FCCS Command Line Instructions

The Fuel and Fire Tools application contains the FCCS calculator and a command-line interface. You can run large sets of fuelbeds through the FCCS calculator from a command prompt by specifying a fuelbed directory.

- 1. Open a command prompt. In Windows, you can type "**cmd**" in the search box of the Start menu top open a command prompt.
- 3. Launch the calculator to get basic usage instructions.
 ▶ java -jar fuelbed.jar
- 4. To run the FCCS for all fuelbeds within a folder (named "SampleFB" in this example and located within c:\FuelFireTools\FCCS_3) using the benchmark environmental scenario, simply type:

```
➢ java -jar fuelbed.jar SampleFB\*.xml
```

- 5. To run the FCCS for the same fuelbed folder under a specified moisture scenario, first edit the file fccs_moisture.csv (which is located in c:\FuelFireTools\FCCS_3). Then type:
 - java -jar fuelbed.jar SampleFB*.xml -p
 moisture_file=fccs_moisture.csv
- 6. To convert the output file (fccs_summary.csv) to metric values, type:
 ➢ Python.exe fccs_post_process.py fccs_summary.csv metric all.csv metric output.csv true
- 7. For other commands, such as specifying an output filename and location or specifying wind or slope inputs, please refer basic usage instructions within the command prompt.

C:\Windows\system32\cmd.exe Microsoft Windows [Version 6.1.7601] Copyright (c) 2009 Microsoft Corporation. All rights reserved. ÷ C:\Users\Susan>cd c:\fuelfiretools\fccs_3 c:\FuelFireTools\FCCS_3>java -jar fuelbed.jar Error: no input files specified! FCCS Fuel Characteristics Calculator Version: 1.0.193 This program calculates various fuel characteristics. It can also create a fuel loadings file for the Consume fuel consumption and emissions prog ram. Options: -h, --help: -p, --param: Help text Specify environmental parameters to the calculat (windspeed, slope, moisture_id, moisture_file) -g, --generate: Generate a Consume fuel loadings file. -l, --consume_loadings_filename: Specify the name for the Consume fuel loadings file. -o, --output_filename: Specify the name for the results file. -d --dump heave or -o, --output_. -d, --dump_heap: Specify the name for the results file. Debugging switch. Specify any necessary options and the files to process. Calculated output goes to "fccs_summary.csv" by default. The optional Consume loadings file is "consume_loadings.csv" by default. Examples: my_fuelbed.xml ..\data\fuelbeds*.xml ..\data\fuelbeds*.xml -o c:\myresults\results.csv -p windspeed=10 -p slope=40 ..\data\fuelbeds*.xml java -jar java -jar java -jar java -jar Elapsed: Om Os Files processed: O c:\FuelFireTools\FCCS_3>java -jar fuelbed.jar Fuelbeds*.xml 10% 20% 30% 40% 50% 60% 70% 80% 90% Elapsed: Om 11s Files processed: 309

Input definitions

A sample FCCS moisture file is located within the FCCS_3 folder

(c:\FuelFireTools\FCCS_3\fccs_moisture.csv).

Variable	Definition (English, metric units)	Sample Unit
	Fuel moisture content of 1-hour time lag	
oneHourFM	wood (0-1/4 inch diameter)	6%
	Fuel moisture content of 10-hour time lag	
tenHourFM	wood (1/4-1 inch diameter)	8%
	Fuel moisture content of 100-hour time lag	
hundredHourFM	wood (1-3 inch diameter)	10%
liveNonWoodyFM	Live fuel moisture content of herbaceous fuels	30%
liveShrubFM	Live fuel moisture content of shrubs	60%
crownFM	Life fuel moiustre content of tree crowns	60%

Output definitions

FCCS outputs will be found in the FCCS3 folder (e.g.,

c:\FuelFireTools\FCCS_3\fccs_summary.csv). Outputs are currently only in English units. Please contact Kjell Swedin at <u>kjells@uw.edu</u> if you would like a python converter for metric units.

		Sample output
Variable	Definition (English, metric units)	English units
Filename	Fuelbed filename	FB_0053_FCCS.xml
FB_ID	Fuelbed ID (alphanumeric)	53
		Pacific ponderosa
FB_name	Fuelbed name	pine forest
	3-digit code representing surface, crownfire,	
	and available fuel summary potentials,	
FCCS_Code	respectively	446
	Surface fire behavior summary potential (0-9	
SFP	index)	4.27
Surface_Reaction	Reaction potential (0-9 index)	3.61
Surface_Spread	Spread potential (0-9 index)	4.27
Surface_Flamelength	Flame length potential (0-9 index)	3.23
	Crown fire behavior summary potential	
CFP	(0-9 index)	4.45
	Crown fire initiation potential	
Crown_initiation	(0-9 index)	3.16
	Crown to crown transmissivity potential	
Crown_Transmissivity	(0-9 index)	8.85
Crown_spread	Crown fire spreading potential (0-9 index)	4.26
AFP	Available fuel summary potential (0-9 index)	6.42
Available_Flame	Flame available fuel potential (0-9 index)	3.22

Table 1: FCCS batch output variables and definitions.

