Pulmonary Hypertension in Sickle Cell Disease

Jorge Ramos
Hematology Fellows Conference
June 28, 2013
Patient Presentation

• 28F with SCD, genotype SS.
• Presented to UWMC ER with 1 month progressive DOE and several days of chest pain
• Could climb 3 stairs at home before becoming dyspneic. SOB worse with lying flat.

 – Pain is different than vaso-occlusive crisis pain
 – No fevers, chills, cough
 – BP: 144/94
Patient Presentation

• PMH:
 – Multiple vaso-occlusive pain crises over the past 8 months
 – Right atrial clot 11/12
 – Acute chest syndrome 8/12
 – CVA 6/12
 – Hypertension

• Medications:
 – Hydroxyurea, Folate, Warfarin, Amlodipine, Oxycontin, Vicodin
Patient Presentation

- CT Chest: diffuse, bilateral centrilobular ground-glass opacities, no focal consolidation, no PE. RV and pulmonary trunk enlargement.

- PFTs: no airflow obstruction, decreased FEV1 and FVC with preserved FEV1/FVC consistent with restrictive lung disease pattern (DLCO not measured)

- TTE (4m prior): TRV 3.6 m/s, PASP 57-62, and increased RV size with low normal RV function. LV function preserved at 55-60% with evidence of diastolic dysfunction.

- V/Q scan (5m prior): low probability of pulmonary emboli
Patient outcome (hospital course)

- Treated initially with ABX, IVF, oxygen, and pain control
- On D3, patient went into acute respiratory failure requiring intubation. HbS = 42%.
- Underwent RBC exchange that night with improvement in her respiratory status and was subsequently extubated on D4 and transferred to the floor
- On D7, patient noted to be tachycardic in the evening. No change in dyspnea.
- Several hours later, patient found unresponsive and pulseless. CPR attempted and unsuccessful.
Pulmonary Hypertension

- **PH**: mean pulmonary artery systolic pressure > 25mmHg at rest on right heart catheterization

- On TTE, a TRV of 2.5-2.8 m/s is suggestive and ≥ 2.8 m/s is highly indicative of pulmonary hypertension

- **Right heart catheterization is necessary to confirm diagnosis, identify mechanism, and perform vasoreactivity testing to guide therapy**

Nef et al. Heart 2010
Classification of Pulmonary Hypertension

1. **Pulmonary arterial hypertension**
 - Idiopathic PAH
 - Heritable
 - BMPR2
 - ALK1, endoglin
 - unknown
 - Drugs and toxins induced
 - Associated with:
 - Connective tissue diseases
 - HIV infection
 - Portal hypertension
 - systemic to pulmonary shunts
 - Schistosomiasis
 - Chronic haemolytic anaemia

2. **Pulmonary hypertension due to left heart disease**
 - Systolic dysfunction
 - Diastolic dysfunction
 - Valvular disease

3. **Pulmonary hypertension due to lung diseases and/or hypoxia**
 - Chronic obstructive pulmonary disease
 - Interstitial lung disease
 - Sleep-disordered breathing
 - Chronic exposure to high altitude
 - Broncho pulmonary dysplasia (BPD)
 - Developmental abnormalities

4. **Chronic thromboembolic pulmonary hypertension (CTEPH)**

5. **Pulmonary Hypertension with unclear and/or multifactorial mechanisms**
 - Haematologic disorders
 - myeloproliferative disorders; splenectomy
 - Systemic disorders
 - Vasculitis sarcoidosis, pulmonary Langerhans cell histiocytosis LAM, neurofibromatosis.
 - Metabolic disorders
 - Glycogen storage disease, Gaucher disease, thyroid disorders
 - Congenital heart disease
 - other than systemic to pulmonary shunt
 - Others: obstruction by tumours, fibrosingmediastinitis, chronic renal failure on dialysis

Figure 1 Updated clinical classification of pulmonary hypertension according to the proposals of the 4th World Symposium on Pulmonary Hypertension held in Dana Point 2008.

