Genetics 371B Lecture 34

## **Evolution:**

**Quantifying genetic variation** 

3 Dec. 1999

## Factors that alter allele frequencies

# **Genetic drift**

Altered allele frequency due to random

fluctuation...

**Result:** loss of variation (a.k.a. loss of heterozygosity)

Warwick Kerr, Sewall Wright

## **Drosophila experiment:**

Wildtype x forked bristle mutant

$$+ = p = 0.5$$
  
forked (f) = q = 0.5



**Observed**, after 16 generations:

Consequence of random genetic drift: heterozygotes are exchanged for homozygotes

...drift towards homozygosity

Ultimately:

How likely is the *Drosophila* result if 4000 males and females are chosen?

## Calculating rate of loss due to drift

Rate of drift (loss of alleles)

Loss of heterozygosity per generation =

Fraction heterozygous after t generations  $H_t \dots$ 

# **Effect of inbreeding:**

**Founder effect:** small population established from small initial sample

e.g., achromatopsia in Pingelap atoll

# What counters the trend towards homozygosity?

## **Mutation**

Mutation rate  $\mu$ :

If initial frequency(A) = p0, then frequency(A) after I generation –

 $p_1 =$ 



Mutation rate vs. genetic drift:

To counter loss of allele **a** (rate: I/N) from drift... would need mutation rate  $\mu$  such that  $\mu$  I/N