Population genetics - I

Genetics 37IB Lecture 33

a.k.a. Evolutionary Genetics

Why bother with this stuff?

The use of models

Some terminology

- Genotype frequency
$\diamond \mathrm{P}_{\mathrm{A} a}$
$\diamond \mathrm{P}_{\mathrm{Aa}}^{\prime}$
- Allele frequency
$\diamond \mathrm{PA}_{\mathrm{A}}$
$\diamond P_{A}^{\prime}$

The Random-Mating population

Assumptions

\diamond Discrete generations
\diamond Random mating
\diamond Genotype frequencies in the two sexes are equal
\diamond No mutation
\diamond No immigration or emigration
\diamond Genotypes are equally fertile
\diamond No selection
\diamond Infinite population size
\diamond An autosomal locus

How do genotype frequencies change

 over time?Starting genotype frequencies:
$P_{A A}, P_{A a}, P_{a a}$
(Do we really want to do this?)

How do allele frequencies change over time?

Starting allele frequencies: $\mathrm{P}_{\mathrm{A}}, \mathrm{Pa}_{\mathrm{a}}$
$\diamond P_{A}^{\prime}=$
$\diamond P_{a}^{\prime}=$

What does this result tell us about the genotype frequencies?
$\diamond \mathrm{P}_{\mathrm{AA}}^{\prime}=$
$\diamond \mathrm{P}_{\mathrm{Aa}}^{\prime}=$
$\diamond \mathrm{P}_{\mathrm{aa}}^{\prime}=$
...These are the "Hardy-Weinberg frequencies"

How about the next generation?

Examining assumptions

- What if the two sexes don't have the same genotype frequencies?

Start with: $\mathrm{P}_{\mathrm{fA}}, \mathrm{P}_{\mathrm{mA}}, \mathrm{P}_{\mathrm{fa}}, \mathrm{P}_{\mathrm{ma}}$
$\mathrm{P}_{\mathrm{fA}}^{\prime}=$
$P_{m A}^{\prime}=$
$p_{f a}^{\prime}=$
$P_{\text {ma }}^{\prime}=$

Multiple alleles...

If the alleles are \mathbf{a}, \mathbf{b}, and $\mathbf{c} \ldots$
The possible genotypes are:
And their frequencies are:

And what about multiple loci?

- Unlinked loci
- Linked loci

Linkage disequilibrium

