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Zanos S, Zanos TP, Marmarelis VZ, Ojemann GA, Fetz EE.
Relationships between spike-free local field potentials and spike timing in
human temporal cortex. J Neurophysiol 107: 1808–1821, 2012. First
published December 7, 2011; doi:10.1152/jn.00663.2011.—Intracortical
recordings comprise both fast events, action potentials (APs), and
slower events, known as local field potentials (LFPs). Although it is
believed that LFPs mostly reflect local synaptic activity, it is unclear
which of their signal components are most closely related to synaptic
potentials and would therefore be causally related to the occurrence of
individual APs. This issue is complicated by the significant contribu-
tion from AP waveforms, especially at higher LFP frequencies. In
recordings of single-cell activity and LFPs from the human temporal
cortex, we computed quantitative, nonlinear, causal dynamic models
for the prediction of AP timing from LFPs, at millisecond resolution,
before and after removing AP contributions to the LFP. In many
cases, the timing of a significant number of single APs could be
predicted from spike-free LFPs at different frequencies. Not surpris-
ingly, model performance was superior when spikes were not re-
moved. Cells whose activity was predicted by the spike-free LFP
models generally fell into one of two groups: in the first group,
neuronal spike activity was associated with specific phases of low
LFP frequencies, lower spike activity at high LFP frequencies, and a
stronger linear component in the spike-LFP model; in the second
group, neuronal spike activity was associated with larger amplitude of
high LFP frequencies, less frequent phase locking, and a stronger
nonlinear model component. Spike timing in the first group was better
predicted by the sign and level of the LFP preceding the spike,
whereas spike timing in the second group was better predicted by LFP
power during a certain time window before the spike.

electroencephalogram frequency ranges; nonlinear dynamic model

THE FOCUS OF IN VIVO, EXTRACELLULAR microelectrode recordings
from the cerebral cortex has traditionally been fast electrical
events, namely, single or multiple neuronal action potentials.
The physiological correlates of lower frequency components of
the extracellular potential, collectively called local field poten-
tial (LFP), are less clear. The LFP is thought to reflect post-
synaptic potentials (PSPs) (Mitzdorf 1985), as well as afterpo-
tentials and nonsynaptic membrane potential oscillations (Ka-
mondi et al. 1998). It has also been suggested that fast
components of the LFP may include contributions from action
potential waveforms of recorded cells (Gold et al. 2006).
Separating the various possible physiological correlates of

LFPs is not straightforward, because spike waveforms them-
selves include both high- and low-frequency components, and
PSPs are causally, albeit stochastically, related to neuronal
firing. Elucidating the relationship between LFPs and spike
timing has important implications for understanding and ana-
lyzing the integrative properties of cortical neurons in vivo, the
links between single-cell and network activity, and the orga-
nization of cortical circuits. It is also important in the study of
the physiological correlates of brain surface potentials recorded
in electrocorticography (ECoG) (Crone et al. 2006), since
ECoG is the surface manifestation of an LFP signal. Finally,
this relationship is relevant to the design and implementation of
LFP-based brain-machine interfaces (Andersen et al. 2004).

It is conceivable that those components of the extracellular
potential that reflect local synaptic activity would be causally
related to the output of the recorded neurons, i.e., action
potentials. In that case, one should be able to relate certain
features of the LFP to spike timing, with relatively high
temporal resolution, on a probabilistic, spike-by-spike basis. A
recent study (Rasch et al. 2008) showed that both LFP phase
and power, at different frequencies, are useful in predicting the
timing of action potentials recorded through the same electrode
in primary visual cortex (V1). However, spike waveforms from
the recorded cell contribute to the LFP across a range of
frequencies (Fig. 1). It is therefore unclear to what extent these
spike-predictive features represent input-related processes,
such as PSPs, versus spike-related “artifacts.” Moreover, V1,
as well as other primary sensory cortical areas, shows a strong
evoked response to sensory stimuli, and the LFP-spike rela-
tionships that have been described in such cortical areas
(Katzner et al. 2009; Rasch et al. 2008) may or may not apply
to association cortices, where there is virtually no evoked
component in the neural activity.

In this article we attempt to characterize the LFP compo-
nents that are causally associated with the occurrence of
individual spikes of cells recorded through the same electrodes
but are independent of the contribution of spike waveforms,
and through different electrodes in close vicinity, where the
LFP signal is free of spike contamination. We also describe
quantitatively the relationship between those LFP components
and spike timing in a way that provides insight into potential
mechanisms that relate them. Finally, we study this relation-
ship in the human temporal association cortex, an area related
to human cognitive functions, including language and declar-
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ative memory, for which there is no physiological theory
integrating single-cell and network function.

MATERIALS AND METHODS

Subject Demographics

Wide-band neural activity was recorded in patients undergoing
temporal resections for medically refractory epilepsy when, for clin-
ical reasons, the patient was awake under local anesthesia for a portion
of the operation (Ojemann and Schoenfield-McNeill 1999). A total of
14 subjects (6 female) and 69 single neurons were included in the
analysis. All subjects were right-handed and left-brain dominant for
language based on intracarotid amobarbital perfusion testing. Mean
age was 40 yr (range 25–60 yr). All but one subject had medically
refractory seizures, with a mean seizure onset at age 17 yr (range 3–40
yr, 3 subjects had onsets after age 20 yr). All subjects with seizures
had mesial temporal foci; four had mesial temporal sclerosis, and four
gliosis. The one subject without seizures had a medial temporal
benign lesion. Verbal intelligence quotient (VIQ) was available for
eight subjects. Mean VIQ was 86.5 (range 72–101). Nine operations
were on the left hemisphere and five on the right. The intraoperative
microelectrode recording studies and the procedures for obtaining
informed consent were approved by the University of Washington
Institutional Review Board.

Behavioral Tasks

In 12 of 14 subjects, 3 behavioral conditions comprised the task
used in this study: passive fixation, word identification (ID), and
paired associated learning (PA). A detailed description of the task
design is given in Ojemann et al. (2010). Briefly, during passive
fixation, subjects viewed a fixation cross in the center of the screen.
During the word ID task, subjects were instructed to silently read
single words. During the PA task, subjects were instructed to learn
a set of 15 semantically unrelated visually presented word pairs.
Presentation of the word pairs was done in two blocks. In each block,
the same 15 word pairs, randomly reordered, were presented over 21
s, for a total of 8 presentation cycles. In each cycle, each of the word
pairs was presented for 1 s, with a 0.43-s interstimulus interval. Each
of the two PA blocks was followed by a two-choice recognition task,
to determine whether the subjects were actually performing the silent
PA task. In the remaining two subjects, a semantic categorization task
was used. During that study, subjects were shown items as either color
pictures or words. Subjects were instructed to name objects in pictures
or read words aloud or to say “nothing” for unnameable items.

