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Different sleep stages have been shown to be  vital for a variety of brain 
functions, including learning, memory, and skill consolidation. However, our 
understanding of neural dynamics during sleep and the role of prominent LFP 
frequency bands remain incomplete. To elucidate such dynamics and differences 
between behavioral states we  collected multichannel LFP and spike data in 
primary motor cortex of unconstrained macaques for up to 24  h using a head-
fixed brain-computer interface (Neurochip3). Each 8-s bin of time was classified 
into awake-moving (Move), awake-resting (Rest), REM sleep (REM), or non-REM 
sleep (NREM) by using dimensionality reduction and clustering on the average 
spectral density and the acceleration of the head. LFP power showed high delta 
during NREM, high theta during REM, and high beta when the animal was awake. 
Cross-frequency phase-amplitude coupling typically showed higher coupling 
during NREM between all pairs of frequency bands. Two notable exceptions were 
high delta-high gamma and theta-high gamma coupling during Move, and high 
theta-beta coupling during REM. Single units showed decreased firing rate during 
NREM, though with increased short ISIs compared to other states. Spike-LFP 
synchrony showed high delta synchrony during Move, and higher coupling with 
all other frequency bands during NREM. These results altogether reveal potential 
roles and functions of different LFP bands that have previously been unexplored.
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Introduction

Previous studies have furthered our understanding of different sleep stages by exploring the 
dynamics of local field potential (LFP) frequency band power and single-unit spiking 
characteristics in both the cortex and various deep brain structures (Brown et al., 2012; Rasch 
and Born, 2013). Slow waves and delta frequency band are typically present across the brain 
during NREM sleep, and high theta power is present during REM sleep (Rechtschaffen and Kales, 
1968; Silber et  al., 2007). Single units show changes in firing rate as well as firing patterns 
depending on the sleep stage due to changes in excitability (Tononi and Cirelli, 2014; Xu et al., 
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2019; Arbune et  al., 2020). In particular, the motor cortex shows 
increased excitability and sequential firing of neurons during REM 
sleep which may play a role in memory consolidation (Hess et al., 1987; 
Xu et al., 2019), and displays reactivations of relevant cortical circuit 
patterns to solidify motor learning during NREM sleep (Ramanathan 
et al., 2015; Xu et al., 2019; Rubin et al., 2022). Several other features of 
cortical activity, such as k-complexes and sleep spindles during NREM 
sleep, have also been shown to be associated with different stages of 
sleep (Huber et al., 2004; Ulrich, 2016; Fernandez and Lüthi, 2020). 
However, the neural dynamics underlying sleep and the functional 
correlates of the prominent LFP bands remain unclear.

Various measures of local field potential (LFP) coupling and 
spike-LFP synchrony have been commonly used to elucidate how brain 
networks communicate for learning, memory, and various cortical 
functions (Einevoll et al., 2013; Khanna and Carmena, 2017; Telenczuk 
et al., 2017). Cross-frequency phase-amplitude coupling of different 
LFP frequency bands, thought to reflect communication between brain 
circuitry, has been shown to be  modulated by task performance, 
cognitive engagement, and memory formation in various brain regions 
(Jensen and Colgin, 2007; Canolty and Knight, 2010). Single units are 
strongly synchronized to specific phases of LFP frequency bands, 
notably to beta and gamma cycles in the motor cortex, suggesting beta 
to be a resting rhythm during movement execution and gamma to 
reflect local population activity (Murthy and Fetz, 1996a,b; Engel and 
Fries, 2010; Buzsáki et  al., 2012; Buzsáki and Wang, 2012). LFP 
coupling in the motor cortex during sleep is not as common, typically 
used to investigate Parkinson’s disease (Sanabria et al., 2017; Devergnas 
et al., 2019). LFP and unit analyses have given us significant insight into 
neural signaling and the role of both spikes and LFPs in brain function, 
but there has yet to be a comprehensive investigation of how cross-
frequency coupling and spike-LFP synchrony for specific cortical sites 
are modulated by behavioral states during sleep and wakefulness.

This study analyzes LFPs, single units, and their relationship in the 
macaque motor cortex during different behavioral states to clarify the 
mechanisms underlying neural dynamics of these states as well as to 
elucidate the roles of various LFP frequency bands in cortical 
communication. We first used the power spectral density of LFPs to 
distinguish between four major behavioral states shown to be relevant 
to plasticity and learning in the motor cortex: (1) awake and moving 
(Move), (2) awake and at rest (Rest), (3) rapid-eye movement (REM) 
sleep, and (4) non-REM (NREM) sleep. We tracked single-unit activity 
concurrently with LFP recordings and focused on 6 different frequency 
bands commonly delineated in the cortex: (1) delta (0.5–4 Hz), (2) 
theta (4–8 Hz), (3) alpha (8–12 Hz), (4) beta (15–30 Hz), (5) low 
gamma (30–70 Hz), and (6) high gamma (70–120 Hz). Finally, 
we  assessed state-dependent changes in cross-frequency coupling 
between pairs of the frequency bands as well as spike-LFP synchrony 
in each frequency band. The results show that the relationships between 
LFP bands depend on the animal’s behavioral state and that spike-LFP 
synchrony may provide insight into the underlying mechanisms.

Materials and methods

Experimental design

Implants and surgical procedures
The experiments were conducted on two male Macaca nemestrina 

monkeys (Monkeys J and K). Surgeries were performed under 

isoflurane anesthesia and aseptic conditions to implant multi-
electrode Utah arrays. All procedures conformed to the National 
Institutes of Health Guide for the Care and Use of Laboratory Animals 
and were approved by the University of Washington Institutional 
Animal Care and Use Committee.

Implantation of the Utah array was guided by stereotaxic 
coordinates. A 1.5 cm wide square craniotomy was performed over the 
hand region of the primary motor cortex, as determined by stereotactic 
coordinates, to expose the dura. Three sides of the exposed dura were 
cut to expose the cortex; a Utah array was then implanted and the dura 
was sutured over the array. Two reference wires were inserted below 
the dura and two were inserted between the dura and the skull. The 
bone flap from the craniotomy was replaced and held in place by a 
titanium strap screwed onto the skull with 2.5 mm × 6 mm titanium 
skull screws. A second smaller titanium strap was fastened to the skull 
to secure the wire bundle. The connector pedestal for the array was 
attached to the skull with eight titanium skull screws and the incision 
closed around the pedestal base. Additional skull screws were placed 
around the base of the connector pedestal and a thin coat of dental 
acrylic (methyl methacrylate) was applied to the skull between the 
screws and the connector base for additional stability.

