Genetics 371B Lecture 26

16 Nov. 1999

Determining the order of action of genes

One approach: provide the intermediate that the mutant can't make...

[Analogy: restoring an assembly line]

 Disadvantage: need to know the intermediates in the pathway

Example: arginine synthesis defects in Neurospora

arg-1, arg-2, arg-3: wildtype alleles of all 3 needed for Arg synthesis

6 possible linear pathways:

etc.

Predictions:

If the first pathway is correct, \diamond arg-I mutants –

◇ arg-2, arg-3 mutants –

Intermediates: ornithine, citrulline

Experiment:

Add one supplement at a time to the growth medium; ask: does the mutant show growth? ("+" = growth, "-" = no growth)

	Supplement:			
	None	Ornithine	Citrulline	Arginine
Wildtype	+	+	+	+
arg-l	-	+	+	+
arg-2	-	-	+	+
arg-3	-	-	-	+

Interpretation:

arg-3 is not rescued by of the intermediates—

arg-2 is helped by citrulline but not by ornithine—

arg-I can grow on any of the intermediates—

The correct pathway:

Precursor \rightarrow Ornithine \rightarrow Citrulline \rightarrow Arginine

A genetic way of ordering the pathway:

Epistasis analysis

Compare double mutant phenotype with single mutants

Advantage: don't need to know intermediates, just need distinct phenotypes for the various mutations

e.g., coat color in mammals

Consider two genes: C and E

ccE_: albino (no pigment)

C_ee : no color in coat

cc ee double mutant: albino

Interpretation:

Another example: programmed cell death (apoptosis) in *C. elegans*

target engulfed by neighbor DNA is degraded

Mutant gene	phenotype
ced-3	cells live
ced-2	cells die, not engulfed
nuc-l	cells die and engulfed, DNA not degraded
Double mutants	
ced-3, ced-2	cells live
ced-2, nuc-1	cells die, but are not engulfed
ced-3, nuc-1	cells live

An example of a **negative interaction**: Rb and E2F

rb⁻ : cells enters S phase E2F⁻ : cell does not enter S phase double mutant: cell does not enter S phase

An exercise:

Mutational analysis of flower color was undertaken in a plant species that normally makes red flowers. The mutations fell in three complementation groups: **A**, **B**, and **D**. The phenotypes of single and double null mutants are listed:

Mutant	Phenotype
a	purple flowers
b⁻	red flowers
ď	white flowers (no color)
a⁻ b⁻	red flowers
a⁻d⁻	white flowers
b⁻d⁻	white flowers

Deduce the pathway of flower color production.

Extra challenge: How might the **b**⁻ mutant have been detected?

To be discussed on Monday, Nov. 22

