However, EEG
has limited spatial resolution because of volume conduction
effect [10]. In the analysis of functional connectivity of
brain many researchers have also preferred fMRI [11], [12],
[13], [14], [15], [16]. Although fMRI provides high spatial
resolution, it is limited in temporal resolution. Moreover,
fMRI may be inadequate to interpret the underlying neuronal
activities [10].

ECoG is the recording of electrical activity directly from
the cortical surface of a subject. It is an invasive method
that provides high quality cortical signals with better spatio-
temporal resolution than EEG [10]. Many researchers have
used ECoG signals to investigate the brain connectivity.
Correlations between the ECoG signals recorded at different
electrodes are considered as a measure of functional connec-
tivity to locate the epileptic zone [17]. ECoG signals of the
finger flexion experiment are used to assess the brain connec-
tivity in resting and task state by generating the functional
connectivity graph based on phase synchronization theory
[18]. In more recent work Ko et al. have used high gamma
band power fluctuations in human ECoG signals to describe
cortical connectivity [19] . Another study estimates the cor-
tical connectivity based on dipole source analysis of evoked
ECoG data in swines [20]. In a study involving Alzheimer’s
disease ECoG recordings and local field potentials recorded
from sensory cortex in rats are used [21]. Additional studies
have shown that fMRI and high gamma ECoG are reliable
tools to support pre-surgical mapping of cortical functions
[22].

There are several ways of determining the connectivity of
sites in the brain using electrical signals at various locations
relative to the source activity measured from electrodes at the
neural population scale. Gross measures or related activities
like cross-channel correlation [23], [24], [25] pick out time-
amplitude similarity between channels and coherence [26],
[27], [28] is commonly used to analyze frequency-dependent
connections in spontaneous data [8]. Unfortunately coher-
ence and correlation measures do not consistently provide the
same robust description of connectivity gained from stimu-
lation methods. Multivariate Vector Autoregressive (MVAR)
model have been used in many different brain functional
connectivity analyses. The core concept of the MVAR is
finding the causality between recorded brain signals. Granger
causality analysis [29], [30], which is based on the MVAR
provides a framework for directional connectivity analysis.
The definition of causality motivates numerous methodolo-
gies proposed for estimating the directed connections. These
include directed transfer function [31], directed information
[32], transfer entropy [33], vector auto-regressive analysis
[34], [35], structural equation modeling [36], structural vec-
tor auto-regression [37]. However, those maybe difficult to
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interpret with confidence [38], [39].

Electrical stimulation can be applied to directly activate
underlying neural tissue and evoke spatio-temporal patterns
of activation at connected sites [39], [40]. Short latency
[3-30ms] responses to this electrical stimulation encom-
pass mono and poly-synaptic connections between sites
whose amplitudes scale with the strength of connection [41].
The Cortical Stimulation-Evoked Potential (CEP) map is a
commonly used description of cortical connectivity when
anatomical measures are not available.

Graph signal processing (GSP), in which the concepts and
algorithms of traditional digital signal processing are imple-
mented on a graph signal (values on the vertices of the graph)
is an emerging field of signal processing [42], [43]. Although
the graph representation is useful in numerous fields, it
is often not readily available. Construction of meaningful
graphs from the data observations plays an important role in
the representation and use of GSP. The process of building a
meaningful graph from data observations is crucial and has
been given many names as graph learning, network topology
inference or graph inference. Different approaches have been
developed for graph inference from signal observations. One
approach is graph inference methods that employ smoothness
property (where the neighboring nodes tend to have similar
values) of the graph signals. The methods presented in [44]
and [45] estimate graph Laplacian matrix that maximizes the
smoothness of the graph signal. The more recent work based
on the smoothness of the graph signal is by Chepuri ef al. to
infer the sparse graph structure using edge selection strategy
[46]. In the work by Egilmez et al., a method to estimate
graph Laplacian matrix from data under structural connectiv-
ity constraints is explained [47]. Other studies like [48], [49],
[50] have used diffusion based methods for graph inference.
In these methods the graph topology is inferred from the
signals assumed to be diffused on the graph. In a recent study,
the graph and signal on graph are jointly modeled using
compound Markov Random Field. The underlying graph is
inferred using Maximum A posteriori (MAP) estimator [51].
The detailed review of different graph inference methods is
covered in [52] and [53].

In this paper we use graph inference algorithm by [44]
on spontaneous ECoG signals of primates to extract the
graph structure that describes the topological properties of
the underlying brain network. The past research reveals that
the anatomical and functional cortical connectivity graphs in-
ferred using electrophysiological data of primate and human
brain exhibit small world network properties [54], [55], [56].
The graph inference algorithm based on smoothness prior is
more suitable for graphs whose edges represent some global
relationships such as small world and Barabasi-Albert graphs
compared to graphs whose edges are less structured and have
weaker global relationship such as Erdés Rényi graph [44].
Moreover, the notion of similarity between the signal entities
considered in the smooth signal prior is congruous with the
earlier methods used for brain connectivity analysis. This
algorithm uses the multi-variate similarity between signals to
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infer the connectivity whereas spectral coherence and Pear-
son correlation employ bi-variate similarity methods [57].