To facilitate long-term recordings while the animal is freely 
behaving in its cage, the animals also received a “halo” implant to 
house the recording device. The implant was made with 3/8″ 
aluminum forming an egg-shaped oval 17 cm long and 15.3 cm wide. 
Four titanium straps were affixed to the skull by titanium bone screws. 
Two were implanted bilaterally over the occipital ridge, and two were 
placed temporally bilaterally. After the plates integrated with the skull 
for 6 weeks, an aluminum halo was mounted on four pins seated in 
each plate. A titanium can with a plexiglass top to house the 
Neurochip3 (Shupe et al., 2021, see the Electrophysiology section) was 
attached to the halo during all Neurochip3 recording sessions.

Monkey J additionally received electrooculogram (EOG) 
electrodes on the lateral wall and superior margin of both orbits. EOG 
electrodes consisted of a titanium washer (#4, 0.25” OD, 0.032″ thick) 
with a 0.016″ hole drilled into it and a 34-gauge silver-plated copper 
microwire with silicone shielding (Cooner Wire, AS155-34) threaded 
through the hole and soldered to the washer. An incision was made to 
the dorsal and lateral margins of both orbits to expose the skull. A 
small hole was drilled in each incision, a titanium skull screw 
(2 mm × 6 mm) was used to hold down the EOG electrodes, and the 
wires of the electrodes were tunneled beneath the tissue along the 
skull. Another incision was made along the top of the skull to secure 
a pedestal with 8 skull screws and allow access to the electrode wires. 
The inside of the pedestal was filled with surgical silicone adhesive 
(Kwik-Sil, World Precision Instruments) to prevent infection. 
Connectors were fastened to the wires postoperatively.

After each surgery animals received postoperative courses of 
analgesics and antibiotics. Animals did not show signs of discomfort 
or pain related to any implanted devices after recovery, and all exposed 
implants were regularly disinfected biweekly with chlorohexidine and 
treated with antibiotics to prevent infection.

Electrophysiology
All data was collected with the head-mounted Neurochip3 (Shupe 

et al., 2021) while the monkeys were freely behaving in their home 
cage (Figure 1A). The Neurochip3 is a battery powered bidirectional 
brain-computer interface capable of saving data to an SD card, 
allowing for wireless recording and stimulation for up to 24 h. Sixteen 
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channels of the Utah array, or 14 channels of the array and 2 channels 
of the EOG, were recorded at 20 kHz sampling rate with a bandwidth 
of 0.1 Hz to 5 kHz (Figure 1B). The cortical channels were chosen each 
day with a preliminary recording to capture the largest single units 
present in the array. Most experiments recorded a different set of 
channels, depending on the best spike recordings.

The Neurochip3 also has an onboard 3-axis accelerometer that 
was simultaneously recorded at 100 samples per second. Recording 
sessions lasted between 19 and 24 h. The lights in the animal rooms 
were off during the night for the 12 h between 6 pm and 6 am. 
We collected data from a total of 16 sessions from Monkey K and 10 
sessions from Monkey J.

Three sessions from Monkey J were recorded immediately 
following sedation via intramuscular ketamine injection to facilitate 
mounting the Neurochip3. We removed the first 3 h of recordings 
following recovery from these sessions to ensure the data was not 
affected by the sedation. No results were different when removing 
these sessions, so they were included to be comprehensive.

Data analysis

Classifying sleep states
Although there have been various approaches automating sleep 

state classification by taking advantage of the sequential nature of the 
states as suggested by the American Academy of Sleep Medicine 
(AASM) classification (Silber et al., 2007; Supratak et al., 2017; Craik 
et al., 2019), studies have shown that including information from 
neighboring epochs does not necessarily improve classification 

(Tsinalis et al., 2016; Sekkal et al., 2022). Most deep learning methods 
also rely on supervised learning, but, due to the high inter-scorer 
variability in manual classification that these models rely on (Himanen 
and Hasan, 2000; Younes et  al., 2016), we  chose an unsupervised 
method instead. As a result, we used dimensionality reduction for 
feature extraction and subsequent clustering. Autoencoders were 
chosen as the method for dimensionality reduction which, due to their 
nonlinearity, are potentially able to extract more salient features 
compared to linear methods. Denoising autoencoders are often used 
for feature extraction to ensure the network does not learn to replicate 
consistent noise, but our input data inherently contained random 
noise due to the recording device being mounted on a freely behaving 
animal as well as the short time window of 8 s for our power spectral 
density calculations. As a result, we used a stacked sparse autoencoder 
for dimensionality reduction.

All analyses were performed using custom MATLAB 
(MathWorks) and Python code. The power spectral density (PSD) of 
cortical local field potentials (LFPs) as well as the onboard 
accelerometer data from the Neurochip3 were used to classify different 
sleep states (Figure  1B). Data was down sampled to 1 kHz before 
performing Welch’s PSD estimate between 0 and 50 Hz for each 8 s 
time-bin. We  then converted the PSD into power and found the 
average power across all channels for each time-bin. The average 
power was further normalized by subtracting the minimum value and 
dividing by the integral to ensure that relative power at different 
frequencies played a larger role than the absolute power.

We then used the normalized average power as inputs to train a 
stacked sparse autoencoder for dimensionality reduction, similar to 
the architecture described in Tsinalis et al. (2016). The encoder was 

FIGURE 1

Experimental design. (A) All data was gathered using the Neurochip3 on freely behaving macaques for up to 24  h. (B) We collected 16 channels of data 
at 20  kHz and obtained the spectral density of every 8-s bin to classify behavioral states. (C) We then calculated the cross-frequency phase-amplitude 
coupling of every frequency band pair. The example shows the instantaneous amplitude (red) of high gamma filtered LFP (black, bottom) increasing at 
the trough of beta (black, top). (D) We additionally sorted single units and found the synchrony of spikes to LFP bands. The example shows spikes (red) 
synchronized with the trough of beta filtered LFP.
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composed of 3 layers of 256, 128, and 64 units each, with batch 
normalization and ReLU activation function. The final hidden layer 
containing the reduced representation of the data had 32 nodes. The 
autoencoder was trained with minibatch sizes of 64 for 300 epochs. 
The loss was calculated with mean squared error with L1 regularization 
(regularization weight λ = −

1
5e ) using the Adam optimizer (learning 

rate α = −
1

3e , decay rate for first moment β1 0 9= . , decay rate for 
second moment β2 0 999= . , constant ε = −

1
8e ). The autoencoder was 

implemented in Python using the PyTorch package (Paszke 
et al., 2019).