		Sample output
Variable	Definition (English, metric units)	English units
Available_Smolder	Smolder available fuel potential (0-9 index)	2.43
	Residual smolder available fuel potential	
Available_Residual	(0-9 index)	0.76
	Rate of spread, benchmark environmental	
ROS	scenario (ft, m)	4.55
	Flame length, benchmark environmental	
FL	scenario (ft, m)	2.60
	Surface reaction intensity, benchmark	
RI	environmental scenario (BTU ft ⁻² m ⁻¹ , KJ m ⁻²)	2041.21
	Shrub component reaction intensity,	
	benchmark environmental scenario	
RI_shrub	(BTU ft ⁻² m ⁻¹ , KJ m ⁻²)	0
	Herb component reaction intensity,	
	benchmark environmental scenario	
RI_herb	(BTU ft ⁻² m ⁻¹ , KJ m ⁻²)	351.78
	Downed wood component reaction intensity,	
	benchmark environmental scenario	
RI_wood	(BTU ft ⁻² m ⁻¹ , KJ m ⁻²)	504.60
	LLM component reaction intensity,	
	benchmark environmental scenario	
RI_LLM	(BTU ft ⁻² m ⁻¹ , KJ m ⁻²)	1184.82
	Crosswalk to 1 of 13 original fuel models	
Xwalk13	under benchmark scenario	9
	Percent different ROS from crosswalk 13 fuel	
ROS%13	model, benchmark environmental scenario	66.78
	Percent different Flame length from crosswalk	
	13 fuel model, benchmark environmental	
FL%13	scenario	104.01
	Crosswalk to 1 of 40 standard fuel models,	
Xwalk40	benchmark environmental scenario	188
2000/10	Percent different ROS from crosswalk 40 fuel	00.01
ROS%40	model, benchmark environmental scenario	99.01
510/40	Percent different FL from crosswalk 40 fuel	00.00
FL%40	model, benchmark environmental scenario	80.68
	Rate of spread, user environmental scenario	4.55
User_ROS	(ft, m)	4.55
Lines 51	Flame length, user environmental scenario	2.50
User_FL	(π, m)	2.59
Liner Di	Surface reaction intensity, user environmental	
	Scenario (BTUTC+m+, KJm+)	2002.58
Licor Di chryb	Snrup component reaction intensity, user	
	environmentai scenario (BTUTT ² m ² , KJ m ²)	0
Licor Di horb	nerb component reaction intensity, user	212.40
	environmental scenario (BTU Tt ² m ² , KJ m ²)	313.16
User_RI_wood	Downed wood component reaction intensity,	504.60

		Sample output
Variable	Definition (English, metric units)	English units
	user environmental scenario (BTU ft ⁻² m ⁻¹ , KJ m ⁻²)	
	LLM component reaction intensity, user	
User_RI_LLM	environmental scenario (BTU ft ⁻² m ⁻¹ , KJ m ⁻²)	1184.82
	Crosswalk to 1 of 13 original fuel models	
User_xwalk13	under user environmental scenario	9
	Percent different ROS from crosswalk 13 fuel	
User_ROS%13	model, user environmental scenario	66.78
	Percent different FL from crosswalk 13 fuel	
User_FL%13	model, user environmental scenario	103.63
	Crosswalk to 1 of 40 standard fuel models,	
User_xwalk40	user environmental scenario	188
	Percent different ROS from crosswalk 40 fuel	00.01
User_ROS%40	model, user environmental scenario	99.01
	Percent different FL from crosswalk 40 fuel	96.36
		80.30
Tree_over_crown_load	Overstory tree crown load (tons ac ⁻¹ , Mg ha ⁻¹)	9.22
Tree_mid_crown_load	Midstory tree crown load (tons ac ⁻¹ , Mg ha ⁻¹)	
	Understory tree crown load	
Tree_under_crown_load	(tons ac ⁻¹ , Mg ha ⁻¹)	0.295
	Aboveground biomass of trees	56.00
Iree_aboveground_load	(tons ac ⁺ , Mg ha ⁺)	56.00
Creat class 1 foliage load	(tass 1 shag with foliage crown load	0.12
	(Lons ac -, Mg na -)	0.12
Spag class1 wood load	$(tops as^{-1} Mg ba^{-1})$	1.61
	Class 1 snag other wood load	4.04
Snag class1 other load	$(tons ac^{-1} Mg ha^{-1})$	
Snag class2 load	Class 2 snag wood load (tons ac^{-1} Mg ba^{-1})	1 96
Shag class3 load	Class 3 snag wood load (tons ac^{-1} Mg ha^{-1})	0.43
	Ladder fuel load (tops $2c^{-1}$ Mg ba^{-1})	0. -, 5
Chrub primony lood	Primary shrub load (tons ac 1 Mg ha ⁻¹)	5
Shrub_primary_load	Primary shrub load (tons ac -, lvig ha -)	
Shrub_primary_crown_load	Primary shrub crown load (tons ac ⁻ , Nig ha ⁻)	
Shrub_secondary_load	Secondary shrub load (tons ac ⁻⁺ , Mg ha ⁻⁺)	
	Secondary shrub crown load	
Shrub_secondary_crown_load	(tons ac ⁻ , Wig na ⁻)	
Shrub_heedleDrape_load	Shrub needle drape load (tons ac ¹ , Ng na ¹)	
Herb_primary_load	Primary herbaceous load (tons ac ⁻¹ , Mg ha ⁻¹)	0.05
	Secondary herbaceous load	0.01
Herb_secondary_load		0.01
woody_sound_1hr_load	Sound 1hr wood load (tons ac ⁻¹ , Mg ha ⁻¹)	0.1
Woody_sound_10hr_load	Sound 10hr wood load (tons ac ⁻¹ , Mg ha ⁻¹)	1.5
Woody_sound_100hr_load	Sound 100hr wood load (tons ac ⁻¹ , Mg ha ⁻¹)	1.5