The proposed mathematical framework provides a de-
scription of cortical connectivity that is more similar to the
stimulation-based measures than spectral coherence. There-
fore, we expect to have connectivity maps closer to the CEP
map than the ones spectral coherence infers. We compared
the connectivity maps created from three canonical coher-
ence bands and graph inference to the CEP map. In the
animals under study (monkey U and monkey Q), we found
that the inferred graph is a close representation of the CEP
map.

It is important to note that this approach does not analyze
the temporal variation of the map. Temporal information can
identify the directionality of the connections, from which the
causal relationship between signals can be inferred. Never-
theless, methods that analyze undirected correlations, such as
spectral coherence, are still widely applied to ECoG activity
to deduce connectivity maps over time. The method pre-
sented in this paper can be categorized as one of these meth-
ods that infers undirected connectivity maps from sliding
windows of ECoG activity recorded from multiple cortical
sites. The new method is compared with maps derived from
spectral coherence analyses.

The rest of the paper is organized as follows, section II,
explains the experimental set-up and data acquisition meth-
ods. Section III describes the mathematical methods used to
infer the connectivity maps in detail. Section IV explains
graph inference method for analyzing cortical connectivity.
Section V considers the application of the mathematical
methods on the data obtained from monkey U and monkey
Q (animals under study) and compares the performance of
the mathematical methods with the CEP map. Section VI
contains the analysis of the obtained results, followed by the
conclusions of the paper in section VII.

Il. EXPERIMENT SET UP AND DATA ACQUISITION

In this section the experiment set up and the process of data
acquisition from the subject is explained. Both ECoG signals
and Cortical Evoked Potentials (CEPs) were recorded from
the same animal under study. The ECoG signals were used
to infer the cortical connectivity and the CEPs were used to
validate the proposed graph inference method.

A. EXPERIMENT SET UP AND ECOG DATA
ACQUISITION

The animals under study were implanted with a grid of
custom-made Platinum-Iridium Rod dual-plug electrodes
consisting of 15 electrode sites per hemisphere for monkey U
and 13 electrode sites per hemisphere for monkey Q prior to
experimentation. The 3 x 5 grid with 3mm center-to-center
spacing was arranged over the primary motor and sensory
cortex using stereotaxic coordinates [58]. The surgery was
done under sterile conditions and all protocols were approved
by the University of Washington Animal Care and Use Com-
mittee. The activity was recorded between one electrode per
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FIGURE 1: Monkey U electrode implant schematic (adapted
from [58]) (a) Top-down view of brain showing the approxi-
mate position of each dual electrode. The depth electrode
punctured the dura and the surface electrode was placed
above the dura. (b) Numbered electrode sites for Monkey U

site and a distant reference electrode (Fig. 1, adapted from
[58]). ECoG signals were recorded from an awake Monkey
U while it was performing a standard center-out task using
manipulandum in a shielded primate recording booth using
a Grapevine Neural Interface System from Ripple [Salt Lake
City, UT] at 30 KHz (down-sampled to 5 KHz post-hoc). In
case of monkey Q, the ECoG signals were recorded using
amplifiers from Guger Technologies [Graz,Austria] at 4.8
KHz while the animal was sitting quietly in the shielded
primate recording booth. The experiment consisted of 35
recording sessions (trials) for monkey U and 19 recording
sessions (trials) for monkey Q. In each session spontaneous
neural activities were recorded for 10 — 30 minutes before
stimulation protocols were applied. All data analysis was
performed using custom MATLAB software.

B. CORTICAL EVOKED POTENTIALS

Electrical stimulation was applied following a stimulation
ramp procedure outlined in [58]. Briefly, a set of eight
anodal-first biphasic constant current stimulation pulses was
applied between the depth and surface electrodes at a site
causing a focal electrical activation of neural tissue. The
stimulation was ramped from 0 to 700uA in 100uA incre-
ments every 300ms to allow neural circuits time to return to
baseline between stimulations. Fifty stimulation ramps were
applied to every electrode in the hemisphere over the course
of two sessions. Stimulation events were aligned in time and
grouped by channel and intensity for further analysis.

Ramped stimulation at a site produced a graded stimulus
response across the grid of electrodes which was used to
characterize the response from different channel pairs. This
direct electrical stimulation produces short latency activa-
tions, Cortical Evoked Potentials (CEPs) at cortical locations
that are directly connected via synaptic pathways indicating
a direct functional connectivity that can be influenced by a
variety of plasticity protocols [58].