Recordings

The microelectrode LFP recordings were obtained after completion
of the surface recording and stimulation needed to plan the resection.

Fig. 1. Example of removal of spike wave-
forms from local field potentials (LFPs).
A: spike-triggered average of LFP before (blue
trace) and after (red trace) the removal of
spike waveforms. B: spike-triggered average
spectral contents of LFP before (left) and after
(right) the removal of spike waveforms. No-
tice that power of low-frequency components
(e.g., �20 Hz) has not been affected by the
spike removal process.
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At that time the subject was under local anesthesia, having awakened
from the propofol intravenous anesthesia used for placement of the
block and craniotomy at least an hour earlier. The sites of recording
were in temporal cortex that was free of interictal epileptiform
discharges based on ECoG. After the microelectrode recording, this
cortex was resected as part of the planned surgical resection to treat
the subject’s epilepsy. Other than avoiding recording from neurons
with evidence of injury or epileptiform burst activity (Calvin et al.
1973), we obtained recordings from an unselected random sample of
neurons at each recording site. The sites of these recordings were
identified by numbered tags whose location was recorded photograph-
ically. Location of recording sites was established by the relation to
the sulcal boundaries visible on those photographs (sylvian fissure,
superior temporal sulcus, middle-inferior temporal gyrus sulcus) and
by measurements from the recording site to the tip of the temporal
lobe. Depth of the recordings was measured from the pial surface.

Two commercial tungsten microelectrodes (40-�m diameter at the
shaft, sharpened to smaller tips) were back loaded through a translu-
cent 1-cm-diameter footplate into each of two hydraulic microdrives.
The footplate was used to dampen cortical pulsations. Care was taken
to avoid blanching pial vessels. Two microdrives placed in lateral
temporal cortex were used in all subjects. The vast majority of
penetrations were performed in the superior and middle temporal
gyrus. Once stable neuronal activity free from evidence of injury or
epileptiform burst activity was identified (Calvin et al. 1973), the
approximate cortical depth was registered and the behavioral task was
initiated. The two microelectrodes on each of the two microdrives
were moved separately, and in the vast majority of cases, both were
inside the cortex during the recordings. The vertical distance between
the two electrodes on each microdrive was registered in steps of 0.5
mm, whereas the horizontal distance was �1 mm, since both micro-
electrodes were loaded through the same 1-mm-diameter hole in the
footplate. In two cases, horizontal separation was greater, because the
two microelectrodes were not parallel.

The extracellular signal from each of the microelectrodes was
initially amplified and then split into a “single-unit channel” (pass
band 100–5,000 Hz) and an “LFP channel” (pass band 1–1,000 Hz).
Analog, 60-Hz notch filters were used for both single-unit and LFP
channels. All channels were digitized at a sampling rate of 10,000
samples per second (sps; or 4 ksps in 2 cases). In addition to the
analog-to-digital converter, the amplified single-unit channels were
routed to an oscilloscope and an audio device for real-time monitoring
of neuronal activity. A personal computer system stored digitized
signals, as well as timestamps and event codes of the presented
stimuli.

Pairing of Spike and LFP Recordings

All analyses on all spike/LFP recordings coming from the same
electrode (“single-electrode” recordings) were run twice, first on the
spike-waveform-inclusive LFP and second after spike waveforms
were subtracted from the LFP. A second round of analyses was
performed on “dual-electrode” recordings obtained from pairs of
nearby electrodes, loaded on the same microdrive, using spikes
recorded on one electrode and LFPs recorded on a second electrode.
In the dual-electrode cases, unit spikes, when present, were subtracted
from the LFP signal before the analysis, to avoid fitting the model to
spike waveforms, in addition to fitting the LFP signal.

Preprocessing of Signals

Off-line spike detection and sorting were performed manually
using methodology developed by Quiroga et al. (2004). Signal-to-
noise ratios (SNR) were computed for each unit, defined as the
peak-to-trough voltage of the mean spike waveform divided by twice
the deviation of all spike waveforms from the mean spike waveform
(Kelly et al. 2007). Only units with SNRs of 2.5 or higher were

included in the analysis. In addition, only recordings with at least 500
total spikes were included. Sixty-hertz noise and its harmonics were
removed using third-order two-pass elliptical band-stop digital filter-
ing.

Waveforms of individual spikes were suppressed in the original
LFP signal by subtracting the spike-triggered average of the LFP,
appropriately scaled and offset-corrected around each of the spike
times. This ensured that ongoing LFP modulations that occurred
during spikes were not altered by the spike removal process. The
scaling factor for each removed spike waveform was computed as
the inner product of the LFP portion that flanked that spike and the
spike-triggered LFP average (LFPspike) for all spikes of that unit,
as shown below:

LFPnew � LFPold � c · mean�sw�
where c � LFPspike·mean{sw}, and mean{sw} is the mean unit spike
waveform as returned by the spike-sorting algorithm.

Figure 1 shows an example of removal of spike waveforms from
the LFP waveforms. This spike removal method is conceptually
similar to one recently reported by one of the authors (Zanos et al.
2011); in fact, the latter reduces to the former in the case of nonover-
lapping spikes, as was the case with the data in our study. The
currently used method was adopted because it significantly reduced
computational time. Both of the two methods were tried in a subset of
our recordings (30 of 69 cell recordings). After spike removal,
10-ms-long segments of spike-free LFPs around spikes were used to
compile spike-triggered LFP averages (STAs). For each of the 30
recordings, STAs from the two methods were then cross-correlated.
Mean correlation coefficient (CC) was 0.9503 (range 0.91–0.98).
Because CCs were computed only over very short segments around
spike, their high values suggest that spike removal with the two
methods is essentially identical.

Filtered versions of the LFP were produced by applying third-order
two-pass elliptical bandpass digital filters at the following ranges:
4–8, 8–14, 14–30, 30–60, and 80–150 Hz. Artifact-free portions of
the recording were concatenated into two data vectors, one with LFP
and one with spike times, spanning the entire behavioral block.
Half-second zero-padding between concatenated segments was done
to avoid biases in the Volterra kernels estimation introduced by
discontinuities of the concatenated signal. The length of the zero-
padded segment was chosen to match the duration of the memory
(length) of the kernels, which was initially set to 500 ms.