Nef et al. Heart 2010
Pulmonary Hypertension Classification and Sickle Cell Disease

<table>
<thead>
<tr>
<th>Group and Typical Hemodynamic Features</th>
<th>Examples of Associated Conditions</th>
<th>Aspects of Sickle Cell Disease Potentially Related to PH</th>
</tr>
</thead>
</table>
| 1 - Idiopathic pulmonary artery hypertension (PAH), including pulmonary veno-occlusive disease and pulmonary capillary hemangiomatosis
 mPAP ↑ (often 50-60 mmHg)
PVR ↑
PCWP normal (<15 mmHg)
CO normal or low | • Heritable
• Drugs and toxins induced
• Associated with
 - Connective tissue diseases
 - HIV Infection
 - Portal Hypertension
 - System to pulmonary shunts
 - Schistosomiasis
 - Chronic hemolytic anemia | Vasculopathy (remodeling)
Hemolysis
Limited NO Bioavailability |
| 2 - PH due to left heart disease
mPAP ↑
PVR normal
PCWP ↑
CO normal or low | • Systolic dysfunction
• Diastolic dysfunction
• Valvular disease | Chronic anemia with left ventricular hypertrophy/dysfunction |
| 3 - PH due to lung disease and/or hypoxia
mPAP ↑ (often 25-40 mmHg) | • Chronic obstructive pulmonary disease
• Interstitial lung disease
• Sleep-disordered breathing
• Chronic exposure to high altitude | Parenchymal pulmonary changes (fibrosis, infarction) |
| 4 - Chronic thromboembolic PH (CTEPH) | | Pulmonary embolism
Coagulation activation |
| 5 - PH with unclear and/or multifactorial mechanisms | • Hematologic disorders e.g.
 - Myeloproliferative disorders
 - Splenectomy
• Systemic disorders e.g.
 - Vasculitis
 - Sarcoidosis
• Metabolic disorders e.g. Gaucher’s
• Congenital heart disease
• Chronic renal failure on dialysis | Auto- or surgical splenectomy
End-stage renal disease |

mPAP = mean pulmonary artery pressure; PVR = pulmonary vascular resistance; PCWP = pulmonary capillary wedge pressure; CO = cardiac output.
Pathophysiology of PAH in SCD: Hemolysis associated?

- Impaired vasodilation
- Increased vaso-constriction
- Hyperplasia/Proliferation
- Increased platelet activation
- Increased adhesion molecules
- Uncoupled NOS

Left Ventricular Dysfunction and PH in SCD

• Chronic anemia creates a hyperdynamic state with an elevated cardiac output -> LV remodeling and diastolic dysfunction

• These findings are associated with a relative systemic hypertension and increased TRV
Left Ventricular Dysfunction and PH in SCD

- Increased mortality was independent of, but additive to TRV
- Patients with diastolic dysfunction had a statistically significant higher SBP (137 mmHg vs 119 mmHg)

Figure 2 Kaplan-Meier Survival Curve According to Both TR Jet Velocity and E/A Ratio

Patients were classified as low risk if they had a tricuspid regurgitation (TR) jet velocity of <2.5 m/s and an E/A ratio of ≥1.0. The high-risk group of patients had either a TR velocity of ≥2.5 m/s or an E/A ratio of <1.0 or both. Mortality was significantly increased in the group having one or both risk factors (p < 0.0001).

Sachdev et al J Am Coll Cardiol. 2007
Pulmonary dysfunction and PH in SCD

• 310 adults with SCD evaluated

• 90% had abnormal PFTs, with the most common abnormality being a restrictive pattern with a decreased DLCO (74%)

• Given high prevalence of restrictive lung disease, routine pulse oximetry monitoring indicated with clinical visits

<table>
<thead>
<tr>
<th>TABLE 2. SUMMARY OF PULMONARY FUNCTION TEST RESULTS</th>
<th>All Patients (n = 310)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary of PFT results</td>
<td></td>
</tr>
<tr>
<td>FEV<sub>1</sub></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>82.80</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>83.03 ± 16.06</td>
</tr>
<tr>
<td>FVC</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>83.62</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>84.37 ± 16.01</td>
</tr>
<tr>
<td>FEV<sub>1</sub>/FVC, %</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>98.61</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>98.36 ± 9.15</td>
</tr>
<tr>
<td>TLC</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>69.79</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>70.20 ± 14.69</td>
</tr>
<tr>
<td>RV</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>78.04</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>88.60 ± 60.88</td>
</tr>
<tr>
<td>D<sub>LCO</sub></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>53.74</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>56.57 ± 20.11</td>
</tr>
<tr>
<td>Adjusted D<sub>LCO</sub>*</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>61.74</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>64.54 ± 19.93</td>
</tr>
</tbody>
</table>

