Gene regulation

Genetics 371B Lecture 27

17 Nov. 1999

Why regulate genes?

Control points:

Two modes of control:

Positive control	Negative control
Gene OFF until activator	Gene ON until repressor
turns it ON	turns it OFF

François Jacob Jacques Monod

lac operon

E. coli – can metabolize lactose (disaccharide, galactoseo-glucose)

BUT... synthesis of B-gal is regulated —

Carbon source	ß-gal enzyme activity/cell
glycerol	
lactose	

 \implies Lactose is an **inducer** of B-gal production

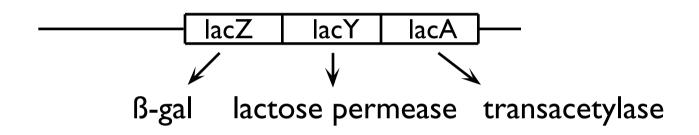
[An artificial inducer: isopropyl thiogalactoside, **IPTG**]

Mode of action of inducer?

Possibility I: Inducer activates already-existing
B-Gal

 Possibility 2: Inducer triggers fresh synthesis of B-Gal

Experiment


Cells + lactose

radioactive aminoacids

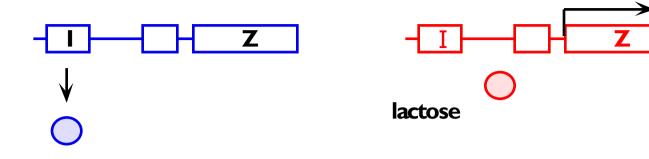
Control?

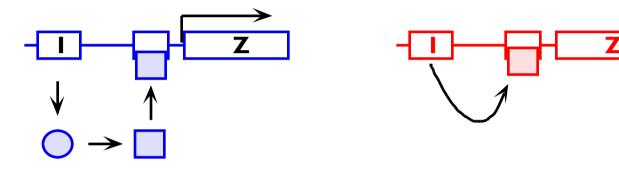
From mutational analysis: three linked **structural** genes...

... coordinately regulated

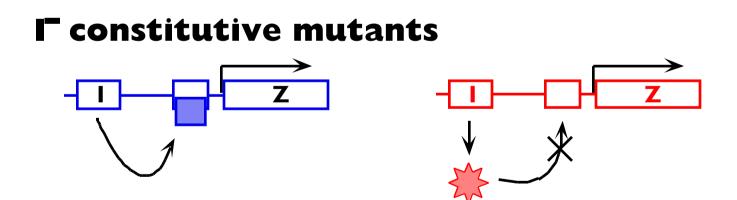
Polar mutations

So is transcription of the lac operon under positive control or negative control? How to tell?

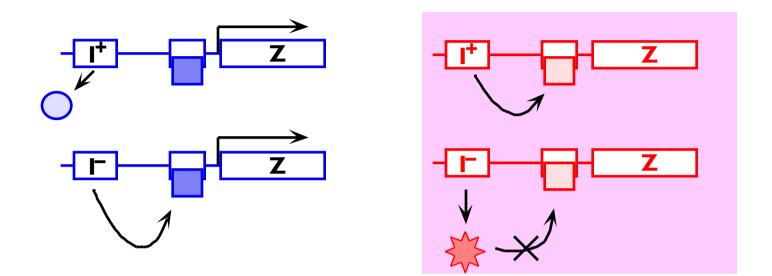

Some mutations: **regulation** affected


	ß-gal level in	
strain	gycerol	lactose
Wildtype		
Mutant I		
Mutant 2		

lacl map location:

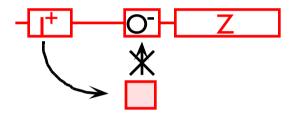


If Negative...


lactose

To distinguish between these two possibilities: does the F mutation act as a **dominant** or a **recessive** mutation?

Negative


BUT... these are bacteria How to get "diploids" to test dominant vs recessive?

Implicit in the model: repressor acts in **trans**

"Super repressor" lacl^s:

Target of the repressor? **Operator** sequence, or lacO

Predicted phenotype of lacO mutation?

Challenge: lacO is small (24 bp) relative to lacl (1080 bp) How to avoid getting mainly lacl⁻ mutants?

lacO acts in cis; lacO^c is cis-dominant

– it matters whether lacZ is "attached" to O^+ or O^c

I⁺ O⁺ Z⁻ I⁺ O^c Z⁺

I⁺ O^c Z⁻ I⁺ O⁺ 7⁺