Linkage and recombination

Genetics 371B Lecture 9

Explanation for the Drosophila cross (lecture 8 end):

...but how to explain the results of this Drosophila cross?

[pr = purple eyes; vg = vestigeal wings

Both are recessive alleles; "+" alleles are wildtype]

Morgan's explanation, based on cytology of meiosisrecombinant class arising from crossover

How to test? What's needed?

Harriet Creighton & Barbara McClintock, maize Curt Stern, Drosophila

Experimental setup:

Look for **colorless, waxy** progeny

Ask: what do the chromosomes look like in these progeny?

Their results:

Importance of crossovers?

- proper segregation of homologs
- new combinations of alleles

Mapping genes

Aa Bb x aa bb	Aa Dd x aa dd	Aa Ee x aa ee
500 AB	420 AD	350 AE
20 Ab	60 Ad	120 Ae
20 aB	60 aD	I20 aE
500 ab	430 ad	350 ae

Can you deduce the map order of these genes?

Insight from Alfred Sturtevant (1913)— If recombination sites are random,

- probability of recombination between a pair of genes...
- recombination probability in adjacent intervals...

⇒ **Recombination frequency** can be used as a measure of **genetic map distance**

I map unit = I **centiMorgan** = 1% of meiotic products being recombinant

Constructing genetic maps

- I. Are the loci linked? (What is a locus anyway?)
- 2. How much recombination?

How do we identify the recombinant gamete classes?

Parent	Recombinant gametes*	
	Ab	
<u>A B</u>	&	
a b	a B	
A b	<u>A B</u>	
A b a B	&	
	a b	

*Fill out the worksheet to be sure you understand this

Operational definition for "non-parental":

Generally, the cross is heterozygote x homozygous recessive ...why?

Meiosis worksheet

I. No recombination between A/a & B/b

2. Recombination between A/a & B/b

3. No recombination between A/a & B/b

4. Recombination between A/a & B/b