Subclassification based on PFTs

Normal, n (%)	31 (10)
Isolated low D_{LCO}, n (%)	40 (13)
Mixed O/R, n (%)	5 (2)
Obstructive, n (%)	4 (1)
Restrictive, n (%)	230 (74)

Definition of abbreviations: D_{LCO} = diffusion capacity for carbon monoxide; O/R = obstructive/restrictive; PFT = pulmonary function test; RV = residual volume; TLC = total lung capacity.

* Adjusted for hemoglobin concentration.
Thromboembolic Disease and PH in SCD

V/Q scans are more sensitive for detecting chronic thromboembolic events than CT scans

Prevalence of PH in SCD

- Previous studies had suggested a prevalence of PH of 30% based on echocardiographic findings of an elevated TRV\(^1\)

- Prevalence based on right heart catheterization was 6%

- Positive Predictive Value 25%

- 13 patients had post-capillary PH and 11 had pre-capillary PH, suggesting that PH in the sickle cell disease population is multifactorial

\(^1\)Gladwin et al. NEJM 2004
\(^2\)Parent et al. NEJM 2011
Additional diagnostics for evaluation of PH in SCD

• 6 Minute Walk Distance Test
 – Patients with RHC-proven PH had a shorter 6 minute walk distance (320m vs. 435m, \(p=0.002\))^1
 – Non-cardiopulmonary limitations such as avascular necrosis limits utility on some patients with SCD

• Brain Natriuretic Peptide (NT-pro-BNP)
 – One study demonstrated a PPV of 78% when level \(\geq 160\) for when definition utilized for PH was TRV \(\geq 2.5\) m/s on echocardiography^2
 – Never studied in RHC diagnosed pulmonary hypertension

^1 Anthi et al Am J Resp Crit Care Med 2007
^2 Machado et al JAMA 2006
Work-Up for Pulmonary Hypertension in SCD

- Echocardiography -> Right Heart Catheterization
- Pulmonary Function Tests with 6-minute walk test
- CT scan vs. V/Q scan
- Sleep Study (as clinically indicated)
- HIV, ANA, ANCA, RF, LFTs (as clinically indicated)
Prognosis of Pulmonary Hypertension in SCD

Gladwin et al. JAMA 2012
Treatment

• Hydroxyurea: Goal ANC 2.0 and Plts 80,000
• Exchange transfusions as necessary
• Treat conditions contributing to PH:
 – LV dysfunction: BP control
 – Chronic thromboembolism
 – Restrictive lung disease and hypoxemia
 – Asthma
 – OSA
Treatment – PAH directed trials

- ASSET-1 and ASSET-2\(^1\)
 - RCTs of bosentan (endothelial receptor antagonist) vs. placebo in PAH (ASSET-1) and post-capillary PH (ASSET-2)
 - Both closed early secondary to poor accrual
- Walk-PHaSST\(^2\)
 - RCT of sildenafil (PDE-5 inhibitor) vs. placebo in any form of PH (based on TRV \(\geq 2.7\)m/s and decreased 6MWD)
 - Study stopped early secondary to more serious adverse events in treatment group (46% vs. 22%), most frequently hospitalization for pain crisis
 - Analysis of available data did not demonstrate any observed improvement in primary efficacy measure of 6MWD in treatment group
- Arginine
 - 5 days of oral arginine decreased PASP on echo by 15.2\(^3\)
 - Follow-up longer duration studies have failed to show benefit in functional capacity and TRV

\(^1\)Barst et al. Br J Haematol. 2010
\(^2\)Machado et al. Blood 2011
\(^3\)Morris et al. Am J Respir Crit Care Med 2003
Conclusions

• Pulmonary hypertension in sickle cell disease is heterogeneous and the cause can be multifactorial

• Echocardiography has a high false positive rate and is not dependable for making a diagnosis of pulmonary hypertension

• All sickle cell disease patients should have a right heart catheterization to make definitive diagnosis

• TRV is an independent risk factor of increased mortality regardless of presence or absence of PH for unclear reasons

• Prognosis is poor and treatment should be directed at decreasing hemolysis and the underlying cause