## Sex determination

|           | $\downarrow$ |      |
|-----------|--------------|------|
|           | Female       | Male |
| Fruit fly |              |      |
| Humans    |              |      |
| Birds     |              |      |

#### **Possibilities**

Y ₿ male

XX ♀ female

In humans, the **presence of a Y chromosome** makes a male:

Klinefelter syndrome: XXY

Turner syndrome: XO

# How does the Y chromosome cause male-ness?

"TDF" (testis-determining factor) aka SRY gene on the Y chromosome...



- Analyzing pedigrees
  - ◇ The process
  - ♦ An assumption:
  - ◇ The result

#### Examples

For each of the following pedigrees, can you decide whether the trait is dominant or recessive?







Is this a recessive trait?

# Sex-linked traits

X-linked recessive

Consider these pedigrees (to be filled in)



X-linked dominant





What would you predict for a Y-linked trait?

## Sex-limited inheritance

e.g., hen-feathering in chicken





#### **Sex-influenced** inheritance



For each of the following pedigrees, which modes of inheritance can you eliminate, and why? (Assume complete expressivity and penetrance; also assume that the trait is rare and that unless indicated otherwise, there is no inbreeding.)



**(B)** 





**(D)** Ι II III б IV