Cancer genetics - I

Genetics 371B Lecture 20

3 Nov. 1999

Properties

Proliferation

Metastasis

Demonstration of the genetic basis of cancer...

Can DNA from cancer cells transform normal cells to cancer cells?

The experiment:

Normal tissue culture cells: monolayer

human bladder cancer DNA

Cell **foci** – Loss of contact inhibition!

Compare transformed cell DNA with normal cell DNA

single base change (G → T): glycine → valine

Interpreting the experiment: Only a

single change to cause cancer??

Multiple mutations needed...

Inheritance of oncogene – predisposition to cancer, not inheritance of cancer

What does predisposition mean?

Suppose a particular form of cancer requires 4 mutations...

- Mutation rate I0⁻⁵/cell generation
- Probability of all 4 mutations
- Cell divisions to make adult human 10¹⁴
- Probability of getting cancer
- If one mutation has already occurred (inherited):

Cancer – from mutations in:

- proto oncogenes
- tumor suppressor genes
- DNA repair/maintenance genes

Proto oncogenes

- Genes that promote cell proliferation
- Often involved with signal transduction and transcription activation

Inappropriate activation – gain of function

Tumor suppressors – regulate cell proliferation

e.g., E2F transcription factor: promotes GI \diamondsuit S phase transition

Hypothesis: Rb protein forms complex with E2F, preventing transcription...

...but **phosphorylated** Rb protein cannot bind to E2F protein

inactivation – recessive loss-of-function