Genetics 371B Lecture 25

15 Nov. 1999

The goal: understanding a biological process

The approach: break the system one component at a time; ask how it's broken (phenotype)

The tools

- Mutations
- Recombination

"Breaking" the system – mutagenesis of a large population

- few (usually, I) mutations per individual
- for each gene, at least a few individuals (in the population) who have a mutation in that gene

Mutagenesis:

Screen vs. **selection** – identifying the mutants you are interested in

Screen –

Selection –

Examples

The interview – finding a translator

♦ Screen

♦ Selection

Fly, fly away – wingless fly mutants

♦ Screen

 \diamond Selection

Bacterial transformation to antibiotic resistance – selection or screen?

Vogelstein's assay for replication errors – selection or screen?

Determining the number of genes involved in a process...

• **Map** each mutation

Complementation test

O Mutant I and Mutant 2 have mutations in the same gene or in different genes?

Example I – feather coloring in peacock... suppose you've identified two recessive mutations that cause loss of color (white chickens). Are the mutations in the same gene or in separate genes?

Example 2 – Drosophila eye color

To find which mutations are in the same gene vs. different genes...

Make all possible heterozygotes, check phenotypes of females

	white	prune	apricot	buff	cherry	eosin	ruby
white	-	+	-	-	-	-	+
prune	+	-	+	+	+	+	+
apricot	-	+	-	-	-	-	+
buff	-	+	-	-	-	-	+
cherry	-	+	-	-	-	-	+
eosin	-	+	-	-	-	-	+
ruby	+	+	+	+	+	+	-

+ = wildtype, - = mutant

Interpreting the results: **complementation** groups –

Group together those mutations that **fail** to complement **other** mutations

Cautionary notes:

- lethals
- dominant mutations