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Subjects. This study was completed as a retroactive analysis of
previously recorded electrocorticography (ECoG) data. Inclusion
criteria for subjects were as follows: (i) subjects needed to have
participated in the 1D, right justified box task; (ii) activity
changes in the controlling electrode needed to be driven by overt
motor movement or motor imagery; and (iii) subjects needed to
participate in 50 or more trials. Subjects were not chosen for
specific electrode coverage (other than the motor coverage
necessary to participate in the task); thus, not all subjects had
coverage in all areas discussed. Fig. S2 summarizes the spectrum
of coverage for the seven subjects.
It is important to consider the limitations inherent with human

ECoG studies. The vast majority of these studies, including the
work discussed here, all involve humans with intractable epilepsy.
All study subjects were undergoing clinical treatment at the time
of their participation in this study. The nature of this subject
population should be kept in mind when making extensive cross-
subject generalizations and generalizations to healthy pop-
ulations. Electrode placement was driven by clinical need, and
thus not all subjects had coverage of all cortical areas that were
discussed above, although in all cases, reported effects were ob-
served in multiple subjects.

Initial Screening Task. Before online control, subjects performed
overt motor screening to determine candidate electrodes for
brain–computer interface (BCI) use. At a visual prompt, subjects
were asked to perform gross motor movements of either their
tongue or their hand for 3 s. This activity was followed by 3 s of
rest. This process was repeated 10–30 times for each of the two
motions. They were then asked to repeat this screening process
but with imagined movement. Electrodes that demonstrated
statistically significant change in high-gamma band (HG) power
during activity compared with rest in either or both of these tasks
were chosen as candidate controlling electrodes. In cases where
there was more than one candidate controlling electrode, the
electrode used for online control was chosen based on the
magnitude of change between activity and rest and/or neuroan-
atomical relevance.

Cortical Reconstructions, Transformations, and Anatomical Labeling.
Preoperative MRI was coregistered with postoperative CT scans
using the Statistical Parametric Mapping software package (1).
3D reconstructions of the pial surface were generated using
Freesurfer (freely available for download at http://surfer.nmr.
mgh.harvard.edu/) and custom code implemented in Matlab
(The MathWorks). Electrode positions estimated from post-
operative CT were projected to the reconstructed pial surface
using the method outlined by Hermes and colleagues (2).
MRI images and projected electrode locations were normal-

ized to Talairach coordinates using Freesurfer. In cases where
subjects had electrode coverage of the left hemisphere (n = 2),
electrode locations were mirrored on to the right hemisphere for
cross-comparison with other subjects.
Anatomical labels were estimated using the human motor area

template (HMAT) (3) and the Talairach Daemon (4, 5). The
HMAT atlas is based on the meta-analysis of 126 motor-based
functional MRI (fMRI) studies; thus, it does not include pos-
terior parietal cortex or prefrontal cortex. To account for this,
these areas were identified as consisting of Brodmann areas 7/40
and 8/9/46, respectively.

Estimation of HG Activation Separability and Learning States. To
compare unlearned and learned states, it is necessary to define
a trial or trials that delineate these two states. Alternatives exist,
such as assuming a continuous learning process or selecting
a portion of early trials and late trials to be representative of the
learned and unlearned states. However, as performance increases
in task, learning typically follow asymptotic trends, and there is no
guarantee that users of a task will learn at the same rate, we
thought it necessary to use a data-driven approach to determine
the transition trial. As performance on the right-justified box
(RJB) task saturates quickly, assessment of trends in activation
patterns at the controlling electrode itself is a reasonable method
for determining this transition trial.
Our algorithm for determining the transition trial makes the

following assumptions: (i) that there are in fact two states (this
does not preclude the existence of more than two states, but our
algorithm will only detect a single transition and will effectively
group substates), and (ii) the the two states can be differentiated
by observing changes in a subject’s ability to differentially mod-
ulate activity at the controlling electrode for up targets com-
pared with down targets.
The transition trial was determined as follows. (i) A running