To obtain standardized CEP measures across the network
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FIGURE 2: Cortical Evoked Potential (a) Raw traces, Stim
Channel :R04, Response Channel: R01 (b) Z Scored Traces,
Stim Channel :R04, Response Channel: R01 (c) CEP am I|-
tudes, Stim Channel :R04, Response Channel: RO1 (
connect|V|ty map.

we first normalized the amplitude of the responses on all
channels by baseline correcting and Z-scoring each stim-
ulation response using the 20ms of data preceding each
stimulation. The first positive and negative peak and respec-
tive post-stimulus latency were extracted from the individual
trials using MATLAB’s built-in peak-finding algorithm. The
responses were then averaged across trials to obtain a single
amplitude value per site. We discarded peaks that did not
exceed three standard deviations Fig. 2(c). The amplitude of
these normalized responses is a direct measure of the strength
of the synaptic connectivity between the two sites. The data
from the right hemisphere of monkey Q was unavailable for
this study.

Ill. MATHEMATICAL METHODS FOR INFERRING
CONNECTIVITY

Spectral coherence which is computed using the power spec-
tral density of the signals is one of the common methods
for inferring connectivity using the ECoG data. The math-
ematics and shortcomings of the spectral coherence method
in comparison with the theory of graph inference method are
analyzed in this section.

A. SPECTRAL COHERENCE ANALYSIS

Spectral coherence is the most popular mathematical method
for inferring functional and anatomical connections between
neural signals using spontaneous recordings. It estimates how
well two signals correspond at different frequencies as given
by the following formula.

| Pay ()

CelD) = B 1) Py )

(D

where, f is frequency in Hz, P,,(f) is the cross-spectral
density between signals 2(t) and y(t) , P,..(f) is the spectral
density of signal z(t) and P, (f) is the spectral density of
signal y(t).

For our analysis, the continuous frequency spectrum was
binned into canonical frequency bands [59], alpha (8 — 12
Hz), beta (12 — 30 Hz) and gamma (30 — 58 Hz) with notches
at line noise (60 Hz) and its harmonics. The mean value in
each band was used to describe the connectivity present in
spontaneous recordings.

The phase difference between two signals can express
the relative displacement between the two signals. Phase is
generally used to determine the temporal dependency of the
signals on each other which can be very useful in finding the
connectivity of the signals.

In the spectral coherence calculation, only the magnitude
spectrum of the signals is considered while the phase spec-
trum is ignored. The nature of ECoG signals is such that the
phase of the signal changes even in a small time duration. Fig.
3(a) shows the ECoG signal with it’s 40 ms delayed version.
Although the magnitude spectrum (Fig. 3(b)) of the time-
shifted signal remains the same, there is a significant change
in the phase of the delayed signal (Fig. 3(c)). The studies
conducted in the past have used the phase synchronization
information from the EEG signals to explore the neural
activity in epileptic patients [60]. Additionally, phase lag
index was introduced and used as a measure of functional
connectivity [61]. However, the spectral coherence considers
only the magnitude spectrum of the signals (from the formula
in 1), therefore the phase information is eliminated. This
reduces its effectiveness for inferring connectivity.

B. GRAPH INFERENCE

Consider an undirected weighted graph G = (V, A) where
V = {vy,vs,...v,} is the set of n vertices (or nodes) and
A = (ay;) is the weighted adjacency matrix of size n x n,
where the entries of the matrix a;; > 0 are the weights. The
graph signal (or signal on graph) is the representation of a
structured data, where the signal values are associated with
the vertices of a graph and their pair-wise relationships are
represented by the adjacency matrix A. Each weight a;; of
an edge from vertex v; to vertex v; indicates the degree of
relation between the i*" signal entity to ;%" signal entity. A
neighbourhood of a vertex v; is defined as the set of nodes
indices connected to the vertex v; and is denoted as N; =
{jla;; # 0}. The degree of any vertex i is defined as the sum
of all weights of the edges connected to that node, i.e., d; =
Z;’:l ai;. The degree matrix D is a diagonal matrix with the
degree vector d = {dy, ds, ...d,, } on it’s main diagonal. With
the known adjacency matrix, the graph Laplacian matrix is
defined as

L=D-A. )

The graph Laplacian matrix of an undirected graph G is
symmetric and positive semi-definite (the eigenvalues are
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FIGURE 3: ECoG signal (blue) of length 1 sec and the same
signal delayed by 40 ms (green) (a) Time Domain signals, (b)
Magnlitude spectrum of the signals, (c) Phase spectrum of the
signals

non-negative). With this introduction to the key terms in
graph signal processing, we move to the graph inference
algorithm.

In their recent work, Dong et al. have proposed an algo-
rithm for inferring the graph topologies from signal obser-
vations that depicts the intrinsic relationships between the
data entities [44]. Specifically, the graph topology is inferred
such that the observed signals have smooth variations on the
graph.