Accelerometer data was included by performing the root sum of 
squares across all three axes. We then found the variance of the values 
within each time bin and applied a logarithmic scale to better 
compress the data. Finally, the standard deviation was normalized to 
that of the encoded dimension with the largest variance. The processed 
accelerometer data was included as an additional dimension in the 
lower dimensional representation (i.e., as the 33rd dimension).

To classify the data, we  used k-means clustering with an 
assumption of 4 centroids. Data points of the lower dimensional 
representation within the 90th percentile of pairwise Euclidean 
distance were initially used for finding the centroids of clusters to 
avoid the influence of outliers. Each data point was assigned to the 
centroid with the shortest Euclidean distance.

After clustering, each group of records was assigned to one of four 
states – (1) awake and moving (Move), (2) awake and at rest (Rest), 
(3) rapid-eye movement (REM) sleep, (4) non-REM (NREM) sleep 
– by assessing the average accelerometer value and average normalized 
PSD for each cluster. First, the cluster with highest average acceleration 
was assigned to be Move, then the cluster with highest average delta 
power (0.5–4 Hz) was assigned be NREM, then the cluster with higher 
average beta power (15–30 Hz) was assigned to be  Rest, and the 
remaining cluster was assigned to be REM.

To include a temporal aspect and smooth any outliers 
we performed a majority filter on the classification. For each time-bin, 
the majority state across 2 time-bins before to 2 time-bins after (±16 s) 
was considered to be the current state. Ties were resolved by keeping 
the original classification, or by random choice if the original 
classification was not part of the tie.

Validation of classification
Two EOG electrodes (one dorsal and one lateral) were 

simultaneously recorded from with the Neurochip3 in experiments 
with Monkey J. EOG signals were extracted by subtracting the lateral 
electrode signal from the dorsal electrode signal and then applying a 
band-pass filter between 1 and 20 Hz with a zero-phase second-order 
Butterworth filter. We performed in-booth experiments with flashes 
of lights guiding the monkey’s gaze to ensure we  were properly 
capturing eye movements.

As the Neurochip3 is mounted to the monkeys’ heads, 
we  performed overnight recordings with the Microsoft Kinect in 
conjunction to ensure there were no large discrepancies between the 
on-board accelerometer and whole-body movements (Libey and Fetz, 
2017). With the Kinect movements were calculated as the absolute 
difference between each frame of the infrared depth-finding camera 
and the previous frame. We captured frames as quickly as possible 
with the processing overhead, around 30 frames per second.

Further validation was performed with k-fold cross-validation 
with k = 20. Each dataset was split into 20 random groups; classification 

was performed on 19 of the 20 groups, and the final group was 
classified using the centroids from the classification k-means. The 
training error was calculated as the difference in classification within 
the 19 groups used for training the classification, and the test error as 
the difference in classification within the final group used to test the 
classification. Cross-validation was bootstrapped 50 times for each 
session to minimize variability that can potentially be introduced by 
the random sampling.

Coherence
Magnitude-squared coherence was used to calculate synchrony 

within the same frequencies:

 
C

P f
P f P fxy

xy

xx yy
=

( )
( ) ( )

2

 
(1)

where Cxy  is the coherence between x  and y, P fxy ( ) is the cross-
spectral density between x  and y, and P fxx ( ) and P fyy ( ) are the 
spectral densities of x  and y respectively. Coherence was calculated 
between all combinations of channel pairs every 0.1 Hz.

Cross-frequency phase-amplitude coupling
To calculate cross-frequency phase-amplitude coupling we used 

mean vector length (MVL) (Canolty et al., 2006; Figure 1C). The LFP 
was first filtered into 2 frequency bands of interest within the 6 
frequency bands of interest – (1) delta (0.5–4 Hz), (2) theta (4–8 Hz), 
(3) alpha (8–12 Hz), (4) beta (15–30 Hz), (5) low gamma (30–70 Hz), 
and (6) high gamma (70–120 Hz) – using a zero-phase second-order 
Butterworth filter. We then calculated the analytic signal, H , of each 
band using the Hilbert transform:

 
H x t P

x
t

d( )( ) = ( )
−

−∞

+∞

∫
1
π

τ
τ

τ
 

(2)

where P is Cauchy principal value. The phase of the complex 
valued analytic signal is the instantaneous phase at time t , and the 
magnitude of the analytic signal is the instantaneous amplitude. The 
mean vector of the two considered frequency bands was then 
calculated by:

 
MVL

n
r i

n
= ( )∑1

exp φ
 

(3)

where r  is the instantaneous magnitude of the higher frequency 
band and φ  is the instantaneous phase of the lower frequency band. φ  
ranges from 0 to 2π  radians where 0 is the peak and π  the trough of 
oscillations. This calculation creates a vector for each sample in time 
with the phase and amplitude of the lower and higher frequency 
bands, respectively. The magnitude of the average across all these 
vectors, or MVL, measures the strength of synchrony – zero indicates 
a uniform distribution in which the vectors “cancel” each other, and 
higher values indicate the degree of synchrony.

Mean vector length is highly affected by the amplitude and does 
not have a normalized upper limit, which makes interpretation of 
individual values and comparisons of MVL measurements across 
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different time points difficult. Thus, we additionally calculated the 
maximum possible MVL for each state. Instead of using the phase and 
amplitude that occurs at the same time sample in Equation 2, 
we paired the highest amplitudes with the most commonly occurring 
phases within each behavioral state. Thus, the largest vectors were all 
in similar directions providing the maximum possible length of the 
mean vector. We  then normalized the MVL by dividing it by the 
maximum possible MVL to assess differences in synchrony between 
behavioral states.