estimate of each subject’s ability to separate HG activation in
up targets compared with down targets was calculated. The
mean HG activations for up and down targets were separately
smoothed using a Gaussian kernel [five trials full width at half
maximum (FWHM)]. Because up and down targets were pre-
sented in random sequence, a running difference between
smoothed up target and down target activations was calculated
by linearly interpolating between observation points. From these
operations, an estimate for the difference between activation in
up targets and down targets as a function of trial number was
established. (ii) A model of two distinct Gaussian distributions
was fit to the difference estimate such that the difference be-
tween these two distributions (measured using the statistic ex-
plained below) was maximized. The single free parameter in this
model was the transition trial that we are determining.
Distance between the distributions was calculated using the

following equation to account not only for differences in the means
of the two distributions but also for the variances of the two dis-
tributions
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where Del represents the separability of the early and late trials, e
and l represent the early and late trials themselves, respectively,Ne
and Nl represent the number of samples in each of these sets,
respectively, and e : l represents the joint set of all trials.
When comparing two distributions, this measure represents

the proportion of the variance of the joint distribution that can
be explained by the difference in the means of the two sub-
distributions. It has been used previously in the assessment of
ECoG signals (6–8).

SI Results
Run-by-RunPerformance.Asmentioned in themain text, during the
task, the cursor traveled from left to right across the screen over
the course of 3 s. During this time period, the subject was tasked
with causing the cursor to hit the indicated target on the right side
of the screen, meaning, that at the end of the 3-s feedback period,
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the cursor needed to be within the vertical area defined by that
target. In terms of whether or not subjects were able to achieve
this requirement, task performance quickly saturated, making
assessment of improvement as a function of time impossible.
Based on simulated, randomized replay of the task using pre-
viously recorded ECoG data that were phase scrambled and
random target sequences (144 runs of 17 trials each, totaling 2,448
trials), chance task performance for a given run was 48.8%, with
a 95th percentile of 64.7%. Accordingly, if actual performance for
a given run exceeded the 95th percentile, then performance on
that run can be considered above chance with statistical signifi-
cance. Fig. S4 shows individual performance trends for each
subject on a run-by-run basis. Note that five of the seven subjects
were performing above chance by the end of their first run, and
performance often saturated quickly, necessitating the use of
alternative methods to assess changes in aptitude.

Behavioral Results Assuming an Optimal Cursor Trajectory. Addi-
tionally, the solution space for how a given subject could achieve
success in the RJB is extremely large. Subjects were not asked
to report their intended cursor trajectory. If one makes the as-
sumption that the intended cursor trajectory is constant throughout
all trials and that the subject asymptotically approaches that tra-
jectory, the intended trajectory can be approximately inferred by
looking at the last few trials conducted by each subject. Each
individual trial can then be compared with this inferred trajectory,
giving an estimate of how well a given subject’s performance
approached this intended trajectory as they gained experience
with the task. In an effort to obtain an understanding of some of
the behavioral parameters of the RJB, for the five of seven sub-
jects for whom target trajectories were recorded, we performed
this analysis. In three of these five subjects, we saw a statistically
significant decrease in mean-squared error (MSE) over the
course of all trials performed, compared against an intended
trajectory estimated from the last 20% of trials of a given target
type. Individual results are shown in Fig. S5.
It is important to note that this method assumes that perfor-

mance gains are made only by the subject improving their ability
to precisely execute an indented trajectory and not by fine tuning
of the intended trajectory itself. We find the assumptions made in
this analysis were less robust than those used in the primary
analysis that uses power changes in the controlling electrode as an
assessment of task performance, but they do provide insight into
the fact that as subjects gain task experience and exhibit changes
in dynamics of neural control, there are concomitant changes in
some behavioral aspects of the task.