The signal is considered smooth on a graph when the
connected vertices have comparable signal values. The graph
Laplacian quadratic form or x” Lx is used to measure the
smoothness of signal x on graph, i.e.,

x"Lx = > ay(a(i) — 2(5)) 3)
i,jeV
where x € R™ is the graph signal and x(¢) is the signal
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value at vertex ¢. If the signal x on the graph is constant,
the graph Laplacian quadratic form is zero. If the weight
between two vertices is small, regardless of the signal values,
the graph Laplacian quadratic form is small. To maximize the
smoothness property of the observed signals on the inferred
graph, the graph Laplacian quadratic form (3) should be
minimized. The Laplacian matrix is found by solving the
following optimization problem [44]:

minimize  [|X = Y[J> + a tr(YTLY) + B]|L{[%
subjectto:  tr(L) =n )
L(i,j) = L(j,49),  i#J
L1=0

where, columns of X € R™*P contain the signal observa-
tions, Y is the noiseless version of the observation X, n
is the number of vertices on the graph, tr(.) is the trace
of a matrix, ||.||r is the Frobenius norm and « and j are
positive numbers. The rightmost term in the objective of the
optimization problem (4) is imposed as a penalty term to
improve the numerical stability of the optimization problem
and to control the sparsity of the solution. The parameter
« controls the smoothness and the parameter 3 controls the
sparsity of the inferred graph. The variable Y is introduced
in the optimization to reduce the effect of the measurement
noise in X. The detailed description of the graph inference
algorithm is given in [44]. Since the Laplacian matrix is sym-
metric, this algorithm is computationally limited to derive
a symmetric connectivity matrix which is translated to an
undirected graph.

IV. GRAPH INFERENCE FOR BRAIN CONNECTIVITY

To find the connections between different parts of the brain,
we look for similar behavior/pattern in the ECoG signals.
Techniques such as correlation, phase and frequency syn-
chronization and mutual information have been used to de-
termine the connectivity between different parts of the brain
[17], [18], [19], [38]. We assume that the ECoG electrodes
constitute the vertices of a graph and the inter-connections
form the edges of the graph. The ECoG signals (or their
processed versions as explained in the next section) are
considered as the signal on the graph. The graph inference
algorithm explained in Section III-B is employed to infer the
underlying brain connectivity using ECoG signals. However,
in the current setting, if the signal from one electrode is a
slightly delayed version of the signal from another electrode,
the graph inference algorithm explained in section III-B
will consider these two electrodes as weakly connected or
unconnected because the graph inference algorithm considers
the point-to-point similarity of the signals. To mitigate this
problem, we need a representation of the signal that considers
both magnitude and phase spectrum. Therefore, instead of
using the raw signals, we use the auto-regressive (AR) model
coefficients.



IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

A. PRE-PROCESSING OF ECOG DATA

The raw ECoG data is pre-processed before applying graph
inference algorithm. To remove the artifacts generated by
large movements, a threshold was applied that surpassed the
99.5'" percentile of the mean data. Pre-processing of the data
includes low-pass filtering (with cut-off frequency 250 Hz),
down-sampling to 2000 Hz and segmentation. The signals
from ECoG electrodes are divided into one second epochs
with 50% overlap. The segmentation is performed starting
with the first sample of the signals without any particular cue.
The overlapping is to avoid abrupt changes in the inferred
graph connections.

B. AUTO-REGRESSIVE MODEL
The Auto-Regressive model is defined as:

y(n) = Z agy(n — i) + e(n) (5)

where, p is the model order; y(n) is the signal to be modelled,
a;’s are AR coefficients and e(n) is Gaussian white noise.
The system parameters, (a;’s) also known as AR coefficients,
capture the magnitude as well as phase information. This will
allow us to use the graph inference method in (4).

1) Order of the AR model

Selecting the optimum model order is crucial as too small
model order may not be sufficient to represent the signal
because of the poor resolution. Furthermore, too large model
order may cause spurious peaks in the spectrum and can
also increase the computational complexity. Several criteria
that indicate the appropriate model order for a given data set
have been proposed. We have used the Akaike’s Information
Criterion (AIC) which is an estimator of the relative quality
of statistical models for a given set of data [62]. It is defined
as:

AIC(p) = Nlog(ep) + 2p (6)

where, p is the model order; ¢, is the modelling error and N
is the length of the data set.

For a randomly selected data segment, we computed the
AIC values for model orders ranging from 2 to 30. The order
after which there was a minimum change in the AIC values
was selected as the candidate for optimum model order (Fig.
4(a)). This was repeated for 500 segments selected randomly
from the entire data set. The distribution of the correspond-
ing candidates for optimum model orders is plotted (Fig.
4(b)). The final optimum model order is selected that is
separated by twice the standard deviation from the mean of
the distribution. The AR modelling essentially converts an
epoch of the ECoG signal of numerous samples into a short
sequence (20 in this case) of numbers (the AR coefficients).
The obtained 20 coefficients of the AR models are used for
graph inference. In the proposed scheme, we are limited to
undirected graphs due to the inherent limitation of the graph
inference algorithm (4).
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FIGURE 4: (a) Plot of AIC values of the AR models with
increasing order. For current data segment, the candidate
for optimum model order is 14. The changes in AIC values
after 14 are negligible. (b) Distribution of the candidate model
orders for 500 randomly selected segments of ECoG data.