Spike sorting
Spikes were sorted offline using two-window discrimination. The 

cortical recording was bandpass filtered between 1,000 and 2000 Hz 
with a first-order Butterworth filter. Then a negative threshold and two 
time-delayed windows were manually chosen to capture the trough 
and the peak of the spike waveform. All traces crossing the threshold 
and passing through the two windows were denoted as spikes.

As the fidelity of spikes may change over such a long period of 
recording, we  additionally compared the shapes of the first 1,000 
detected spikes with the last 1,000 detected spikes using the coefficient 
of determination (CoD):

 

CoD
s t s t

s t s

first last

first first

= −
∑ ( ) − ( )( )
∑ ( ) −( )

1

2

2

 

(4)

where s first  is a waveform of one of the first spikes, slast is a 
waveform of one of the last spikes, and s first  is the average of 
the waveform.

We performed pairwise CoD on all first and last 1,000 instances 
of each spike and compared them to the pairwise CoD between the 
first 1,000 instances of the spike and the last 1,000 instances of a 
different, randomly chosen spike. If the distribution of the CoD 
comparing the same spike was significantly higher than the 
distribution between the spike and another spike it was considered to 
be consistent overnight. Additionally, to ensure we were not capturing 
multiple units with a similar waveform, we manually assessed the 
autocorrelograms for each spike to ensure the presence of a refractory 
period and proper distribution of inter-spike intervals.

Additionally, spikes were designated to originate from regular 
firing or fast firing neurons. Although single unit classification 
was traditionally performed with the spike width (McCormick 
et al., 1985), subsequent studies have suggested that spike width, 
at least when used alone, may not be the most indicative of the 
type of neuron (Jung et al., 1998; Vigneswaran et al., 2011; Insel 
and Barnes, 2015). Assessment of various features of spikes 
showed that the peak of the inter-spike interval (ISI) distribution 
to be  the most distinguishable feature within our dataset 
(Supplementary Figure S1). If the peak occurred before 10 ms the 
single unit was designated to be fast spiking (FS), otherwise it was 
designated to be regular spiking (RS) (84 FS units, 109 RS units). 
Although we determined the best method to distinguish between 
RS and FS units, this analysis is presented as a first step in 
assessing cell type; intracellular recording or other imaging 
techniques are necessary to establish the differences and 
determine subclassifications with more confidence (Barthó 
et al., 2004).

Phase-locking value
We calculated the phase-locking value (PLV) to assess the strength 

of synchronization of spike timing to phases of oscillations in specific 
frequency bands from LFPs recorded on the same channel 
(Figure  1D). First, the LFP was filtered into a frequency band of 
interest. The instantaneous phase of the lower frequency band was 
calculated through the Hilbert transform as described above (Cross-
frequency phase-amplitude coupling, Equation 2). We then calculated 
the PLV:

 
PLV

n
i

n
= ( )∑1

exp φ
 

(5)

where φ  is the instantaneous phase at spike times. The PLV 
effectively converts each phase into a unitary vector and finds the 
average of all the vectors. The magnitude of the resulting vector 
determines the synchrony of the phases. A value of zero, similar to 
MVL, indicates a uniform distribution, or no synchrony. A value of 
one indicates that all phases are equal, or perfect synchrony.

The average phase of spike timing was found using the 
circular mean:

 
average phase i

n
 = ( )









∑arg exp φ

 
(6)

where arg is the argument of a complex number, or the angle 
between the positive real axis and the complex number in the 
complex plane.

Although measures of spike-field coherence including the PLV 
can be affected by the number of spikes used in the calculation (Maris 
et al., 2007), bootstrapped analysis shows that the bias introduced by 
the number of spikes becomes inconsequential after 10,000 spikes 
(Supplementary Figures S2B,C). PLV was calculated on spikes of an 
individual single unit during a single state for each session; >98% of 
the instances had more than 10,000 spikes (Supplementary Figure S2A).

Statistical analysis
We used Friedman’s test to compare values between the four states 

due to the non-parametric nature of the distribution and because 
we were sampling the same spikes and LFPs across each state. Tukey’s 
honest significance test was used post hoc to determine significant 
pairwise differences. Statistical significance was determined to 
be when the value of p was less than 0.05 for each corresponding 
statistical test.

Results

Classification of sleep states

Sleep states were classified using the power spectral density of local 
field potentials (LFPs) of successive 8-s time-bins as the input to train 
an autoencoder. We then extracted the values from the hidden units as 
the low-dimensional representation of the data. 
Supplementary Figure S3A shows examples of the original spectra and 
reconstructed outputs after training the autoencoder. The fluctuations 
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in the spectra have been smoothed out but the salient features, such as 
peaks at alpha or beta, were maintained. Supplementary Figure S3B 
shows the low-dimensional representation visualized via t-distributed 
stochastic neighbor embedding (t-SNE) (van der Maaten and Hinton, 
2008) after full classification. There was some overlap between the 
states in the representation, which is to be expected as brain states 
during sleep are on a continuous spectrum. Finally, we wanted to gain 
insight into which feature each of the hidden units of the autoencoder 
represent. Supplementary Figure S3C shows the average of 100 spectra 
that gave the largest values in each hidden unit and 
Supplementary Figure S3D shows the average of 100 spectra that gave 
the smallest values in each hidden unit subtracted from spectra in 
Supplementary Figure S3C. This analysis can be  interpreted as the 
features within the spectra that each hidden unit encodes, and clear 
peaks in each frequency band can be observed.

We then applied k-means clustering on the lower dimensional 
representation as well as the accelerometer data that was collected 
concurrently through the Neurochip3. We assumed 4 clusters – awake 
and moving (Move), awake and at rest (Rest), REM sleep (REM) and 
non-REM sleep (NREM). Each cluster was assigned to the state 
depending on the average accelerometer value and features in the 
average power spectral density (PSD). Although we  have a 
physiological basis as to why we chose 4 clusters, we wanted to ensure 
that 4 clusters were a reasonable number for our dataset. To that end, 
we tracked the within-clusters sum-of-squares as well as the average 
silhouette coefficient for 1 to 10 clusters (Supplementary Figure S4A). 
Both values decrease with more clusters, but the “elbow” point, or 
where there is a large reduction in the decrease, was around 4 or 5 
clusters. We  additionally calculated the individual silhouette 
coefficients when using 4 clusters to show that each cluster had a 
significant number of data points with coefficients above the average 
value (Supplementary Figure S4B).

