The Clonal Degeneration of Hematopoetic Aging

Fred Hutchinson Cancer Research Center
Hematology Fellows Conference Series

January 23rd 2015

Jesse Salk MD, PhD
jjsalk@uw.edu
Clonal Hematopoiesis and Blood-Cancer Risk Inferred from Blood DNA Sequence

Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes

Genovese et al. NEJM 2014 371(26) 2477-87. PMID 25426838

Jaiswal et al. NEJM 2014 371(26) 2488-98. PMID 25426837
Hypothesis
Deeply sequence leukocyte exomes from previously collected cohorts to assess for the presence of subclonal mutations and their association with subsequent neoplasia, age and other clinical characteristics.
Approach: look for subclonal mutations

- 100%
- 92%
- 8%
- 50%
- 50%
- 50%
- 46%
- 4%
Approach

Depth: 84x (13-144x)
Allele ratio sensitivity 3.5%
Subclone sensitivity 7%

Genovese

(Jaiswal)
Sample selection

Total leukocyte compartment DNA

Genovese
- Swedish schizophrenia, bipolar and control cohort
- 12,380 patients (11,164 w/FU)
- Screened for all subclonal mutations then stratified by candidates

Jaiswal
- 22 cohort studies: longevity, type II diabetes and Jackson Heart Study
- 17,182 patients (3,342 w/FU)
- Focused on 160 candidate heme malignancy candidates genes
Findings

Genovese
- 3111 mutations across the exome
- About 25% of individuals
- Mutations per subclone ~1

Jaiswal
- 805 mutations in 73 genes
- 746 (4.3%) individuals
- Mutations per subclone ~1
Somatically-derived clones increase with age

18.4% of 90-108 y/o
Specific genes more commonly bear mutations

- **DNMT3A**: DNA methyltransferase, increased pluripotency, growth advantage
- **ASXL1**: Chromatin remodeling, development
- **TET2**: Methylcytosine deoxygenase, increased self renewal, growth advantage
- **PPMD1**: Regulator of p53, LOF disrupts normal checkpoint inhibition
Clones associate with higher risk of malignancy

RR: 11x

RR: 12.9x

Genovese

Jaiswal

<table>
<thead>
<tr>
<th>Category</th>
<th>No. of Patients</th>
<th>Hazard Ratio for Hematologic Cancer (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No mutations</td>
<td>8783</td>
<td>1.00 (1.00–1.00)</td>
</tr>
<tr>
<td>CH-UD</td>
<td>170</td>
<td>11.34 (3.44–37.41)</td>
</tr>
<tr>
<td>CH-CD</td>
<td>269</td>
<td>13.73 (5.74–32.83)</td>
</tr>
<tr>
<td>CH</td>
<td>439</td>
<td>12.89 (5.78–28.72)</td>
</tr>
</tbody>
</table>
Etiologic relationship neoplasia

- Recurrently seen in human hematologic malignancy (COSMIC)
- Recurrent, independent mutations in multiple cohorts
- Plausible mechanism, xenograft and knockout/in mouse studies
- Enrichment for nonsynonomous mutations
- Larger clones associated with greater risk of neoplasia
- Median number of mutations per clone (~1) vs that with AML/MDS (~5)
- Distinct absence of major leukemia-associated genes (FLT3, NPM1 etc)
Selected example of temporal clonal evolution

Genovese
Majority of clones do not lead to leukemia

- Genovese: 12.9-fold relative risk of leukemia but absolute risk only ~1% per year.

- Jaiswal:
 - 13 subjects with clonal mutations (17) at baseline had available sample 4-8 yr later
 - 10 mutations with same clone size at follow-up
 - 7 mutations with increased clone size
 - 2 subjects with new mutations
 - Zero leukemias

- Other examples of clonal field defects:
 - Liquids: MGUS, B cell lymphocytosis, CLL, MDS
 - Solids: Barretts Esophagus, ulcerative colitis, certain lung, bladder, oropharynx
Clones portend higher risk of all-cause mortality

Attributed to leukemia and smoking

Not explained by leukemia
2x RR coronary artery disease
2.6X RR ischemic stroke
Clinically unhelpful metric (at present)

• Strongest association is with age, not disease

• Poor sensitivity: 48%, 59% of those who developed leukemia w/o prior clones

• Poor specificity: of 3342 patients, 134 (4%) had clonal mutations yet only 16 (11.9%) developed cancers during course of Jaiswal study

• Cost, number needed to screen, age w/most potential benefit least likely affected

• Absence of clinical actionability:
 • No proven risk-reduction strategies, potential harms abound
 • Unknown benefits of early detection of leukemia itself
 • Patient age: all organisms are mortal

• Incidentaloma that is hard to ignore
Many open biologic and clinical questions

- Mechanistic basis of clonal expansions: drivers of neoplasia or unmasked symptom of unhealthy stem cell compartment? Benign boosters?
- Clonal definition by passengers: identify drivers outside of the exome
- Prognostic difference of malignancies arising from preneoplastic fields
- Longer follow-up of outcomes, dedicated longitudinal collection
- Prevention strategies. Surrogate metric for clinical trials?
- Basis of increase in all cause mortality not explained by leukemia. Cardiovascular disease: pathogenic atherosclerosis vs. chronic inflammation?
- Substratification of risk by specific drivers, leukocyte subsets, coincidence of mutations (digital single cell assays), temporal dynamics.
- Greater depth, greater accuracy
- Psychological, sociological, financial implications
- Fundamental relationship with aging