C. CALCULATING THE ADJACENCY MATRIX

To find the underlying connections between the vertices of
the graph, we need to find the adjacency matrix A. The
following major assumptions are considered for the graph
inference algorithm:

1) The adjacency matrix A is symmetric.

2) There are no self-loops in the underlying graph, i.e,
main diagonal of the adjacency matrix A is zero.

3) The similarity of the AR coefficients determines the
weight of the connection.

The first assumption indicates that the graph is undirected.
In a symmetric adjacency matrix, we have a;; = a;;. To this
end, our focus is on finding the similarity in the activity of
different cortical regions (functional connectivity).

The second assumption is based on the fact that the cur-
rent algorithm would always consider that an electrode is
connected to itself. This is because it will be using the sim-
ilarity of the signal with itself to make a decision regarding
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connectivity. Additionally, the strength of the self connection
might also affect the strength of other connections negatively,
making those negligible. Therefore, we assume the diagonal
elements of the adjacency matrix to be zero, a;; = 0.

By the third assumption, the underlying graph is formed
to create the smoothest possible signal on graph. It is im-
portant to note here that the smoothness property is used to
evaluate the connectivity. A smooth signal observation would
result in more connected graphs while a less smooth signal
observation would result in sparsely connected graphs. It
should be noted that this statement is a sufficient condition
not a necessary one. If a signal observation is smooth, the
inferred graph is more connected. However, if a graph is more
connected then we cannot conclude that the signal on the
graphs is smooth.

The optimization problem in (4) is then solved for Y and
L where X is the AR coefficients of the ECoG signals from
all the recording electrodes. The values of parameters o and
B are selected to give graphs that are 10% sparse to match the
sparsity of CEP maps (10.98%) and coherence maps (9.3%).
The objective is to infer the complete cortical connectivity
map, which is not sparse. Therefore, as suggested in [44] the
ratio of g that yields 10% sparsity in the adjacency matrix
is selected by exhaustive search. After finding the graph
Laplacian matrix L, we can easily obtain A by using (2).
The resultant graph is the measure of functional connectivity.
The process is repeated for all segments and all recording
sessions.

D. OCCURRENCE PROBABILITY

With the proposed algorithm, we have one inferred graph
(adjacency matrix) per segment. A connection (neural path-
way) between two parts of the brain may not appear in one
segment as those sections may not have similar activity at that
segment. However, if we see the occurrence of the connection
in several segments, which means similar activity is observed
at those sites more often, we can conclude that there could
be a neural pathway between those two sites. This concept
can be quantified by calculating the probability of occurrence
of a nonzero weight between two sites of the brain. We call
this occurrence probability (OC). To find the OC matrix, we
first binarize the adjacency matrix A to obtain matrix B. The
binarization involves thresholding with a global threshold
value for all the segments. The distribution of the weights
calculated by the graph inference method follows a Poisson
distribution. This is consistent with the brain connectivity
maps computed using other analytical and physiological
methods such as spectral coherence, correlation and CEPs
[63] (refer Fig. 5). In fact, Fig. 5 shows that the distributions
of the weights obtained from the graph inference method
and the CEP map are closer to Poisson distribution than the
distribution of the weights obtained from spectral coherence.
This also shows the validity of the proposed method. The
threshold was selected as the 5" percentile of the distribution
of weights of 10000 randomly selected segments; given the
dense nature of the brain connectivity maps, we do not
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want to discard more connections. The weights less than the
threshold were set to zero. With this strategy, there is a pos-
sibility that certain weaker connections are considered above
the threshold value. However, these weaker connections get
lower values in the calculation of occurrence probability as
they occur infrequently. The average of the B matrices of all
segments in a trial is defined as the occurrence probability
matrix, P

Yo B(m)
== @)

where the entry p;; of P is the probability of occurrence
of a non-zero weight between sites ¢ and j, B(m) is the
binarized adjacency matrix of the m‘" segment and M is the
number of segments in the trial. High occurrence probability
of a connection between two electrodes can be interpreted
as the high probability of existence of a neural pathway.
Therefore, we use the occurrence probability of the edges
of the inferred graph as an indication of the existence of a
functional connection between the electrodes.