The full classification procedure is outlined in Figure 2A and an 
example of the final classification over a 21-h period and the 
corresponding spectral power is shown in Figure 2B. During lights-off 
we found consistent REM cycles in between NREM epochs occurring 
every 30 min to 2 h, which became longer and more frequent closer to 
the morning, consistent with previous findings (Aserinsky and 
Kleitman, 1953; Kripke et al., 1968; Hsieh et al., 2008). NREM was 
absent when the lights were on in the animal room, but we often found 
brief periods of REM sleep concurrent with changes in the PSD, which 
we attributed to naps (Figure 2B, arrow) (Moses et al., 1975; Dijk et al., 
1987). We also often found short periods of Rest or sometimes even 
Move during the night which were attributed to brief awakenings, 
typical for a normal night of sleep in non-human primates (Rachalski 
et al., 2014). An example of averaged spectral power during each sleep 
state is shown in Figure 2C, and example traces are shown in Figure 2D.

Sleep state classification was validated to 
be consistent

As our classification scheme was unsupervised, we simultaneously 
recorded electrooculography (EOG) signals in one animal to validate 
the identified REM stage during sleep (Figure 3A). Eye movements 
detected with the EOG were clearly associated with identified sleep 
states; EOG variance was very high when the animal was awake, very 
low during NREM sleep, and elevated during REM sleep (Figure 3B). 
This relationship was present even during very brief windows of 

detected awakening during the night and naps during the day, 
indicating high accuracy of state classification.

The accelerometer used for classification was incapsulated within 
the Neurochip3 which was mounted on the animals’ head. To confirm 
the accuracy of detected movements, we additionally recorded the 
monkeys’ movements overnight with a Microsoft Kinect. Compared 
to the movement values extracted with the Kinect, the accelerometer 
values were significantly larger during REM sleep (Figure 3C). This is 
likely due to most movements at night during sleep involving the 
head. However, these differences were minor, and the two signals were 
comparable throughout the recording.

Finally, we also performed k-fold cross-validation to verify that 
our classification method was consistent and robust. In this method, 
we  randomly divided the dataset into k groups then trained the 
autoencoder for state classification on k-1 groups. The discrepancy 
between the classification when using k-1 groups from the 
classification when using all the data for the groups used for training 
the autoencoder (training error) and the one group that was left out 
(test error) allows us to determine the consistency of the classification 
scheme. We used k = 20 and carried out 50 repetitions per session and 
found the average test and training error to be less than 4%, or around 
40 total minutes (Figure 3D). The similar but low test and training 
errors suggest the classification method had low variance (i.e., not 
overfit) and high consistency. As a result, the classification was 
deemed appropriate for the aims of this study.

Changes in LFP power shows changes in 
oscillatory activity

The average spectral power per state for each animal is shown in 
Figure  4A. Delta power was high during NREM sleep due to the 
presence of slow waves. There was a beta peak during the wake states, 
though the specific frequency range differed between the animals: 
25–30 Hz for Monkey K and 15–20 Hz for Monkey J. REM sleep 
showed slightly higher theta and alpha power compared to the 
wake states.

Average pairwise coherence per state for each animal is shown in 
Figure 4B. The features were very similar to those shown in the power, 
but the differences were magnified, likely due to coherence showing 
synchrony between pairs of channels and amplifying active oscillatory 
signaling over baseline spectral density. In addition to the large delta 
peak during NREM, there was a much clearer difference between 
REM and the wake states, including a more distinct beta peak. As 
coherence could be a result of volume conduction, we also measured 
the weighted phase lag index (wPLI) (Vinck et al., 2011) which showed 
similar results to coherence (Supplementary Figure S5).

All following cross-frequency phase-amplitude coupling and 
spike-LFP relationships were combined between the two animals as 
they demonstrated very similar results as shown in 
Supplementary Figures S6, S7.

Cross-frequency phase-amplitude 
coupling is modulated by brain state

The phase of lower frequency bands has been observed to 
be coupled with the amplitude of higher frequency bands, thought to 
reflect coordination between brain networks (Jensen and Colgin, 
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2007; Canolty and Knight, 2010). We explored the coupling between 
every pair of low frequency band phase to high frequency band 
amplitude to determine whether there were state-dependent changes. 
We  first plotted the average z-scored spectral power of higher 
frequencies at different phases of each frequency band (Figure 5). The 
coupling between different frequency bands in terms of strength and 
specific phase were modulated by the state of the animal.

To quantify the degree of coupling we calculated the normalized 
mean vector length (nMVL) (Figure 6). We observed state-dependent 
changes in the distribution of nMVL, most notably (1) high delta 

phase to alpha amplitude (delta-alpha) coupling during Rest, likely 
due to increased alpha oscillatory power, (2) low delta-beta coupling 
during NREM, perhaps for disinhibition of the cortex leading to 
increased plasticity, (3) high delta-high gamma coupling during Move 
and NREM, potentially reflecting synchrony of spike activity with 
delta oscillations, (4) high theta-beta coupling during REM, showing 
a possible modulation of beta by deeper brain structures, (5) high 
theta-high gamma coupling during Move, which may reflect 
hippocampal place cells synchronizing cortical activity during 
behavior, and (6) high alpha-high gamma coupling during Move, 

FIGURE 2

State classification. (A) Diagram of the full classification process. Normalized LFP power spectral density was used to train an autoencoder for 
dimensionality reduction. The lower dimensional representation and normalized accelerometer signals were subsequently clustered with k-means 
clustering then smoothed with a majority filter to determine different sleep states. (B) Example of classification and spectra over 22  h of continuous 
recording. Brief periods of REM sleep were observed during the day, attributed to naps (arrow). (C) Averaged spectra across each state for the session 
shown in (B). There is high delta power during NREM, theta power during REM, and beta power during Move and Rest states. (D) Example traces of raw 
LFP during each state. Spindles (black arrow) and k-complexes (red arrow) were observed during NREM sleep.
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which may be due to the relevance of alpha to both attention and 
movement preparation. The distribution of mean vector phases for 
each pair of frequency bands during each state is shown in 
Supplementary Figure S8.