Modeling Methodology

The LFP-spike timing relationship was modeled using the Volterra
method. This method is described in detail in Marmarelis (2004) and
Zanos et al. (2008). Briefly, to compute up to second-order Volterra
kernels for our continuous input–binary output model, the filtered
versions of the LFP were used as the input and the simultaneously
recorded spike trains (binary sequences), on the same or on a nearby
electrode, were used as the output. This single-input/single-output
Volterra model is expressed by the following set of equations:

u�n� � k0 � �m�0
M�1 k1�m�s�n � m�

� �m1�0
M�1 �m2�0

M�1 k2�m1,m2�s�n � m1�s�n � m2�
(1)

with

k1�m� � �
l�0

L�1

cl
�1�L1�m� k2�m1 � m2� � �

l1�0

L�1

�
l1�0

L�1

cl1l2
�2�Ll1�m1�Ll2�m2�

r�n� � TT�u� TT �u� � �1 if u��p

0 otherwise

where {k0, k1, k2} represents the zero-, first-, and second-order
Volterra kernels, M denotes the memory of the model, s(n)
denotes the input (LFP), and r(n) denotes the output (spike
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train). It should be noted that these Volterra models are causal
in the sense that each output sample is dependent solely on
preceding input samples. Given a pair of input and output data
sets, the Volterra kernels of the model can be estimated by
expanding the kernels to Laguerre basis functions and by
performing least-squares estimation of the Laguerre expansion
coefficients (Marmarelis 1993). The lth-order Laguerre func-
tion is mathematically expressed as

Ll�m� � �
m�1

2 �1 � ��
1
2 �

k�0

l

��1�k	n

k 
	1

k 
��l�k��1 � ��k

(2)

where � is the decay factor, also referred to as the “Laguerre pole”
(0 � � � 1), and m is the mth lag. The estimation method minimizes
the mean-square error of the continuous model prediction, denoted by
up(n) in the model of Eq. 1, relative to the point-process output yp(n),
without involving the trigger threshold (TT) operator or estimating the
threshold �p. The estimated Laguerre expansion coefficients are used
to reconstruct the estimates of the Volterra kernels. Six Laguerre
expansion functions are used to estimate the Volterra kernels while
the memory M of the model is selected at 125 ms. The estimation is
performed using only one-quarter of the total input and output data,
leaving the rest for validation purposes. Selection of the optimal alpha
parameter of the Laguerre functions is based on the optimal in-sample
model prediction. Considerable advantages in terms of estimation
accuracy, input-output data requirements, and model complexity re-
sult from this significant reduction in the number of estimated values
and model compactness (Marmarelis 1993; Zanos et al. 2008). Fi-
nally, a threshold is applied on the output of the kernel subsystem
through a triggering threshold function that provides the predicted
binary output r(n). The threshold value is selected based on the true
positive fraction (TPF) and false positive fraction (FPF) values,
described below.

The constructed model is evaluated using the TPF and FPF values.
A spike predicted by the model is termed a “true positive” (TP) if it
coincides with an actual output spike (at the given sampling temporal
resolution); otherwise it is termed a “false positive” (FP). Since the
model prediction depends on the threshold value �p of the TT operator
(which is not estimated through the Laguerre expansion method that
is used for kernel estimation), various values of the threshold are
applied on the continuous model prediction u(n), and the quantities of
TPF and FPF are computed for each value of the threshold according
to the equations

TPF �
number of TP

number of actual output spikes

FPF �
number of FP

number of non spike events
(3)

When we plot the FPF value on the abscissa and the TPF value on
the ordinate for each threshold value, we obtain the receiver operating
characteristic (ROC) curve, a tool for assessing the performance of
detection systems in the presence of noise. The ROC curve is a
graphical representation of the competitive relation between sensitiv-
ity (TPF) and specificity (1 � FPF) of a binary detection/classifier as
its detection threshold is varied. Selection of optimal threshold is
based on the highest TPF value with a FPF value that does not exceed
0.005 (0.5%).

Interpretation of Kernel Shapes

The linear aspects of the system are captured by the first-order
kernel, whose values at various time lags represent the effect of input
at each lag to the output. Positive values in the first-order kernel
denote a facilitatory effect of positive-valued inputs, whereas negative

values represent a depressive effect of positive-valued inputs. Since
only positive-valued outputs can cross the threshold to produce
predicted spikes, positive values in the first-order kernel would exert
a suppressive effect on negative-valued inputs. First-order kernels
computed from these recordings show a negative phase that starts at
3–4 ms before the spike and extends to 7–15 ms before the spike (see
Fig. 10, top panels).

The nonlinear aspects of the transformation are captured by the
second-order kernel (see Fig. 10, bottom panels). The second-order
kernel is symmetric with respect to the diagonal: the effect of lags (t1,
t2) is the same as the effect of (t2, t1) because multiplication is
commutative. The diagonal values of the second-order kernel reflect
the response of the system to the power of the input signal, because
they capture the effect of the squared values of the input at each time
lag. Off-diagonal values respond to modulations at specific frequen-
cies and the specific timing on which these frequencies occur. For
example, a positive peak at lags (t1, t2) where t2 � t1 will have a
facilitatory effect to the presence of an oscillation with a period of
t2 � t1, happening at a lag of t1.

Model Statistics

To establish the statistical significance of each estimated Volterra
model (as the quantitative representation of a causal link between the
inputs and the output) in the presence of noise or other sources of
stochastic variability in the data, we utilized the Mann-Whitney
two-sample statistic (MWS) (Zanos et al. 2008) that relates to the area
under the curve (AUC) value of the ROC curve and can be used to test
statistically whether a specific model is better than another as a binary
predictor. The MWS represents the probability � that a randomly
selected sample Xi from the intermediate variable, up(n), that corre-
sponds to zero output will be less than (or equal to) a randomly
selected sample Yi from the values of up(n) that correspond to spikes
in the output. Essentially, the MWS represents how well these two
random variables, Xi and Yi, are separated. It has been shown that the
area under the ROC curve (calculated using the trapezoidal rule) is
equivalent to the MWS (Hoeffding 1948). The unbiased estimate of
the MWS is the average of the samples �:

	�Xi, Yi� � �1 Y 
 X

0 Y � X
(4)

formed by all possible pair combinations of the two sets of samples Xi

and Yi in the data record. The MWS is a U-statistic, and according to
the theory developed by Hoeffding for U-statistics (Hoeffding 1948),
it follows an asymptotically normal distribution with unbiased esti-
mates of its mean and variance calculated from the data. The statistical
significance of an estimated model can be thus tested against the null
hypothesis of a random predictor (i.e., no causal input-output rela-
tionship).

We tested the significance of a computed model against the null
hypothesis by establishing a 95% statistical significance threshold
through Monte Carlo runs. To establish this threshold in the case of
modeling the LFP-spikes relationship, we created surrogate data from
the LFP signal after the spike removal process by using the Hilbert
transform and shuffling the instantaneous phase of the signal while
keeping the frequency content of the signal intact. The surrogate
signal was then reconstructed by the inverse Hilbert transform. On this
signal we added spike waveforms at the same times they were
originally present and then performed the spike removal process, as
described previously. The purpose of adding and removing spikes on
the surrogate signal was to account for any potential artificial “signa-
ture” that may have been introduced by the spike removal process on
the LFP itself. In the analysis of LFPs from which spike waveforms
were not removed, the addition and subsequent removal of spikes was
omitted. For each surrogate signal, we compute the corresponding
Volterra model and calculate the MWS � estimate. The “cutoff” value
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of the MWS is established at the 95% significance level that serves as
the threshold for the � estimate obtained from the actual data. The
computed model is accepted as statistically significant at the 95%
level when the model’s � estimate is higher than the respective cutoff
value.

