Probability

Predicting outcomes

The goal: Estimating the chances of a particular outcome actually occurring

Why bother?

Consider this pedigree:

Probability:

- of an inevitable event=
- of an impossible event=

If x, y, and z are the only possible outcomes of an event, $P(x)+P(y)+P(z)=$

Imposing multiple conditions

Product rule

The probability that two or more independent events will occur (event x and event y and ...)

Examples

What is the probability that III-I will be aa?

I

Relaxing the criteria

Sum rule

The probability of an outcome that can be achieved by more than one way (event x or event y or...)

- When you pick a card...probability that it is a red 5 ?

- Probability that III-I is homozygous ?

Probabilities of sets of outcomes

Binomial expansion

...to determine the probability of a specific set of outcomes in a number of trials that could each have either of two possible outcomes
e.g., determining the probability of I female and 4 male children in a family with 5 children

Equation: $\quad(a+b)^{5}=1$
$a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}$
I. Find the term where the exponents match the numbers you want
2. Substitute the individual probabilities
\Rightarrow fraction of 5-children families expected to have I daughter and 4 sons:

Evaluating results...
 Assessing the goodness of fit

χ^{2} analysis - How likely is it that the deviation from the predicted values is due to chance alone?

Null hypothesis - that there is no real difference between observed and predicted results

Example: flipping a coin to decide if it's a trick coin...

χ^{2} analysis:

I. Compute χ^{2} value:

$$
\chi^{2}=\sum \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}
$$

2. Determine df (the \# of degrees of freedom)

3. Look up P value in χ^{2} table

Exercise:

Are the results of this Drosophila cross consistent with independent assortment of the two genes (si ${ }^{+}$ and spa ${ }^{+}$)? Can you explain these results? [Hint: refer back to the chromosome theory of inheritance.]

$$
\begin{array}{llll}
\frac{s v^{+}}{\mathrm{sv}} & \frac{\mathrm{spa}}{} & & \mathrm{spa} \\
& & & \frac{\mathrm{sv}}{\mathrm{svv}}
\end{array} \frac{\mathrm{spa}}{\mathrm{spa}}
$$

\# of progeny Phenotype of progeny
759

$$
\mathrm{sv}^{+} \mathrm{spa}^{+}
$$

2
$s v^{+}$spa

0
sb spa ${ }^{+}$
770
sp spa

Remember that sv^{+}and spa^{+}are the dominant phenotypes; ss and spa are recessive.

Chi-square table

P \Rightarrow	0.995	0.975	0.9	0.5	0.1	0.05	0.025	0.01	0.005	$\langle\mathbf{P}$
df										df
I	. 000	. 000	0.016	0.455	2.706	3.841	5.024	6.635	7.879	I
2	0.010	0.051	0.211	1.386	4.605	5.991	7.378	9.210	10.597	2
3	0.072	0.216	0.584	2.366	6.251	7.815	9.348	11.345	12.838	3
4	0.207	0.484	1.064	3.357	7.779	9.488	11.143	13.277	14.860	4
5	0.412	0.831	1.610	4.351	9.236	11.070	12.832	15.086	16.750	5
6	0.676	1.237	2.204	5.348	10.645	12.592	14.449	16.812	18.548	6
7	0.989	1.690	2.833	6.346	12.017	14.067	16.013	18.475	20.278	7
8	1.344	2.180	3.490	7.344	13.362	15.507	17.535	20.090	21.955	8
9	1.735	2.700	4.168	8.343	14.684	16.919	19.023	21.666	23.589	9
10	2.156	3.247	4.865	9.342	15.987	18.307	20.483	23.209	25.188	10