Evaluation of Lower-Frequency Cortical Activity. HG is the range of
frequencies that often receives the primary focus of attention in

ECoG studies, partially because, until recently (9), it had not been
demonstrated that high-frequency signals could be obtained using
noninvasive methods. However, the volitional modulation of
lower-frequency cortical rhythms such as the mu-beta rhythm
(12–30 Hz) is often used as a control signal in noninvasive BCIs
(10–13) and is thus worth discussing as a complementary analysis
to the HG analysis focused on in the main text of the paper.
Of the 569 electrodes investigated from the seven subjects, we

found 128 electrodes showing statistically significant decreases in
mu-beta (12–30 Hz) activity between feedback during up targets
compared with rest (left-sided two-sample t test, Bonferroni
corrected, 27 < N1 < 98, 51 < N2 < 187; P < 8.631 × 10−5). These
findings are shown in Fig. S6. Further, of that same 569 electrodes,
we found 123 electrodes showing a statistically significant decrease
in mu-beta activity between all targets and rest (left-sided two-
sample t test, Bonferroni corrected, 54 < N1 < 198, 51 < N2 < 187;
P < 6.284 × 10−5). Electrodes showing significant activity increase
were distributed throughout frontal and parietal cortices. This
spatially diffuse, task-related decrease of mu-beta activity is con-
sistent with previous findings that motor-related desynchroniza-
tion of mu-beta activity is more spatially widespread than
increases in HG activity (6). Trial-by-trial patterns showing this
activity decrease can be seen in Fig. S6.
Using the same transition trials defined in the main text, we

performed a similar analysis to assess whether activation patterns
in the mu-beta range changed over the course of transitioning
from a learned to an unlearned state. Although there were a few
electrodes exhibiting significant changes between these two states,
as illustrated in Fig. S6, these changes were less spatially orga-
nized and lower in magnitude than HG changes over a similar
time period.

Alternative Methods for Assessment of Learning States.To assess the
robustness of findings with respect to our method for de-
termination of early and late learning states, we performed ad-
ditional analyses of distributed changes in HG activity comparing
the first 30% and the last 30% of all trials recorded for each
subject, an approach that has been used previously (14). Other
than the definition of the transition period, the method for these
analyses was identical to what has been described previously in
the main text and SI Materials and Methods. As shown in Fig. S7,
we found similar spatial patterns showing less HG activation in
dorsolateral prefrontal cortex (PFC) and posterior parietal cor-
tex (PPC) in the last 30% of trials compared with the first 30%
trials. This result suggests that the observed spatiotemporal
patterns in HG activity are robust to alternative methods of
segmenting the data in to learning states.
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Fig. S1. Time by trial high gamma activation for individual subjects. (Left subplot) Average high-gamma activation for all trials separated by up and down
targets. Phases of the task (ordered from L to R: inter-stimulus interval, target presentation, feedback, reward) are separated by vertical bars. Dotted line
represents SEM. Up and down target activations shown in red and blue respectively. (Center and Right subplots) Trial-by-trial high-gamma activation for all
trials, separated by up (Center subplot) and down (Right subplot) targets. Trial count is shown on the vertical axis, time, as described for the left subplot is
shown on the horizontal axis. The black horizontal bar represents the model separation point derived solely from the controlling electrode. Plots surrounded
in gray boxes are for electrodes that did not exhibit significant task modulation.
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Distribution of Electrode Coverage

Fig. S2. Spatial distribution of electrode coverage. Differences in electrode coverage for the seven study subjects. Dashed lines forming a rectangle or square
represent the approximate outlines of grids (8 × 8, 6 × 8, 4 × 8, or 2 × 8). Single dashed lines represent the approximate centerline of strips (1 × 8, 1 × 6, 1 × 4).
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Fig. S3. Task overview. Example images of visual feedback presented to subject during binary right-justified box task. Subjects were randomly presented up or
down targets during each trial.

