Explanation for the Drosophila cross (lecture 8 end):
...but how to explain the results of this Drosophila cross?
[pr = purple eyes; vg = vestigeal wings
Both are recessive alleles; "+" alleles are wildtype]

| $\mathrm{pr}^{+} \mathrm{pr}$ | $\mathrm{sc}^{+} \mathrm{sc}$ | x prpr | SC SC |
| :---: | :---: | :---: | :---: |
|  |  | $\downarrow$ |  |
| $\mathrm{pr}^{+} \mathrm{sc}^{+}$ | $\mathrm{pr}^{+} \mathrm{sc}$ | pr sc ${ }^{+}$ | pr sc |
| 1339 | \|51 | 154 | 1195 |

Morgan's explanation, based on cytology of meiosisrecombinant class arising from crossover

How to test? What's needed?

Harriet Creighton \& Barbara McClintock, maize
Curt Stern, Drosophila

## Experimental setup:

| RR= colored endosperm <br> $\mathrm{r}=$ colorless <br> $\mathrm{A}=$ starchy endosperm <br> $\mathrm{a}=$ waxy |
| :--- |
| Note the two salient features that make this experiment feasible: <br> "knob" and translocation - <br> genetic markers - |

Look for colorless, waxy progeny
Ask: what do the chromosomes look like in these progeny?

## Their results:

## Importance of crossovers?

- proper segregation of homologs
- new combinations of alleles

Mapping genes


| $\mathrm{Aa} \mathrm{Bb} \times \mathrm{aa} \mathrm{bb}$ | $\mathrm{Aa} \mathrm{Dd} \times \mathrm{aa} \mathrm{dd}$ | Aa Ee $\times \mathrm{aa}$ ee |
| :---: | :---: | :---: |
| 500 AB | 420 AD | 350 AE |
| 20 Ab | 60 Ad | 120 Ae |
| 20 aB | 60 aD | 120 aE |
| 500 ab | 430 ad | 350 ae |

Can you deduce the map order of these genes?

Insight from Alfred Sturtevant (1913)—
If recombination sites are random,

- probability of recombination between a pair of genes...
- recombination probability in adjacent intervals...
$\Rightarrow$ Recombination frequency can be used as a measure of genetic map distance

I map unit = I centiMorgan = $1 \%$ of meiotic
products being recombinant

## Constructing genetic maps

I. Are the loci linked? (What is a locus anyway?)
2. How much recombination?

How do we identify the recombinant gamete classes?

Parent


Recombinant gametes*

*Fill out the worksheet to be sure you understand this

## Operational definition for "non-parental":

Generally, the cross is
heterozygote $x$ homozygous recessive
...why?

Meiosis worksheet
I. No recombination between $\mathrm{A} / \mathrm{a} \& \mathrm{~B} / \mathrm{b}$

2. Recombination between $A / a \& B / b$

3. No recombination between $A / a \& B / b$

4. Recombination between $A / a \& B / b$


