HOW I TREAT WALDENSTRÖM MACROGLOBULINEMIA IN THE ERA OF NOVEL THERAPEUTICS

Sherilyn A. Tuazon, MD, MS
Hematology and Oncology Fellow
University of Washington
Fred Hutchinson Cancer Research Center
Outline

- Case presentation
- Diagnosis
- Treatment for newly diagnosed WM
- Biology and targeted therapy
- Summary
Case presentation

- 59 year-old man with elevated total protein of 10.9 g/dL
 - Hgb: 9.2 g/dL Hct 28% (MCV 91)
 - Creatinine: 1.39
 - SPEP/immunofixation: 4.1 g/dL IgM kappa monoclonal protein
- Past Medical History: HTN, CVA, CKD stage 2
- Social History: no tobacco, EtOH, occasional cannabis
- Family History: negative
Review of Systems

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Implication/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatigue</td>
<td>Anemia</td>
</tr>
<tr>
<td>Headache, blurry vision, confusion</td>
<td>Hyperviscosity</td>
</tr>
<tr>
<td>Easy bruising, bleeding gums, epistaxis</td>
<td>Thrombocytopenia, platelet dysfunction</td>
</tr>
<tr>
<td>Acrocyanosis</td>
<td>Cryoglobulinemia, cold agglutinemia</td>
</tr>
<tr>
<td>Numbness, tingling</td>
<td>IgM-related neuropathy</td>
</tr>
</tbody>
</table>

Case presentation

- Physical Examination: unremarkable
- Referred to ophthalmology: normal retinal exam
- Serum viscosity: 3.4 CP & B2-microglobulin: 2 mcg/mL

Hyperviscosity related retinal changes in WM

“Sausaging”

Courtesy of Dr. Dan Sabath
Bone marrow examination

- **Flow cytometry**
 - B cell: CD19+ CD20+ CD45+ CD38+ surface kappa light chain restriction CD5- CD10-
 - Plasmacytic: CD19+ CD45+ CD38+ CD138+ cytoplasmic kappa light chain restriction

- **IFISH**
 - del 1p32, gain/amplification 1q21, t(4;14), t(14;16), del 13q, del 17p13

- **MYD88 not tested** as all material was used
Lymphoplasmacytic lymphoma AND any serum IgM level

No relationship between IgM level and BM involvement

Treatment Options for Newly Diagnosed WM
Indications for treatment

<table>
<thead>
<tr>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constitutional symptoms (fever, night sweats, weight loss, fatigue)</td>
</tr>
<tr>
<td>Symptomatic lymphadenopathy or splenomegaly</td>
</tr>
<tr>
<td>Hemoglobin ≤ 10 g/dL</td>
</tr>
<tr>
<td>Platelet count $<100 \times 10^9$/L</td>
</tr>
<tr>
<td>Hyperviscosity syndrome</td>
</tr>
<tr>
<td>Peripheral neuropathy</td>
</tr>
<tr>
<td>Amyloidosis related to WM</td>
</tr>
<tr>
<td>Cold agglutinin anemia</td>
</tr>
<tr>
<td>Symptomatic cryoglobulinemia</td>
</tr>
</tbody>
</table>

Considerations for treatment

- Rapid disease control
- Autologous stem cell transplantation
- IgM level
- Neuropathy
Frontline Treatment Approach

WM Diagnosis → Asymptomatic → Observation q2-3 months, Year 1 q3-6 months >Year 1, if stable.

WM Diagnosis → Symptomatic → ASCT Eligible

- Avoid oral alkylators
- Avoid nucleoside analogues

Immediate Disease Control Required → Immediate Disease Control Required → Plasmapheresis for symptomatic HV, severe cryoglobulinemia or CAGG¹,
Then 1st choice: IB² or BDR³,⁴
Alternate: Benda-R⁴ or CDR⁴

Immediate Disease Control Not Required → Immediate Disease Control Not Required → 1st choice: IB² or BDR³,⁴
Alternate: Benda-R⁴, CDR⁴, FR⁴

ASCT Ineligible → Immediate Disease Control Required

- Immediate Disease Control Required

- Immediate Disease Control Not Required

Plasmapheresis for symptomatic HV, severe cryoglobulinemia or CAGG¹,
then 1st choice: IB² or BDR³,⁴
Alternate: Benda-R⁴, CDR⁴, FR⁴

CAGG = cold agglutinemia
IB = ibrutinib

Primary therapy with rituximab

<table>
<thead>
<tr>
<th>Regimen</th>
<th>ORR</th>
<th>VGPR/CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rituximab only</td>
<td>25-45%</td>
<td>0-10%</td>
</tr>
<tr>
<td>Rituximab/cyclophosphamide</td>
<td>70-80%</td>
<td>20-25%</td>
</tr>
<tr>
<td>Rituximab/nucleoside analogues</td>
<td>70-90%</td>
<td>20-30%</td>
</tr>
<tr>
<td>Rituximab/proteosome inhibitor</td>
<td>70-90%</td>
<td>20-40%</td>
</tr>
<tr>
<td>Rituximab/bendamustine</td>
<td>90%</td>
<td>30-40%</td>
</tr>
</tbody>
</table>