Spike-LFP Phase and Amplitude Distributions

To test whether spikes preferred certain phases or amplitudes of
the LFP, the instantaneous phase and amplitude of the LFP at 35
different frequencies (4 to 150 Hz) were first calculated, using the
Hilbert transform on different filtered versions of every LFP re-
cording. A single phase and amplitude value for each frequency
was then assigned to each spike in that recording. By convention,
a phase value of 0 deg corresponded to the trough of the cycle
(depolarization). Amplitude values were normalized by the maxi-
mum for each recording, after outliers (�3 times the standard
deviation of the distribution of amplitude values) were removed.
Histograms of the distributions of spike phase and amplitude for
different LFP frequencies across all spikes in many cases were
finally compiled; we used 50 phase bins, ranging from 0 to 360
deg, and 100 amplitude bins, ranging from 0 to 100% of maximum
amplitude. Histogram values were finally normalized by the cor-
responding histogram values expected by chance. Those “chance
level histograms” were calculated by running the previous analysis
steps for each recording, this time with a randomly generated spike
train of 10,000 spikes, and the original LFP.

The uniformity of the distribution of spike phase values at the
selected frequency ranges (4–8, 8–14, 14–30, 30–60, and 80–150
Hz) was assessed for every case, using the Rayleigh statistical test,
corrected for the number of frequency ranges. A cell was considered
phase-locked at a specific frequency range if the null hypothesis of
uniformity of the phase distribution could be rejected at a corrected
P � 0.01.

Spike-Field Coherence

To further quantify the tendency of spiking to occur in certain
phases of the LFP at different frequencies, we calculated the spike-
field coherence (SFC), as the power spectrum of the STA, divided
pointwise by the sum of the power spectra of all LFP segments used
to compute the STA (Fries et al. 2001). SFC ranges between 0 and 1;
a value of 1 at a given frequency means that all spikes occur at the
same phase for that frequency, whereas a value of 0 means that there
is no preferred phase in that frequency.

Other Statistical Tests

Differences in TPFs between different subsets of cases analyzed
(based on the anatomic location of cells or different behavioral
conditions during which recordings were made) were tested for
significance with the Pearson’s �2 test. Differences in various features
of the recordings (cell firing rate, SNR of spike waveforms, SFC, etc.)
between cell groups were tested for significance with the Student’s
t-test.

To test for the presence of two separate groups of cases, in terms
of TPFs at low and high LFP frequencies (TPFlow and TPFhigh), the
differences TPFhigh � TPFlow divided by the square root of 2 were
first calculated, corresponding to the distances of points from the line
of identity in the TPFhigh vs. TPFlow scatter plot. These differences
quantify the departure of model performance from that of a model
performing equally well at both low and high LFP frequencies. These
distances were then fitted by a Gaussian mixture model, first with one
component (unimodal distribution) and then with two components
(bimodal distribution). The model with the higher Akaike and Bayes
information criteria (AIC and BIC, respectively) was taken to better
describe the distribution of distances from identity line. In addition to

TPFs at high and low frequencies, the same procedure was followed
for the contribution of the second-order kernel at high and low
frequencies.

RESULTS

Removal of Spike Waveforms From LFPs

Action potential waveforms were suppressed in the LFP
recordings, as illustrated in Fig. 1. The SNR of spike-triggered
LFPs before and after the removal procedure confirmed that the
latter was effective (mean SNR before removal: 2.41; after
removal: 0.0461). Spike removal from the LFP had significant
effects on the LFP phase and amplitude preference of spikes,
e.g., at what LFP phases and amplitudes spikes tended to occur.
Before spike removal, more spikes tended to occur at the
ascending limb of the high-frequency (�50 Hz) cycle and less
during the descending limb (Fig. 2A, top). After spike removal,
that pattern was not seen any more (Fig. 2A, bottom). Spike
removal had an effect on the LFP amplitude preference of
spiking, as well. Whereas no clear pattern was seen before the
spike removal (Fig. 2B, top), many spikes tended to occur at
intermediate amplitudes of spike-free, 15–50 Hz LFPs (Fig.
2B, bottom).

Model Performance

Single-electrode recordings. There were 69 same-electrode
single-unit/LFP recordings. The model was successful at pre-
dicting the timing of a significant number of spikes in 56 cases
(henceforth termed “significant cases”) when spike waveforms
had not been subtracted from the LFP and in 25 cases when
spike waveforms had been removed. There was no effect of the
anatomic site of the recording [left or right hemisphere, supe-
rior or middle temporal gyrus, superficial (�1.5 mm depth) or
deep cortical layer] on whether a case was significant or not [P
value was not significant (NS) for all comparisons]. In addi-
tion, there were no differences between significant and non-
significant cases in spike waveform SNR, SNR of the spike-
triggered average of the LFP before the spike removal (P � NS
for all comparisons). Even though SNRs of spike-triggered
LFPs after the spike removal were very low (�0.05), we tested
whether small remnants of spikes could explain the perfor-
mance of the models in the spike-free cases. SNRs for nonsig-
nificant cases were no different from those for the significant
cases (0.0453 vs. 0.04691, respectively; P � NS). In addition,
in significant cases, model prediction rates were not correlated
with SNR after spike removal (r � 0.02; P � NS). Average
firing rate was significantly higher among significant cases (6.4
vs. 4.1 spikes/s, P � 0.01). Significant cases had greater
average SFC values at the LFP frequency ranges of 4–8 and
10–14 Hz than nonsignificant cases (0.066 and 0.039 vs. 0.034
and 0.019, respectively, P � 0.01 for both comparisons).
Average SFC values at high frequencies (�60 Hz) were not
significantly different between significant and nonsignificant
cases.

In significant single-electrode cases, the percentage of
spikes whose timing was correctly predicted within 1 ms
(henceforth termed TPF) ranged from 5% to 93% in the
analysis of spike-inclusive LFPs and from 7% to 49% in the
analysis of spike-free LFPs. In the rest of the cases, the model
did not statistically outperform a random predictor, which
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had a chance-level performance of 1.3–1.9%. Note that in
all cases, both significant and nonsignificant, the FPF was,
by requirement of the model construction method, below
0.5%.

Dual-electrode recordings. There were a total of 38 dual-
electrode recordings, where a second electrode was present in
close proximity of the electrode recording unit activity. In
those cases, the model related spiking activity on one electrode
with LFP on the second electrode.