Fig. S4. Run-by-run task performance. Task performance for each user shown on a run-by-run basis. The 95th percentile of chance performance is represented
in gray. Note that for five of the seven subjects, task performance was above chance by the end of the first run, and for many subjects, performance
quickly saturated.
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Fig. S5. Behavioral analysis of cursor trajectories measured against inferred intended trajectories. (A) Recorded trajectories for individual subjects shown as
cursor position as a function of time during the feedback phase of the task. Trajectories for up targets are shown in red and for down targets are shown in
blue. Earlier and later trials are depicted in lighter and darker shades, respectively. The inferred intended trajectory is shown as a thick red or blue line. (B) MSE
for each individual trial relative to the inferred intended up and down trajectories. Successful trials shown in dark gray and failed trials are shown in light gray.
Up targets are notated with a diamond (◇) above each bar. To assess performance trends we performed logistic regression of MSE values as a function of trial
number. Significant trends are shown as solid regression lines; nonsignificant trends are shown as dashed lines.
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Fig. S6. Changes in mu-beta activity patterns. (A) Significant decreases (normalized mu-beta power) during up targets for all lateral electrodes for all subjects
(left hemispheric coverage projected to right hemisphere) projected on to the Talairach brain. Note widespread cortical activation including frontal, middle-
parietal, and posterior-parietal areas. (B) Subplot 1: average mu-beta activity patterns in a given electrode from a specific subject for all trials separated by up
and down targets. Subject is specified in the subplot title. Phases of the task (ordered from L to R: ISI, target presentation, feedback, reward) are separated by
vertical bars. Dotted line represents SEM. Subplots 2 and 3: trial-by-trial mu-beta activity patterns for all trials, separated by up (subplot 2) and down (subplot 3)
targets. Trial count is shown on the vertical axis, and breaks in the experimental session of more than 8 h are denoted with an asterisk (*). Time, as described for
subplot 1 is shown on the horizontal axis. The black horizontal bar represents the model separation point derived solely from HG activity in the controlling
electrode. (C) Spatial distribution of change in mean mu-beta activation comparing early to late trials for all targets for all subjects. Activations for individual
electrodes are normalized against rest periods from the same electrode for a given run to eliminate gain differences between electrodes and nonstationarities
within a given electrode over time. Activation change values are blurred using a 12-cm FWHM Gaussian filter. (D) Change in mean mu-beta activation for all
electrodes showing significant change from early to late trials, classified in to approximate cortical areas.
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Fig. S7. Changes in HG activity patterns observed with alternative data segmentation method. (A and B) Repetition of Fig. 4, given for direct comparison with
the subsequent two panels. (C) Spatial distribution of change in mean HG activation comparing the first 30% to the last 30% of all trials recorded for each
subject. Note similar spatial patterns compared with A. (D) Change in HG activation for all electrodes showing significant change from early to late trials,
classified in to approximate cortical areas.

Table S1. Summary of subject population, data collected, and basic statistical analysis

ID
Age
(y) Sex

Total
runs

Total
trials

Up
trials

Down
trials

Motor
movement

type
P value (up
vs. rest)

P value
(down
vs. rest)

Modeled
transition

trial

Early-late
separability

(R2)

Early-
late

P value

S1 26 Female 6 108 54 54 Overt <0.0001 0.075 48 0.6422 <0.0001
S2 22 Male 5 90 45 45 Imagined <0.0001 0.994 75 0.3403 <0.0001
S3 18 Male 3 54 27 27 Overt <0.0001 1 22 0.8689 <0.0001
S4 27 Male 6 108 54 54 Overt <0.0001 0.983 53 0.6097 <0.0001
S5 29 Male 11 198 98 100 Imagined <0.0001 0.986 32 0.4076 <0.0001
S6 32 Male 6 108 54 54 Imagined <0.0001 1 20 0.2039 <0.0001
S7 25 Female 5 90 45 45 Imagined 0.271 0.0028 40 0.7695 <0.0001
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