The connectivity map is represented in the heat-map for-
mat. The occurrence probability maps from all trials are
averaged to get a single connectivity map per hemisphere
of the animal (see Fig. 7(b), 8(b) and 9(b)). The heat-map
of the occurrence probability is a symmetric matrix where a
non-zero number represents the probability of the presence
of an edge in the entire trial. Higher values in the heat map
correspond to more frequently occurring connections and
lower values in the heat map correspond to less frequently
occurring connection. A zero in the heat map means there
is no connection found throughout all the segments in the
whole data. Fig. 6 shows the important steps for computing
the connectivity map using spontaneous ECoG data from the
monkey. The two analytical measures of connectivity con-
sidered here are coherence map (bottom branch) and graph
inference map (top branch). As shown in the block diagram,
the pre-processing steps for both methods are the same. We
repeated the same analysis for different frequency bands.
This was achieved by dividing the band limited (< 250 Hz)
signal further into canonical frequency bands: alpha (8 — 12
Hz), beta (12 — 30 Hz) and gamma (30 — 58 Hz) before
performing the segmentation of the signals. The purpose of
this analysis is to explore the effects of using entire spectrum
for graph inference as opposed to using the information from
different frequency bins like in spectral coherence method.

P =

V. RESULTS

We have normalized connectivity maps for three measures of
connectivity: CEP, coherence and graph inference. All maps
are normalized to have values between 0 and 1. As explained
in Section II-B, the CEP map is a directed graph with cor-
responding adjacency matrix A being non-symmetric. Nev-
ertheless, both the analytical methods (coherence and graph
inference) are computationally limited to find undirected
adjacency matrix A. Therefore, to have a fair comparison
between all three, the directed (non-symmetric) CEP map
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was converted to undirected (symmetric) CEP map by taking
the average of the weights between electrode pairs.

The symmetric CEP maps for monkey U left hemisphere,
monkey U right hemisphere and monkey Q left hemisphere
are shown in Fig. 7(a), Fig. 8(a) and Fig. 9(a)). The results
for normalized beta band coherence connectivity maps are in
Fig. 7(c), Fig. 8(c) and Fig. 9(c) while the normalized graph
inference connectivity maps are shown in Fig. 7(b), Fig. 8(b)
and Fig. 9(b). Since the results from both alpha and gamma
band coherence show connectivity patterns similar to beta
band connectivity maps, they are not shown separately in the
paper. The corresponding numerical results are documented
in Table 1 and 2.

A. COMPARISON WITH CEPS

We compared the similarity of the connectivity maps created
from three canonical coherence bands and graph inference
to the symmetric CEP map using root mean square error
(RMSE) to assess the performance of the methods. The true
RMSE (TRMSE) between the CEP map and the obtained
map is calculated using:

8

TABLE 1: Standardized parameter n for RMSE comparison.

Method n (U-Left) | n (U-Right) | n (Q-Left)
Alpha Graph Inference 3.02 3.09 3.44
Beta Graph Inference 2.61 1.90 3.04
Gamma Graph Inference 2.32 2.28 2.51
Graph Inference (Total) 2.77 4.10 4.36
Alpha coherence 2.03 0.98 3.38
Beta coherence 1.52 0.96 2.19
Gamma coherence 2.06 1.68 0.65

RMSE — \/Zi:l Zj:lz(cij - 9i;)* ®)
n
where, ¢;; is the entry (4, j) of the normalized symmetric CEP
map, g;; is the the entry (7, j) of the map computed by one of
the analytical methods (coherence or graph inference) and n
is the number of electrodes.

We also compared the similarity of the connectivity maps
created from three canonical coherence bands and graph
inference to the symmetric CEP map using correlation coef-
ficient. The correlation coefficient () between the CEP map
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TABLE 2: Standardized parameter n for Correlation Coeffi-
cient comparison

Method n (U-Left) | n (U-Right) | n (Q-Left)
Alpha Graph Inference 5.93 3.56 3.74
Beta Graph Inference 542 2.84 3.80
Gamma Graph Inference 4.94 2.76 4.04
Graph Inference (Total) 4.90 4.71 5.76
Alpha coherence 2.24 1.65 5.35
Beta coherence 2.27 2.47 2.93
Gamma coherence 2.23 2.39 2.31

TABLE 3: Performance evaluation Comparison

Monkey U- Left Hemisphere

Method Precision | Recall | F-measure
Graph Inference | 0.8462 1 0.9167
Coherence 0.8365 0.9886 0.9063
Monkey U- Right Hemisphere
Method Precision | Recall | F-measure
Graph Inference | 0.8750 1 0.9333
Coherence 0.8654 0.9890 0.9231
Monkey Q- Left Hemisphere
Method Precision | Recall | F-measure
Graph Inference | 0.9740 | 0.9868 0.9804
Coherence 0.9481 0.9865 0.9669

and the inferred map is defined as :

i1 2 (cij — C)gij — G)

p =

VO, S (e~ O) (T S0 (g — ZR
where, ¢;; is the entry (7, j) of the normalized symmetric CEP
map C, g;; is the the entry (¢, j) of the map G computed by
one of the analytical methods (coherence or graph inference).
C is the mean of normalized symmetric CEP map C, G is the
mean of the map G and n is the number of electrodes. Unlike
RMSE, the similarity of maps is proportional to higher values
of the correlation coefficient (p).