The average vertical distance between the tips of the two
electrodes was 1.1 mm (range 0.5–3 mm); in 34 cases, tip
distance was between 1.0 and 1.5 mm (only 5 with a distance
of 0.5 mm, 1 with a distance of 3 mm). Of the 38 cases, there
were 28 where models predicted the timing of a significant
fraction of spikes; 22 of those 28 were “significant” in the
single-electrode spike-LFP analysis, as well. In all signifi-
cant cases, vertical distance of the electrode tips was 
1.5
mm. As with the significant single-electrode cases, signifi-
cant dual-electrode cases had greater average SFC values at
the frequency ranges of 4 – 8 and 10 –14 Hz than nonsignif-
icant cases (0.052 and 0.031 vs. 0.019 and 0.011, respec-
tively, P � 0.01 for both comparisons); there was no dif-
ference in SFC at high frequencies.

In significant dual-electrode cases, TPFs ranged between
3.2% and 28%. Low-frequency LFPs (4 –14 Hz) were pre-
dictive of spike timing in 26 cases, medium-frequency LFPs
(14 –30 Hz) in 8 cases, and high-frequency LFPs (�30 Hz)
in 4 cases. In each of the 28 total significant cases, the TPF
was typically smaller than the corresponding single-
electrode case. The average change in TPF was different for
the different LFP frequency ranges used to construct the
model: smaller drop for LFP frequencies 4 – 8 Hz and
greater drop for LFP frequencies 80 –100 Hz (P � 0.001),
shown in Fig. 3 (dark gray bars).

Prediction of Spike Timing From LFPs

LFPs of different frequencies were predictive of spike tim-
ing in different recordings. Two examples of the “real-time”
performance of the model on a portion of two spike-free
recordings are shown in Figs. 4 and 5. In the first case,
high-frequency LFP (80–150 Hz) is more predictive (Fig. 4),
and the continuous model output (Fig. 4E) seems to be inde-
pendent of the sign of changes in the LFP input (Fig. 4D). In
this case, the linear term of the model has a weak contribution,
because 87% of the predicted spikes would have been missed
had the second-order kernel not been used. In the second case,
low-frequency LFP (8–14 Hz) is more predictive (Fig. 5), and
the model output (Fig. 5E) seems to follow the oscillatory
changes in the LFP input (Fig. 5D): it peaks a little after the
trough of the LFP oscillation, at a time when most spikes tend
to occur. In this case, the linear term is much stronger, with
only 16% contribution from the second-order kernel. This cell
also shows phase-locking at the same, low-frequency, range.

Fig. 2. Preference of spiking activity for particular LFP phases and amplitudes
at various LFP frequencies, before and after the removal of spike waveforms
from the LFP recordings, in a total of 69 single-neuron/LFP recordings.
A: probability of spiking, relative to that expected by chance, as a function of
LFP phase at a particular frequency (abscissa) at different LFP frequencies
(ordinate). By convention, a phase value of 0 corresponds to the trough of the
cycle (electrode potential more negative), and a value of 180 corresponds to the
positive peak (electrode potential more positive). Top: before the removal of
spike waveforms from LFPs. Bottom: after the removal of spike waveforms
from LFPs. Tip of arrow points to the peak of the distribution at �220 deg at
70 Hz. B: probability of spiking, relative to that expected by chance, as a
function of LFP amplitude, expressed as a percentage of maximum LFP
amplitude at a particular frequency (abscissa), at different LFP frequencies
(ordinate). Top: before the removal of spike waveforms. Bottom: after the
removal of spike waveforms. Tip of arrow points to the peak of the distribution
at �30% of maximum LFP amplitude at 40 Hz. The apparent discontinuities
in some of the images at around 60 Hz is due to the omission from the plots
of frequencies between 55 and 65 Hz.
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Model Performance and Behavior

Subjects did indeed perform the task they were asked, since
they correctly recognized the correct second word on an
average of 79% of the PA items presented (P � 0.05 different
from chance). No particular behavioral condition, among those
subjects were tested on, was associated with a higher number
or higher performance, as quantified by the TPF, of significant
LFP-spike timing predictive models. Of the 24 recordings from
which, after spike removal, predictive LFP-spike timing mod-
els were computed, the isolated cell was stable for at least two
consecutive behavioral blocks (in terms of spike waveform
shape, interspike interval histogram shape, and average firing
rate) in 7. In most cases, (6 of 7), there was no significant
change in the performance of the model between the two
behavioral blocks, for all the LFP frequency ranges for which
models were computed. For example, the difference in the TPF
between the two behavioral conditions was, on average, less
than 5% of the TPF of the first condition. Thus, when a given
LFP frequency range was predictive of spike timing in the first
behavioral block, the same frequency range was equally pre-
dictive in the second behavioral block. The same was true for
frequency ranges that, in these same recordings, were not
predictive of spike timing.

LFP Frequencies Predicting Spike Timing

Typically, successful models were computed on more than
one LFP frequency range for each case. No single frequency
range was associated with a larger number of significant cases.
However, in significant cases, the average TPF was signifi-
cantly higher for higher (80–100 Hz) LFP frequencies (33.5%
and 15.2% for spike-inclusive and spike-free LFPs, respec-

tively) than for lower (4–8 Hz) LFP frequencies (8.7% and
9.2%, respectively) (Table 1).

Significant cases formed two groups (Fig. 6A): 1) the 14
so-called “high-frequency (HF) cases” had large TPFs for high
LFP frequencies (80–150 Hz) and small TPFs for low LFP
frequencies (4–14 Hz), and 2) the 10 “low-frequency (LF)
cases” had large TPFs for low LFP frequencies and small, or
frequently nonsignificant, TPFs for high LFP frequencies.
Power spectra of individual LFP recordings did not show
differences in the frequencies between 4 and 150 Hz that could
explain the clustering of cells into these two groups. The
distribution of the difference in TPFs at low and high LFP
frequencies for all significant cases (Fig. 6A) was better fitted
by a bimodal, rather than a unimodal, Gaussian mixtures
model. Unimodal and bimodal Akaike (uAIC, bAIC) informa-
tion criteria were 199 and 193, respectively; unimodal and
bimodal Bays criteria (uBIC, bBIC) were 205 and 194, respec-
tively. The difference uAIC � bAIC (199 � 193 � 6) agrees
with the rule of thumb that a model with AIC greater than 4
more than that of the model with the minimum AIC (consid-
ered the “best” model, the bimodal model in our case) is
considerably less likely to be as good of a fit (Akaike 1980).
Similarly, the Bays criteria favor the binomial model as a better
fit (Schwarz 1978).