Brain states modulate spiking dynamics

Spikes were manually sorted using two-window discrimination 
and confirmed using the coefficient of determination (Figures 7A,B, 
see Materials and Methods – Spike sorting). We tracked a total of 193 
spikes (121  in Monkey K, 92  in Monkey J) that satisfied our 
conditions across all sessions. The firing rates of these single units 
overnight were strongly and consistently modulated by different 
identified sleep states, especially during REM cycles during the 
night, further demonstrating the accuracy of the classification 
method (Figure  7C). Firing rates were consistently lower with 
deeper sleep. Assessing the differences in firing rates in individual 
states showed that both RS and FS firing rates significantly decrease 
with deeper sleep (Figure 7E).

To determine how spiking patterns changed between different 
states we analyzed changes in the average ISI distributions of RS and 
FS units. The raw ISI distributions showed an overall decrease on most 
ISIs with deeper sleep as well as a slight change in the timing of the 
distribution, especially for RS units (Figure 8A).

To quantify the differences, we calculated the difference in ISI 
distributions from Move (Figure 8B, left). FS units had a consistent 
decrease in shorter latency ISIs with deeper sleep, but RS units showed 
a large increase in short latency ISIs at around 5 ms (arrow). To 
determine if there were any changes in larger ISIs, we plotted the 
distributions against frequency (Figure 8B, right). Both FS and RS 
units showed a peak between 7 and 10 Hz during NREM and a peak 
between 20 and 25 Hz during Rest and REM.

We additionally sought to determine how the brain state could 
affect the relationship between units by calculating the cross 
correlation between firing rates of recorded single units. Firing rates 
were calculated by convolving the spike train with a gaussian kernel 
with an approximate width of 10 ms. Figure  8C shows the cross 
correlations between smoothed firing rates of pairs of FS units, 
between FS and RS units, and between pairs of RS units. There was not 
a clear difference in the cross correlation between the four states 
suggesting relative circuitry is maintained. The correlation between 
pairs of FS units was stronger than between FS and RS or pairs of RS 
units, as inhibitory neurons are often more interconnected within 
the cortex.

Brain states modulate spike-field dynamics

Spikes have been shown to be synchronized to various frequency 
bands, particularly in the motor cortex (Murthy and Fetz, 1996b; 
Buzsáki et  al., 2012). We  first analyzed the phase-amplitude 
distribution normalized by amplitude of each LFP band during spike 
timings (Figure 9). There was clear synchrony with spikes during 
NREM sleep with all LFP bands, though at different phases. During 
NREM spikes typically occurred at the trough of delta, beta, and 
gamma activity, and at intermediate phases for theta ( ~ / 2π ) and 
alpha ( ~ 3 / 4π ). The synchrony was particularly apparent during 
high amplitudes, suggesting spikes are synchronized to active 
frequency band activity rather than epiphenomena arising from 
periodicity of spike firing patterns. During both awake states and 
REM sleep, spikes were synchronized to the trough of beta and gamma 
frequencies, though less than during NREM sleep. Spikes during 
Move were also potentially synchronized to the delta band. All other 
combinations did not show apparent coordination between LFP band 
phase and spike timing.

To quantify the strength of these relationships, we calculated the 
phase-locking value (PLV) for each unit during each state for all LFP 
bands. Figure  10 shows the RS unit spikes’ distribution of locked 
phases as well as the PLV for each frequency band during each state. 
Spikes were more synchronized to delta during both Move and 
NREM, although the preferred phases are different: / 2π  for Move 
and ±π  for NREM sleep. For every other frequency band, there was 
stronger synchrony during deeper sleep states, though the differences 
were often not statistically significant. The preferred phases were 
extremely consistent across states for beta and higher frequency bands 
peaking between ±π and 3/4π, but variable for alpha and theta bands 
which also showed lower PLVs across all states.

Figure 11 shows the FS unit spikes’ distribution of locked phases 
and the PLV for each frequency band during each state. One large 
difference from RS units was that FS units were synchronized to delta 
oscillations during Move. As opposed to RS units, FS units also 
showed significantly larger PLVs during NREM than other states for 
all frequency bands. In addition, the phase of synchrony to the low 

FIGURE 3

Validation of classification. (A) An example of filtered differential EOG 
signals and corresponding eye movements. (B) Standard deviation of 
EOG signals overnight with respect to classified states. Note the 
increase in large eye movements during REM and waking. (C) An 
example of the normalized variance of accelerometer data and the 
normalized variance of the Kinect data with respect to classified 
states. (D) Test and training errors with k-fold cross-validation in 
percent (left) and total minutes (right).
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and high gamma bands was earlier in the cycle for FS units compared 
to RS units. However, the phase of synchrony to delta oscillations 
during NREM for both RS and FS units were both around the 
trough (π).

Discussion

Brain states were consistently classified 
and validated

Classification of sleep states is often an inconsistent and arduous 
task. Criticisms of and modifications to the guideline (Himanen and 
Hasan, 2000; Silber et al., 2007) as well as various automated methods 
(Penzel and Conradt, 2000; Hamida and Ahmed, 2013; Sun et al., 
2020) have been proposed, but each approach differs in the set of 
defined states and the type and amount of data required. In addition, 
studies on sleep typically use electroencephalogram (EEG) recordings, 
which are distinctly different from intracortical LFPs due to their 

lower spatial specificity and the complex frequency and phase filtering 
of bone and tissue, especially at higher frequencies (Michel et al., 2004; 
Buzsáki et al., 2012; Sejnowski et al., 2014). Beyond these difficulties, 
manual scoring is also compromised by high inter-scorer variability 
(Himanen and Hasan, 2000; Younes et al., 2016).