Additionally we evaluated the performance of graph in-
ference and spectral coherence methods using Precision,
Recall and F—measure metrics. These are calculated based
on true positive (tp), false positive (fp) and false negative (fn)
graph edges in the inferred analytical map(s) when compared
with the CEP map as:

2

tp

Precision = (10)
tp+ fp
Recall = —P (11)
o tp+ fn
2t
F — measure = P (12)
2tp+ fn+ fp

The results are tabulated in Table 3. The values of the
performance metrics were the same for all three canonical
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coherence bands. As seen in the Table 3, the values of
Precision, Recall and F' — measure for graph inference
method slightly outperform the spectral coherence method.

B. STATISTICAL COMPARISON WITH SURROGATE
GRAPHS

The TRMSE between the normalized symmetric CEP map
and the map calculated by any method should be small if
they represent similar functional connectivity. Nevertheless,
a small TRMSE would not be enough to justify that the
obtained connectivity maps represent the same underlying
connectivity. We should show that the obtained TRMSE is
statistically unique among all RMSEs between the calculated
map and the random permutations of the CEP map (surrogate
maps) [64] . In other words, if many surrogate maps are close
to the calculated map so that their RMSEs are either close or
smaller than the TRMSE, we cannot consider the calculated
map as a genuine representation of the brain connectivity.

To evaluate the uniqueness of the calculated map, their
RMSEs with 10,000 surrogate maps are calculated. We gen-
erated the surrogate maps by random permutation of the
rows and columns of the CEP map. The distribution plots of
these RMSE values for the left hemisphere of monkey U are
shown in Fig. 7(d) and Fig. 7(e), with the vertical red line
showing the TRMSE. The distribution plots of the RMSE
values for the right hemisphere of monkey U are shown in
Fig. 8(d) and Fig. 8(e), with the vertical red line showing
the TRMSE. The distribution plots of the RMSE values for
the left hemisphere of monkey Q are shown in Fig.9(d) and
Fig. 9(e), with the vertical red line showing the TRMSE.
The results in which the TRMSE value is well outside the
distribution (smaller than the other RMSEs) is justified to
provide a valid connectivity map that is closer to the CEP
map.

The similar statistical comparison is performed with the
correlation coefficient values. To evaluate the uniqueness of
the calculated map, their correlation coefficients with 10,000
surrogate maps are calculated. We generated the surrogate
maps by random permutation of the rows and columns of the
CEP map. The distribution plots of these p values for the left
hemisphere of monkey U are shown in Fig. 7(f) and Fig. 7(g),
with the vertical red line showing the correlation coefficient
of the original calculated map (true p). The distribution plots
of the p values for the right hemisphere of monkey U are
shown in Fig. 8(f) and Fig. 8(g), with the vertical red line
showing the correlation coefficient of the original calculated
map (true p). The distribution plots of the p values for the left
hemisphere of monkey Q are shown in Fig. 9(f) and Fig. 9(g),
with the vertical red line showing the correlation coefficient
of the original calculated map (true p). The results in which
the value of true p is well outside the distribution (higher than
the other p’s) is justified to provide a valid connectivity map
that is closer to the CEP map.

We can use statistical standardization to quantify how the
TRMSE (or true p) is positioned with respect to the surrogate
distribution. The distance of the TRMSE (or true p) from the
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mean of random distribution in terms of standard deviation is
defined as the standardized parameter and is calculated as:

n= [rm =12 (13)
o

where 7 is the standardized parameter, 7., is the mean of the
surrogate distribution, r; is the TRMSE (or true p) and o is

the standard deviation of the surrogate distribution.

The standardized parameters for RMSE comparison of the
average connectivity maps across all 35 trials of monkey
U and the average connectivity maps across all 19 trials of
monkey Q are tabulated in Table 1 and the standardized pa-
rameters for correlation coefficient comparison of the average
connectivity maps across all 35 trials of monkey U and the
average connectivity maps across all 35 trials of monkey
Q are tabulated Table 2. The higher the value of 7, the
closer the obtained map is to the CEP map. Although the
values for graph inference method in alpha, beta and gamma
bands outperform the corresponding values of 7 in spectral
coherence method, we prefer to use graph inference method
on the entire band-limited (< 250 Hz) data. This approach is
computationally efficient and results in a frequency agnostic
measure of connectivity. The connectivity results of the graph
inference method in Table 3 and in Fig. 7, 8 and 9 are of the
entire band-limited ECoG data.

VI. DISCUSSION

The present paper explores the extent to which cortico-
cortical connectivity measures derived from spontaneous
ECoG activity resemble cortico-cortical connectivity maps
directly documented through cortically-evoked potentials
(CEPs). Our results suggest that graph inference measures
replicate CEP-resolved connectivity better than coherence
measures, a standard neuro-physiological measure for char-
acterizing connectivity.