The contribution of the second-order (nonlinear) model term
to the prediction performance followed a similar pattern: HF
cases were associated with large contributions from the
second-order kernel, and LF cases with small contributions
from the second-order kernel (uAIC, 187; bAIC, 193; uBIC,
193; bBIC, 203). In addition, spikes from LF cases were
more likely to have an LFP phase preference than spikes
from HF cases; likewise, the contribution of the second-
order kernel to the model performance was inversely pro-
portional to the probability of phase locking to any LFP
frequency range (Fig. 6B and Table 1, last column). Overall,
among LF cases, there were more spikes with preferred LFP
phases at lower frequencies than among HF cases (Fig. 7A).
In LF cases, spikes tended to occur during times when
high-frequency LFPs (�50 Hz) had low amplitude (Fig. 7B,
top); in HF cases, spikes tended to occur when high-
frequency LFPs had high amplitude (Fig. 7B, bottom). SFC
values were different for the two groups. The LF cases had
overall higher SFC values at low frequencies (4 –10 Hz, P �
0.001), whereas at high frequencies (80 –100 Hz), no sig-
nificant difference between LF and HF cases was found
(P � 0.18) (Fig. 8). In either group, SFC at low frequencies
was higher than that at high frequencies (P � 0.001 in both
cases).

The change in TPF between a single-electrode model and
the corresponding dual-electrode model (same unit, LFP on
neighboring electrode) was different for the two cell groups.
In the LF group, there was practically no change in the TPF
between the single- and the dual-electrode models for low
LFP frequencies (4 –14 Hz, P � 0.19) and moderate changes
for high LFP frequencies (P � 0.04 for 14 –30 Hz, P � 0.01
for 30 – 80 Hz, P � 0.01 for 80 –100 Hz) (Fig. 3, medium
gray bars). In contrast, in the HF group, TPFs in dual-
electrode models were significantly lower than in single-
electrode models at all LFP frequency ranges except 4 – 8
Hz, in which TPFs were very low to begin with (P � 0.14

Fig. 3. Change in the performance of the spike-LFP models between
single-electrode cases (unit activity and LFPs recorded on the same elec-
trode) and the corresponding dual-electrode cases (same units, LFPs re-
corded on a neighboring electrode) for models computed from various LFP
frequencies (4 – 8, 8 –14, 14 –30, 30 – 80, and 80 –100 Hz) and for 3 differ-
ent cell groups [all cells, low-frequency-responsive (LF) cells, and high-
frequency-responsive (HF) cells]. Performance is expressed as true positive
fraction (TPF; the percentage of spikes whose timing is correctly predicted
by the model). Change in performance is expressed as the TPF in a
dual-electrode case minus the TPF in the corresponding single-electrode
case. Histogram bars indicate average TPF changes; error bars indicate
standard mean errors.
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for 4 – 8 Hz, P � 0.03 for 8 –14 Hz, P � 0.01 for 30 – 80 and
80 –100 Hz) (Fig. 3, light gray bars).

We also looked for other differences between the two cell
groups. There were no systematic differences in terms of spike
waveform peak-to-trough amplitude or duration, interspike
interval histogram type (phasic or tonic), or rhythmicity of
firing, as assessed through autocorrelograms of the spike trains.
There were, however, significant differences in the mean firing
rates of the two cell groups in relation to the two behavioral

tasks (ID and PA). Overall, LF cells were associated with
lower overall firing rates than HF cells (7.2 vs. 16.75 Hz,
respectively, P � 0.01). LF cells fired at higher rates during ID
than during PA (P � 0.01), whereas HF cells were more active
during the PA task (P � 0.01) (Fig. 9). That was true for mean
firing rates across all cells in each group, as well as on a
cell-by-cell basis; the ratio of the mean firing rate of a cell
during ID to the mean firing rate of that cell during PA was
1.0566 � 0.32 for LF cells and 0.6728 � 0.11 for HF cells.

Fig. 4. Representative example of the perfor-
mance of the model on a portion of a record-
ing where high-frequency LFP (80–150 Hz)
was predictive of spike timing. This recording
was performed during a paired-associate
learning task, 5 min after the beginning of the
task. The TPF for this case was 27.8% (mean
TPF for high-frequency LFP was 24.6%), the
second-order contribution was 67% (mean
second-order contribution was 76.7%), and
the cell was not phase-locked at either low or
high frequencies (only 9 of 60 cells were
phase-locked to high-frequency LFPs). A: raw
LFP signal, including several action poten-
tials. B: superimposed waveforms of the iso-
lated single-unit spikes from the recording
portion shown. Vertical dotted lines denote
the peaks of the spikes. C: LFP signal after
removal of spikes. D: filtered version of
signal shown in C, used as input to the
model. E: continuous model output, calculated
by the convolution of the input signal in D and
the computed kernels. Horizontal dotted line
represents the model trigger threshold. F: pre-
dicted spike train. G: actual spike train.

Fig. 5. Representative example of the perfor-
mance of the model on a portion of a record-
ing where low-frequency LFP (8–14 Hz) was
predictive of spike timing. This recording
was performed during an identification task, 7
min after the beginning of the task. The TPF
for this case was 14% (mean TPF for low-
frequency LFP was 19.2%), the second-order
contribution was 44% (mean second-order
contribution was 29.4%), and the cell was
phase-locked to the ascending phase of the
8–14 Hz LFP oscillation, after the trough (22
of 55 cells were phase-locked to low-fre-
quency LFPs). A–G follow the same conven-
tions as described in Fig. 4. Note that the
continuous model output (E) peaks at the
trough of the 8–14 Hz LFP oscillation, where
spikes tend to occur.
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Firing rates were calculated during the second that followed the
cue for the execution of the behavioral task.

Kernel Shapes

Volterra models provide a characterization of the quantita-
tive temporal relationship between input and output. This
relationship can be represented graphically by the kernel
shapes (Fig. 10), which are convolved with the input to provide
the desired output. The effective memory of both first- and
second-order kernels was 20 ms, beyond which time they
converged to zero: LFPs more than 20 ms before the spike had
no effect on spike timing.

The linear aspects of the system are captured by the first-
order kernel, whose values at various time lags represent the
effect of the input at each lag to the output. First-order kernels
computed from these recordings show a negative phase that
starts at 3–4 ms before the spike and extends to 7–15 ms before
the spike (Fig. 10, A and B, top). The nonlinear aspects of the
transformation are captured by the second-order kernel. Sig-
nificant second-order effects at lags beyond 3–4 ms before the
spike showed up only in the case of 80–100 Hz LFP input (Fig.
10A, bottom), where two major components are seen: high
positive diagonal values of the kernel at a lag between 7 and 11
ms, and a positive-valued kernel component at the combination
of lags 3 and 9–12 ms before the spike. These two components
of the second-order kernel represent the combined facilitatory
effect of a full 80–100 Hz oscillatory cycle in the LFP
preceding a spike and of increased power in the same fre-
quency range, occurring at the same time.