		Sample output
Variable	Definition (English, metric units)	English units
Woody_sound_1000hr_load	Sound 1000hr wood load (tons ac ⁻¹ , Mg ha ⁻¹)	8
Woody_sound_10khr_load	Sound 10,000hr wood load (tons ac ⁻¹ , Mg ha ⁻¹)	3
	Sound >10,000hr wood load	
Woody_sound_GT10k_load	(tons ac ⁻¹ , Mg ha ⁻¹)	0
Woody_rotten_1000hr_load	Rotten 1000hr wood load (tons ac ⁻¹ , Mg ha ⁻¹)	3
	Rotten 10,000hr wood load	
Woody_rotten_10k_load	(tons ac ⁻¹ , Mg ha ⁻¹)	1.5
	Rotten >10,000hr wood load	
Woody_rotten_GT10k_load	(tons ac ⁺ , Wig na ⁺)	0
Woody_pile_load	Pile load (tons ac ⁻¹ , Mg ha ⁻¹)	0.04
Woody_stumps_sound_load	Sound stump load (tons ac ⁻¹ , Mg ha ⁻¹)	0.04
Woody_stumps_rotten_load	Rotten stump load (tons ac ⁻¹ , Mg ha ⁻¹)	0.03
Woody_stumps_lightered_load	Lightered stump load (tons ac ⁻¹ , Mg ha ⁻¹)	
LLM_litter_load	Litter load (tons ac ⁻¹ , Mg ha ⁻¹)	1.52
LLM_lichen_load	Lichen load (tons ac ⁻¹ , Mg ha ⁻¹)	0.00
LLM_moss_load	Moss load (tons ac ⁻¹ , Mg ha ⁻¹)	0.13
Ground_upperduff_load	Upper duff load (tons ac ⁻¹ , Mg ha ⁻¹)	3.4
Ground_lowerduff_load	Lower duff load (tons ac ⁻¹ , Mg ha ⁻¹)	15.3
Ground_basalaccum_load	Basal accumulation load (tons ac ⁻¹ , Mg ha ⁻¹)	0.08
Ground_squirrelmid_load	Squirrel midden load (tons ac ⁻¹ , Mg ha ⁻¹)	
	Total aboveground biomass (tree and shrub	
	crowns excluded from this sum)	
Total_aboveground_biomass	(tons ac ⁻¹ , Mg ha ⁻¹)	56.01
Depth_shrub	Depth of shrub stratum (ft, m)	
Depth_herb	Depth of herb stratum (ft, m)	1
Depth_wood	Depth of wood stratum (ft, m)	0.08
Depth_LLM	Depth of litter-lichen-moss stratum (ft, m)	0.1
Depth_Surface_Fuels	Depth of surface fuels (ft, m)	0.04
PercentCover_shrub	Percent cover of shrub stratum (%)	
PercentCover_herb	Percent cover of herb stratum (%)	11
PercentCover_wood	Percent cover of downed wood stratum (%)	45
	Percent cover of litter-lichen-moss stratum	
PercentCover_LLM	(%)	100
Version	FCCS version number	3.0.197