Population genetics - I

Genetics 371B Lecture 33

I Dec. 1999

a.k.a. Evolutionary Genetics

Why bother with this stuff?

The use of models

Some terminology

- Genotype frequency
 - $\diamond P_{Aa}$
 - ♦ P'_{Aa}
- Allele frequency
 - $\diamond P_A$
 - $\diamond p'_A$

The Random-Mating population

Assumptions

- Discrete generations
- ♦ Random mating
- Genotype frequencies in the two sexes are equal
- ♦ No mutation
- No immigration or emigration
- Genotypes are equally fertile
- ♦ No selection
- Infinite population size
- ♦ An autosomal locus

How do genotype frequencies change over time?

Starting genotype frequencies:

(Do we really want to do this?)

	AA	Aa	aa
AA			
Aa			
aa			

How do allele frequencies change over time?

Starting allele frequencies: PA, Pa

$$\diamond p'_A =$$

$$\diamond p'_a =$$

What does this result tell us about the genotype frequencies?

$$\diamond$$
 P'_{AA} =

$$\diamond$$
 P'_{Aa} =

... These are the "Hardy-Weinberg frequencies"

How about the next generation?

Examining assumptions

What if the two sexes don't have the same genotype frequencies?

Start with: p_{fA} , p_{mA} , p_{fa} , p_{ma}

$$p'_{fA} = p'_{mA} =$$

$$p'_{fa} = p'_{ma} =$$

Multiple alleles...

If the alleles are a, b, and c...

The possible genotypes are:

And their frequencies are:

And what about multiple loci?

Unlinked loci

Linked loci

Linkage disequilibrium