DISCUSSION

LFPs have been considered as indicators of the overall
synaptic input to a cortical area, in terms of excitatory and
inhibitory PSPs, from both distant and local sources, as well as
voltage-dependent membrane oscillations, afterpotentials, ac-
tive dendritic phenomena, etc. (Buzsaki et al. 2003; Einevoll et
al. 2007; Kamondi et al. 1998; Katzner et al. 2009; Mitzdorf
1985). Intracellular recordings have shown that both low-
frequency (Steriade 2004) and high-frequency (Penttonen et al.
1998) LFP modulations are closely associated with postsynap-
tic potentials. In addition, several studies in different cortical
areas have documented the association of spiking activity with
specific phases of ongoing LFP modulations at different fre-
quencies (Feldman 1984; Jacobs et al. 2007; O’Keefe and
Recce 1993). These findings suggest that LFPs should bear
features that are predictive of the timing of single-unit spikes.
Indeed, Rasch et al. (2008) showed that for spike-containing
LFPs in the primary visual cortex, phase in low frequencies
and power in higher frequencies tended to be predictive of the
timing of some spikes recorded through the same electrodes.

First, we wanted to examine whether such a relationship
between LFPs and spikes could be found in recordings from
human temporal cortex. We also wanted to correct for two
confounding effects of spike waveforms: first on high-fre-
quency LFPs, due to the spectral overlap between the two
signals, and second on the LFP-phase distribution of spikes,
due to the artifactual increase in SFC from the relatively
low-frequency components of action potential waveforms
(Baker et al. 2003; Zanos et al. 2011). In our data set, spike
waveforms did indeed affect the LFP-spike relationship, bothT
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spike-preferred LFP phases and amplitudes (Fig. 2). Statisti-
cally significant spike timing predictions were made in 81% of
cases with spike-inclusive LFPs, with an average TPF of 33.5% at
high LFP frequencies (80–150 Hz), and in 39% of cases with
spike-free LFPs, with an average TPF of 15.2% (Table 1).
These findings suggest that although spike waveforms them-
selves contribute significantly to high LFP frequencies, a
considerable portion of both high- and low-frequency LFP is
generated by other mechanisms and contains information that
can predict the timing of a significant portion of those spikes.
For these reasons, spike signatures were removed from LFP
recorded on the same electrode, before the causal LFP-spike
timing models were computed. Causal models between unit
activity on one electrode and LFP on a neighboring electrode
were also computed; in the last case, spike contamination of
LFP was not an issue.

The fact that predictive models were obtained in only a
subset of the recordings suggests that, at least in the temporal
cortex of awake humans, not all LFPs contain information
about the timing of single-unit activity recorded through the
same electrode. This is consistent with the findings of Ray et al.
(2008), who found that even though firing rate and high-
frequency LFP power were closely matched when averaged
over the entire population of recordings, the correlations were
very poor on a trial-by-trial basis (for a more detailed discus-

Fig. 6. A: TPF rates (predicted spikes as a percentage of actual spikes) at high
(80–150 Hz)- vs. low (8–14 Hz)-frequency spike-free LFPs in cases where the
model performance was significantly better than a random predictor. Each case
is represented by a point; for points lying below the line of identity, the model
performance at low frequencies is higher than that at high frequencies (14
cases in total), and vice versa for points above the line of identity (10 cases in
total). B: average second-order contribution to the computed models across all
recordings (solid line) and percentage of phase-locked cells among all cells
entered in the analyses (dashed line) at different LFP frequency ranges.

Fig. 7. Distributions of spike-free LFP phases (A) and amplitudes (B) associ-
ated with spiking activity in those cases where low-frequency LFPs were
predictive of spike timing (top panels, total of 14 cases) and in those cases
where high-frequency LFPs were predictive of spike timing (bottom panels,
total of 10 cases). Figure conventions are the same as described in Fig. 2. As
with Fig. 2, discontinuities in some of the images are due to omission from the
plots of frequencies around 60 Hz.
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sion, see Zanos 2009). If LFPs do capture averaged synaptic
and spiking activity in a small volume of cortical tissue
(Katzner et al. 2009), the activity of some cells in that region
would be expected to be less “congruent” with the activity of
the local population on average.

The relatively low numbers of correctly predicted spikes in
low frequencies (Table 1) reflect the loose phase locking of
spikes to specific phases of the LFP oscillations, as described
by Jacobs et al. (2007) and confirmed in our recordings. The
seemingly small proportion of correctly predicted spikes from
high LFP frequencies, especially after the removal of spike
waveforms, is understandable in light of the high degree of
accuracy imposed in the model (1 ms) and the sparse neuronal
discharge in human temporal cortex. Since LFPs represent a
mixture of multiple local processes, one would expect a sig-
nificant source of variance to be unrelated to the firing of the
recorded cell.

In a number of dual-electrode cases, models capable of
predicting timing of unit activity on one electrode from LFP
recorded on another nearby electrode were computed. Their
performance was inferior to that of the corresponding single-

Fig. 8. Spike-field coherence values at 2 different frequency ranges (4–10 and
80–100 Hz) for cells responding to low-frequency LFP (LF cases) and for cells
responding to high-frequency LFP (HF cases). Each dot represents 1 recording
of unit activity and LFP on the same electrode.

Fig. 9. Mean firing rates (MFR; � standard mean errors) of the 2 groups of
cells (LF and HF) for the 2 different behavioral events: paired associate (PA)
and object identification (ID).

Fig. 10. First- (top panels) and second-order (bottom panels) kernels for 2 cases
where LFP at different frequencies was predictive of spike timing. A: a case
where LFP at the range of 80–200 Hz was predictive. B: a case where LFP at
4–8 Hz was predictive. In both cases, time 0 corresponds to the occurrence of
the spike, and after that the time axis extends in the past (e.g., time 10 ms
corresponds to 10 ms before the occurrence of the spike). Note that both first-
and second-order kernels include positive and negative values.
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electrode cases, especially at higher LFP frequencies (Fig. 3).
This is not unexpected, given the relatively large distances
between the two recording electrodes (average vertical distance
1.1 mm), which are significantly larger than the �250 �m that
the LFP signal is thought to spread (Katzner et al. 2009) . On
the other hand, performance of dual-electrode models with
lower frequency LFPs is less suppressed, which could be due
to the spatial scale of lower frequencies being much larger and,
therefore, low-frequency LFPs being more redundant (Steriade
2004).