European Myeloma Network: Bortezomib, Dexamethasone and Rituximab

<table>
<thead>
<tr>
<th>N</th>
<th>59</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR</td>
<td>85%</td>
</tr>
<tr>
<td>≥ VGPR</td>
<td>10%</td>
</tr>
<tr>
<td>Median time to response</td>
<td>3 months</td>
</tr>
<tr>
<td>Median PFS after 32 months</td>
<td>42 months</td>
</tr>
<tr>
<td>Peripheral neuropathy (grade ≥2)</td>
<td>32%</td>
</tr>
</tbody>
</table>

Phase II Study of Cyclophosphamide, Dexamethasone and Rituximab

<table>
<thead>
<tr>
<th>N</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR (CR 7% PR 67%)</td>
<td>83%</td>
</tr>
<tr>
<td>Median time to response</td>
<td>4.1 months</td>
</tr>
<tr>
<td>2-year PFS (all patients)</td>
<td>67%</td>
</tr>
<tr>
<td>2-year PFS (responders)</td>
<td>80%</td>
</tr>
<tr>
<td>Grade 3-4 neutropenia</td>
<td>9%</td>
</tr>
</tbody>
</table>

![Graph A](image1.png)

![Graph B](image2.png)

Bendamustine-R vs. CHOP-R: Subgroup Analysis

Progression-free survival in WM patients

IgM flare

- >25% increase in serum IgM
- Cut off is 4 g/dL
- May potentiate symptomatic hyperviscosity, cryoglobulinemia and cold agglutinemia

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rituximab</td>
<td>40-60%</td>
</tr>
<tr>
<td>Rituximab/Cyclophosphamide</td>
<td>30-40%</td>
</tr>
<tr>
<td>Rituximab/Proteosome inhibitors</td>
<td>10-20%</td>
</tr>
</tbody>
</table>

IgM flare

Avoid rituximab until IgM is <4 g/dL either by plasmapheresis or chemotherapy without rituximab
IgM flare with rituximab: an ECOG study

- Can persist for up to 4 months
- Not indicative of treatment failure
- No difference in progression-free and overall survival

Biology and targeted treatment
MYD88^{L265P} Somatic Mutation

- Found in >90% of WM
- Activates NFkB

Other MYD88 mutations

Ibrutinib in previously treated Waldenström macroglobulinemia

<table>
<thead>
<tr>
<th>N</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median number of treatment</td>
<td>2 (range 1-9)</td>
</tr>
<tr>
<td>Overall response rate</td>
<td>91%</td>
</tr>
<tr>
<td>Major response rate (≥PR)</td>
<td>73%</td>
</tr>
<tr>
<td>Median time to response</td>
<td>4 weeks</td>
</tr>
</tbody>
</table>

Progression-free and overall survival for 63 previously treated WM patients with ibrutinib

2 year PFS = 69%

2 year OS = 95%

FDA expands approved use of Imbruvica for rare form of non-Hodgkin lymphoma
First drug approved to treat Waldenström
January 29, 2015

CXCR4 mutation in WM

- Similar to WHIM syndrome
 (Warts, Hypogammaglobulinemia, Infections and bone marrow Myelokathexis)

- 30-40% of WM patients

- Almost always occur with MYD88L265P

MYD88 and CXCR4 mutations and response to Ibrutinib

<table>
<thead>
<tr>
<th>Response Rate</th>
<th>Mutated MYD88 and Wild-type CXCR4 (N=36)</th>
<th>Mutated MYD88 and CXCR4 (N=21)</th>
<th>Wild-type MYD88 and CXCR4 (N=5)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>100%</td>
<td>85.6%</td>
<td>60%</td>
<td>0.005</td>
</tr>
<tr>
<td>Major</td>
<td>91.7%</td>
<td>61.9%</td>
<td>0</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Blocking CXCR4

- Combined with ibrutinib
- Anti-CXCR4 antibody or CXCR4 receptor inhibitor
- Other therapies: BCL-2 inhibitor, PI3-kinase\textsubscript{\textdelta} inhibitor, IRAK1 inhibitor
Rituximab-based regimens are the mainstay of treatment.

Rituximab may induce IgM flare but does not indicate treatment failure.

Ibrutinib is FDA-approved for initial and second-line treatment for WM.

MYD88 and CXCR4 mutations are present in >90% and 30-40% of WM patients & impact response to ibrutinib.

Inhibitors for MYD88 and CXCR4 represent novel treatment strategies in WM.
Acknowledgments

Edward Libby, M.D.

Virginia C. Broudy, M.D.

Nicholas Burwick, M.D.

David Coffey, M.D.

Dan Sabath, M.D., PhD.