Genetics 371B Lecture 19

2 Nov. 1999

Rare relative to meiotic recombination

## Discovery: Curt Stern, 1936

Linked genes singed bristles and yellow body

| + | У | double | heterozygote | in | trans |
|---|---|--------|--------------|----|-------|
|---|---|--------|--------------|----|-------|

sn + configuration

**Exercise:** Design an experiment to confirm the trans configuration

Normal



Occasionally:



# Stern's explanation









**Exercise:** This cell is shown to be undergoing mitotic recombination after completion of S phase (how can we tell from the diagram)? How can you tell from the products of the division that the recombination did indeed occur post-S phase?

## Significance for human health?

Suppose we're talking about a recessive disease allele...

## "Loss of heterozygosity"

e.g., Retinoblastoma, Wilms tumor



### Sporadic cases—

#### Inherited form—

#### **Explanation**?

### "2-hit kinetics"

 $Rb^+/Rb^+ \longrightarrow Rb^+/rb \longrightarrow rb/rb$ 

#### "I-hit kinetics"

 $Rb^+/rb \longrightarrow rb/rb$ 

# **Applications**

 Mapping – requency of "spots" proportional to map distance

Apping centromeres – can you get twin spots?

Caution: These are mitotic recombination frequencies!

Studying development, recessive lethal alleles

Assay for genotoxic agents – "SMART"