The non-zero prediction capacity of models computed from
dual-electrode recordings indicates that these models capture
causal relationships between LFPs and spike timing, because
the potential confounding effect of remnants of spike wave-
forms in the LFP signal is absent. The performance of those
models drops to chance levels with increasing LFP frequency
� 80 Hz (Fig. 3). That would agree with a gradually decreasing
volume of the effect of the LFP on the spiking of neighboring
cells with increasing frequency (Destexhe et al. 1999). In that
model, a single-electrode recording simply represents the ex-
treme case when even higher frequency LFPs exert an effect on
spiking of cells in their immediate vicinity. Whether this model
is correct or the performance of single-electrode models is a
result of remnants of spike waveforms ultimately depends on
how convincing the results of the spike removal process are.
Despite the many controls we performed, described above in
“Model Performance,” there is no definitive method for quan-
tifying how complete spike removal is.

For the seven cells that were recorded for at least two
different behavioral blocks, the computed models performed at
virtually the same levels for the different behavioral condi-
tions. This means that, at least in those cases, different behav-
iors were associated with a stable LFP-spike timing relation-
ship. It should be noted, however, that in temporal association
cortex, changes in neuronal firing rates and LFP power with
different behavioral conditions are modest (Ojemann 2003),
and therefore, a stable spike-field relationship may be reflect-
ing that fact.

We also examined the dependence of spike timing on LFP
modulations at five different frequency ranges (4–8, 8–14,
14–30, 30–60, and 80–150 Hz). The selection of those ranges
was based on the rationale that they reflect different functional
and anatomic properties of the underlying neural systems
(Buzsaki and Draguhn 2004). We found that significant cases
generally fell into one of two groups. In one group, lower LFP
frequencies (�14 Hz) were more predictive of spike timing,
whereas in the second group, high frequencies (�80 Hz) were
more predictive (Fig. 5A).

LF cases were associated with weaker nonlinear model
components, more common phase locking, and higher SFC
values at low frequencies, whereas HF cases had stronger
nonlinear model components, less frequent phase locking, and
much smaller SFC values at low frequencies (Fig. 5B, Table 1,
and Fig. 8). In addition, in LF cases, low-frequency LFPs from
neighboring electrodes were almost as predictive, in contrast to
HF cases (Fig. 3). Cells in the first group tended to be more
phase-locked at lower frequencies and fired when high-fre-
quency LFP amplitude was low; cells in the second group
tended to be less phase-locked in general and fired when
high-frequency LFP amplitude was high (Fig. 7). There is a
known interaction between low-frequency phase and high-

frequency amplitude in the LFP (Canolty et al. 2006; Cohen et
al. 2009; Miller et al. 2010; Mormann et al. 2005). This
phase-amplitude coupling could explain the fact that some of
the neurons that are “responsive” to high-frequency LFP mod-
ulations also show some amount of locking to specific phases
of low-frequency LFP. It does not, however, explain the
reverse relationship between the occurrence of phase locking to
low frequencies and dependence of spike timing on high-
frequency amplitude (Fig. 5B).

It is known that cortical cells often have a preference for
firing at specific phases of ongoing LFP oscillations (e.g.,
Jacobs et al. 2007; Murthy and Fetz 1996). That linear property
of cell firing is captured in our recordings by the models that
performed better at lower LFP frequencies and manifests itself
in high SFC values at those frequencies (Fig. 8). First-order
kernels in those cases show a negative dip that precedes spikes
by �3–5 ms (Fig. 10). That effect might be capturing the
refractory period and/or the effect of phase locking of spikes to
negative extracellular voltage deflections at that time lag,
because a negative kernel acting on negative input results in
increased model output. Indeed, spiking of those cells tends to
occur at the descending limb of the depolarizing phase of
low-frequency LFPs (Fig. 7A, top).

In those cases where high-frequency (80–150 Hz) LFP was
more predictive of spike timing, models instead capture a
transient increase in high-frequency LFP power that precedes
the spike by approximately a full cycle, i.e., �10 ms (Fig.
10A). Second-order kernels in those cases include two high-
frequency LFP components that predict spiking: a full 100-Hz
cycle that peaks 10 ms before the spike and that manifests itself
in the kernel as the medium-sized peak at 2 and 12 ms, and a
bout of increased power, independent of voltage sign, occur-
ring at the same time, seen as a large peak on the main diagonal
of the kernel. The first component likely captures the oscilla-
tory nature of the input, whereas the second reflects the fact
that the absolute amplitude of the input and not its sign is
driving the cell to fire.

What could be the physiological correlate of these two
distinct LFP-spiking dependencies? The low-frequency com-
ponents of the LFP signal are thought to be related to the
activity of distant neuronal populations that are connected to
the recording site (Belitski et al. 2008; Khawaja et al. 2009).
These long-range connections can lock spikes to specific
phases of slow LFP oscillations, due to the time lags intro-
duced by synaptic and projection delays. On the other hand,
high-frequency components of the LFP may reflect mainly
activity from neighboring neuronal circuits (Henrie and Shap-
ley 2005; Khawaja et al. 2009). The 100-Hz wavelet that in this
group of cells precedes spikes by approximately a full cycle
could be reflecting the temporal summation of local postsyn-
aptic potentials or of correlated multiunit activity from nearby
cells (Fetz et al. 1991, 2000; Gray and Viana Di Prisco 1997;
Maldonado et al. 2008; Steinmetz et al. 2000). The LF and HF
cells could therefore be representing two different populations
of neurons in the human temporal cortex that project to (and/or
receive projections from) distant and local neuronal popula-
tions, respectively.

Even though all cells we recorded from were located in the
anterior temporal cortex, the two groups of neurons were active
in opposite ways during the two different behavioral tasks, as
shown in Fig. 9. LF neurons tended to fire at higher rates
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during the ID task, whereas HF neurons preferred the PA task.
The ID task is a verbal identification task, whereas the PA task
is primarily a verbal learning and memory task. During iden-
tification of a stimulus, LF neurons in anterior temporal cortex
could be receiving sensory and perceptual input from more
distant sources, both temporal and extratemporal. During learn-
ing, HF neurons could tend to be driven from more proximal,
local neuronal populations in anterior temporal cortex, en-
gaged in memory retention and retrieval. In support of such
a model, electrical stimulation studies have provided evi-
dence for involvement of anterior temporal sites in verbal
learning, whereas posterior temporal sites were more related
to identification (Destexhe et al. 1999; Ojemann et al. 1989;
Ojemann 1983, 2003).

We showed that, in many cases, certain LFP components are
associated with the timing of neuronal discharge at millisecond
resolution. Given that LFPs and unit spiking reflect different
aspects of local cortical physiology, Volterra kernels could be
used not only to study interrelationships between the various
cortical signals but also to probe specific questions about the
physiology of local cortical circuits, including interactions
between cells and inferring cortical connectivity patterns (Za-
nos et al. 2008). In addition, a model that assigns LFP features
to precise spike timing could be used in spike timing-sensitive
applications of LFP-based brain machine interfaces [e.g., spike
timing-dependent synaptic plasticity (Jackson et al. 2006)].
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