As a result, we developed our own classification methodology 
tailored to our data to distinguish between different sleep states. The 
process utilizes a stacked-autoencoder for dimensionality reduction 
followed by clustering on processed LFP PSDs and accelerometer 
values. We  used several metrics to validate the method: EOG 
recordings, concurrent recordings with the Kinect to track movement, 
k-fold cross validation, and changes in spike rates; they all indicated 
accurate and robust classification (Figure 3). This accuracy may be the 
result of the high spatial specificity of our recording probe focused on 
a small area (4 × 4 mm) of cortex; previous studies have shown that 
sleep can be  local and vary between different regions of the brain 
(Vyazovskiy et al., 2011; Mascetti, 2016; Siclari and Tononi, 2017).

Our method could potentially be  improved by using a 
dimensionality reduction method with higher complexity such as a 

FIGURE 4

LFP dynamics. (A) Average spectral power in each state for each animal across all experiments. Shaded regions show standard error. (B) Average 
pairwise coherence in each state for each animal across all experiments. Shaded regions show standard error.
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deep neural network (Malafeev et  al., 2018), different clustering 
methods such as hierarchical clustering (Gerla et al., 2019), and by 
including the EOG recordings or other biophysical measurements as 
additional dimensions of data such as EMG (Estrada et  al., 2006; 
Khalighi et al., 2013). However, developing a flawless classification 
method was not within scope of the study and the method presented 
was deemed to be sufficient.

Spike dynamics vary due to different sleep 
states

We observed decreased spiking activity with deeper sleep, consistent 
with previous studies (Figure 7; Steriade et al., 2001; Xu et al., 2019). In 
addition, the firing patterns of units changed due to sleep state – RS units 
had a relative increase in low ISI activity during NREM compared to 
Move, and both RS and FS units had relative increase in high ISI activity 
during Rest, REM, and NREM compared to Move.

We also observed an increase in beta frequency activity of units 
during REM and Rest (Figure 8) which is consistent with the proposal 
that beta reflects a “resting” rhythm in the primary motor cortex 
(Engel and Fries, 2010). RS units are likely to be excitatory pyramidal 
cells and FS units are likely to be inhibitory interneurons (McCormick 
et al., 1985), which may explain the relative increase of short ISIs in 
RS units during NREM sleep: NREM has often been tied with 
reactivation of cortical circuitry which may be  driven by 
excitatory neurons.

Cross-frequency coupling and spike-LFP 
synchrony suggest delta and theta may 
reflect mechanisms of sleep

Cross-frequency coupling refers to modulation of a higher 
frequency band by a lower frequency band (Figure 1C). Such coupling 
reflects coordination of local networks operating on shorter time 

FIGURE 5

Cross-frequency phase-power distributions. Distribution of lower frequency band phase and higher frequency band power during each state. The 
power is z-scored for each frequency.
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scales (i.e., low and high gamma activity) to distributed circuits 
synchronized at longer time scales (i.e., delta activity). These 
relationships could potentially play a role in neural mechanisms of 
attention, learning, and memory (Jensen and Colgin, 2007; Canolty 
and Knight, 2010). Compared to other proposed measures to quantify 
phase-amplitude coupling, the MVL introduced by Canolty et  al. 
(2006) has been shown to be  accurate, the most sensitive to 
modulations in coupling strengths, and ideal for high quality signals 
over long recording epochs (Canolty et al., 2006; Tort et al., 2010; 
Onslow et al., 2011; Hülsemann et al., 2019).

Spike-LFP synchrony provides another measure of synchrony 
between the single units and the composite synaptic activity of the 
local population (Murthy and Fetz, 1996b; Okun et al., 2010; Buzsáki 
et  al., 2012). The magnitude indicates the strength of synchrony 
whereas the phase reflects the timing of the spikes relative to the local 

population. We focused on 6 different frequency bands commonly 
delineated in the cortex: (1) delta (0.5–4 Hz), (2) theta (4–8 Hz), (3) 
alpha (8–12 Hz), (4) beta (15–30 Hz), (5) low gamma (30–70 Hz), and 
(6) high gamma (70–120 Hz).

Most instances of cross-frequency phase-amplitude coupling and 
spike-LFP synchrony were stronger for deeper sleep states. This may 
be  due to asynchronous activity during Move being driven by 
functional local circuitry (i.e., generating movement) whereas activity 
during resting and sleep states are more attuned to baseline 
macroscopic rhythmic activity, potentially related to homeostatic 
plasticity (Tononi and Cirelli, 2014).

Of the many changes we observed, two were of particular interest 
– delta-high gamma coupling during Move and theta-beta coupling 
during REM – due to their unexpected properties and 
possible implications.

FIGURE 6

Normalized MVL distributions. Normalized MVL distributions for each lower frequency band phase and higher frequency band amplitude pair during 
each state. The black boxes show standard box plots with interquartile range and the white dots show median values. The numbers above each group 
denote significance compared to another state (Friedman’s test, p  <  0.05).
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Delta and high gamma
Delta band LFP has been shown to be  linked to cognitive 

processing throughout the brain (Güntekin and Başar, 2016). Some 
evidence suggests delta in the motor cortex is relevant to movement 
preparation (Saleh et al., 2010; Körmendi et al., 2021) or top-down 
attention processes (Morillon et al., 2019) through thalamocortical 
circuitry, but delta in the motor cortex has not been commonly 
studied. In contrast, high gamma band LFP is well accepted to 
be representative of local spiking activity, often strongly correlated 
with action potentials (Ray et al., 2008; Ray and Maunsell, 2011).

As such, the existence of delta-high gamma coupling while the 
animal was awake was unexpected. The coupling was strong even 
when separately calculated for each animal (Supplementary Figure S9). 
Andino-Pavlovsky et  al. (2017) showed high delta-high gamma 
coupling during slow wave sleep in the rodent prefrontal cortex, and 
Takeuchi et  al. (2015) showed strong delta-high gamma coupling 
during REM and several NREM substages in the primate hippocampus 
(Takeuchi et  al., 2015; Andino-Pavlovsky et  al., 2017). However, 
neither study pursued the state-dependent comparisons, and their 
broad definition of gamma (>25 Hz) makes independent interpretation 

FIGURE 7

Spike sorting. (A) An example of a sorted spike. The gray traces show a random sample of 1,000 spikes, the black line is the average, the horizontal 
dashed red line shows the threshold, and the blue vertical lines show the two windows. (B) An example of comparisons of the pairwise coefficient of 
determination (CoD) between the first and last 1,000 instances of the same spike and the first and last 1,000 instances of two different spikes. (C) Firing 
rates binned every 60  s of four neurons overnight with classified sleep states. The changes in firing rate very closely match the changes in state. 
(D) Histogram of the peak of the ISI distribution of each spike. Spikes with peaks earlier than 10  ms were denoted to be fast spiking (FS) and all others 
denoted to be regular spiking (RS). (E) Percent difference of firing rate in each state from the average overall firing rate for each spike type. Each state is 
statistically significantly different from each other state (Friedman’s test, p  <  0.05).

https://doi.org/10.3389/fnins.2023.1273627
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Yun et al. 10.3389/fnins.2023.1273627

Frontiers in Neuroscience 13 frontiersin.org

difficult. Specific comparisons of delta-high gamma coupling during 
different sleep states have not been reported.