If two cortical sites are significantly synaptically con-
nected, as evidenced by the presence of a CEP, there will
be a higher probability of them being engaged together in
a common network during rest or during a task, as evidenced
by an overall higher coherence value. The coherence and
graph inference measures were computed using spontaneous
cortical activity recorded during long periods of time and
while the animal was engaged in a variety of behavioral
states. In that sense, a higher value in the connectivity maps
computed by coherence or graph inference methods could
mean that these two cortical sites are more often engaged in
synchronous oscillatory networks than two other sites with a
lower connectivity value. The level of connectivity changes
dynamically with behavioral state, level of attention etc. but
an overall trend of higher value of connectivity in the maps
computed by coherence or graph inference methods across
states may reflect the presence of a stronger functional synap-
tic projection, captured by a larger CEP which is, overall,
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much more stable across behavioral states.

The graph inference measure uses full spectrum sponta-
neous recordings of neural data with no a priori knowledge of
underlying connectivity, which has some advantages. First, it
captures relationships across and between all physiologically
relevant frequencies and provides a single connectivity value
that is frequency-agnostic, compared to methodologies that
focus on a single frequency or frequency band, as is the
case with coherence. This is important in cases where higher
frequency components of neural signals are attenuated or
filtered, e.g. due to clinical hardware limitations [19] or in the
case of cross-frequency coupling, in which phases of lower
frequencies are correlated with the timing and amplitude of
higher frequencies [65]. Second, it can be attained without
the need for electrical stimulation of the cortex, something
that may pose a safety risk in some clinical populations
(e.g. epileptic subjects) and is not always experimentally or
clinically feasible. Connectivity maps compiled through the
CEP method are known to track effects of cortical plasticity
paradigms [58]; a reliable method for non-stimulation-based
monitoring of connectivity would allow the continuous and
long-term quantification of cortical reorganization in health
and disease.

Our approach has several limitations. First, connectivity
between cortical sites is not always bidirectional or sym-
metric. In making TRMSE measures across methodologies
we made CEP maps symmetric which removes some of
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the richness of the underlying data (Fig. 2(d)). Second, the
analyzed data-set covers only the sensorimotor cortex and
not the entire hemisphere. Finally, we have not compared the
graph inference measure to infra-slow clustering correlations
in high gamma activity, which may be more accurate in
capturing underlying anatomical connectivity than coherence
[19].

It should be noted that the graph inference method requires
a sufficient number of simultaneous recordings from spatially
separated sites. It reflects a global relationship that involves
activity at sites other than the two sites whose "connectivity"
is inferred. This may be the reason why the graph infer-
ence method produces a connectivity map more similar to
the CEP than coherence measures, since the latter compare
signals recorded only at two sites. Single-pulse, biphasic
stimulation of the cortical surface activates neurons through
several processes [66], [40], [67]. The anodal and cathodal
pulses of the electrical stimulus activate different neural
elements at the stimulation site. The current depolarizes local
pyramidal cell dendrites and axons, local interneurons and
other afferent inputs to pyramidal cells, as well as axons
of passage. Axons at the stimulation site can be activated
both ortho- and antidromically. These processes result in
multiple excitatory and inhibitory effects in neurons at the
stimulus site. The local responses produce a pattern of action
potentials in projection axons that likely have both mono-
and poly-synaptic effects on neurons at the recording site,
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which may be mediated by both cortical and subcortical
circuits. The compound nature of these interactions generates
the multi-phasic population responses that are recorded as
CEPs [66], [40], [67]. The earliest responses probably rep-
resent monosynaptic projections between the stimulation and
recording sites, and longer latency components can be due to
conduction in a variety of oligosynaptic pathways. In our own
work in non-human primates, we have indirect evidence that
cortical evoked potentials are mediated in part by activation
of polysynaptic circuits. Paired stimulation protocols can
induce spike timing-dependent plasticity in cortico-cortical
connections, but only between a subset of tested site pairs
[58]. Such specificity is unexpected if CEPs are produced
by only monosynaptic connections. We attributed the lim-
ited effectiveness of our plasticity protocol to the stimulus-
evoked recruitment of multiple cortical circuit effects, which
in many cases prevented the expression of a net change in
connection strength between cortical sites. In other studies,
we demonstrated that CEP amplitude was dependent on the
sleep-wake state of the monkey [41], which also suggests
the responses are mediated by polysynaptic effects. Because
CEPs are mediated by the responses of multiple neurons
within at least the local cortical region, measures of connec-
tivity that consider correlated activity across many sites in the
region, such as graph inference methods, may provide a good
estimate of the functional connectivity revealed by the CEP
map. In contrast, single pairwise coherence measures do not

account for global correlations of activity and therefore may
document a different feature of connectivity.

VIl. CONCLUSIONS

The use of graph inference represents a new method that
more closely reproduces the synaptic connectivity between
cortical sites directly measured from evoked potential record-
ings than traditional coherence measures. This finding opens
the door for a new technique that could closely relay con-
nectivity data in situations where it is impractical to experi-
mentally determine stimulation-based connectivity strengths.
This technique can be used to track changes in connectivity
over time and understand dynamics of population-scale plas-
ticity and neural dynamics.
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