Spike synchrony to delta band potentially sheds light on the delta-
high gamma relationship. In our study, only RS units showed higher 
delta-high gamma coupling during Move, and the phase of synchrony 
was consistently located at the falling edge of the wave (Figure 10), or 
right before the greatest depolarization. During NREM both RS and 
FS units were synchronized to delta, but the phase of synchrony was 
immediately after the trough of the wave, or right after the greatest 
depolarization. Since delta is indicative of macroscopic activity, this 
suggests that spikes during the day may drive the activity whereas the 
spikes are driven by the activity at night. Such a relationship potentially 

reflects delta as indicative of coordinating the cortical circuitry that 
was engaged during the day for reactivation during sleep, a commonly 
studied mechanism present in NREM sleep (Ramanathan et al., 2015; 
Gulati et al., 2017; Xu et al., 2019).

Theta and beta in the motor cortex during REM 
sleep

Theta oscillations have often been observed during REM sleep and 
have also been shown to coordinate hippocampal place cell activity 
during active exploration (Cantero et al., 2003; Buzsáki and Moser, 
2013). Theta has also been shown to be coupled to low gamma. A 
wealth of recent cross-frequency coupling literature has reported 

FIGURE 8

Changes in firing patterns. (A) Average ISI distributions of identified fast spiking and regular spiking neurons during each state. (B) Difference of ISI 
distributions from Move plotted against time (left) and frequency (right). Note the peak around 5  ms during NREM for regular spiking neurons and the 
peaks around 7–10  Hz during NREM sleep and the peaks at around 20 and 25  Hz for REM and Rest, respectively, (arrows) for both neuron types. All 
three peaks were significantly different from 0 (Wilcoxon signed-rank test, p  <  0.05). (C) Cross correlations of spike firing rates between pairs of fast 
spiking (FS) neurons (left), FS and regular spiking (RS) neurons (middle), and pairs of RS neurons (right) (n  =  636, 1,328, 1,036 respectively).
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theta-low gamma coupling in both hippocampus and the neocortex, 
showing modulations related to task performance, cognitive 
engagement, and memory formation (Canolty et al., 2006; Buzsáki 
and Wang, 2012; Lisman and Jensen, 2013). Although stronger 
theta-low gamma coupling has also been observed during REM sleep, 
human studies have shown delta-low gamma coupling potentially 
because hippocampal theta oscillations are slower in humans than in 
rodents (Cantero et  al., 2003; Clemens et  al., 2009; Jacobs, 2014). 
However, we  did not find significant delta- or theta-low gamma 
coupling during REM in non-human primates.

Instead, we  found very high theta-beta coupling during REM 
sleep. Beta is theorized to be  indicative of a regulating, inhibitory 
rhythm in the motor cortex (Engel and Fries, 2010; Kilavik et al., 2013; 

Khanna and Carmena, 2017), and our results show a general increase 
in beta power during REM sleep (Figure 4B). However, theta-beta 
coupling is not commonly studied; some evidence suggests that it 
plays a role in working memory and decision making, but the 
literature is sparse and focuses on the frontal lobe (Cohen et al., 2009; 
Axmacher et  al., 2010; Liang et  al., 2021). In our analysis, the 
maximum beta amplitude occurs right before the peak of theta 
(Supplementary Figure S8), which means minimum beta occurs right 
after the trough of theta This suggests theta may reflect disinhibition 
that increases the excitability of the cortex by minimizing beta. Such 
changes in excitability may then lead to more effective memory 
consolidation often seen during REM sleep (Boyce et  al., 2016); 
however, more research is needed to confirm these speculations.

FIGURE 9

Phase distributions of LFPs at spike times. Phase distributions normalized for each amplitude during each sleep state for each LFP band.

https://doi.org/10.3389/fnins.2023.1273627
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Yun et al. 10.3389/fnins.2023.1273627

Frontiers in Neuroscience 15 frontiersin.org

Limitations of the study

Although the limited region of the cortex we recorded aided in 
our ability to classify different brain states, it also limited our ability to 
extend the interpretation of our results to the broader functions 
involved with sleep. Simultaneous recordings of deep brain structures 
or even different cortical regions may provide more insight into the 
roles behind the relationships between LFP bands and spikes that were 
uncovered in this study.

Conclusion

Our study provides the first comprehensive analysis of cross-
frequency phase-amplitude coupling and spike-field synchrony across 
all frequency bands within the macaque motor cortex during different 
behavioral states. We observed an increase in short ISIs and high 
coordination between spikes during NREM, consistent with previous 

findings suggesting reactivations of cortical circuity during 
NREM. High cross-frequency phase-amplitude coupling between 
delta and high gamma when the animal is awake and moving and 
during NREM sleep, as well as spike-field synchrony with delta band 
LFP during those states, suggest that delta may be associated with 
encoding and subsequently driving these reactivations. Previously 
seen modulations in delta or theta to low gamma phase-amplitude 
coupling, was not observed. Instead, we observed high theta to beta 
coupling during REM, potentially reflecting the role of theta during 
REM sleep as a disinhibiting signal. These results support previous 
findings and may serve as the basis for future studies into the roles of 
LFP frequency bands and different sleep states.
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FIGURE 10

Locked phase and phase locking value distributions for regular spiking neurons. Distributions of locked phase (left) and PLVs (right) of regular spiking 
neurons during each sleep state for each LFP band. The numbers above each group denote significance compared to another state (Friedman’s test, 
p  <  0.05).
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