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American-style Puts under the JDCEV Model:

A Correction
Abstract

Nunes (2009) prices American-style standard call and put options under the geometric Brow-
nian motion, CEV, and JDCEV models, using an optimal stopping approach that is based
on the first passage time density of the underlying asset price through the early exercise
boundary. Under the JDCEV model, the solution provided by Nunes (2009, Equation 56)
for the recovery component of the American-style put is wrong. This note corrects Nunes
(2009, Equation 56), clarifies how the first hitting time density shall be determined, and
compares the numerical results obtained with the static hedge approach recently offered by

Ruas et al. (2013) for the JDCEV model.



I. Introduction

Nunes (2009) proposes an optimal stopping approach for the valuation of American-style
options that is valid for any Markovian and diffusion underlying price process—such as the
geometric Brownian motion or the CEV process—as well as for any parameterization of the
(unknown) exercise boundary. The proposed approach only requires that the underlying price
process provides a viable valuation method for European-style options and for its transition

density function.

Nunes (2009, Section VII) extends this approach to the JDCEV framework of Carr and
Linetsky (2006), where the price S of the underlying defaultable stock is modeled, under the

equivalent martingale measure Q, through the stochastic differential equation

" B gt A )t o (1,.8) AW
t

with Sy, > 0, and where the (short-term and risk-free) interest rate r; and the dividend
yield ¢; are deterministic functions of time, o (¢,S) represents the instantaneous volatility of
equity returns, A (¢, 5) is the default intensity, and I/VtQ € R is a standard Wiener process
generating the filtration F = {F;,t > to}. Carr and Linetsky (2006) assume that the stock

price S can either diffuse or jump to default, i.e. the time of default is simply given by

(2) g =To A C)

where ( is the first jump time of a doubly-stochastic Poisson process with intensity A (t,S),
while

(3) To :=inf {t > ¢y : S, =0}

is the first passage time (through diffusion) of the stock price to the bankruptcy level.

Under the JDCEV framework, Nunes (2009) decomposes the American-style option price
into a similar contract that assumes no default (until the earliest between the maturity date
and the early exercise date) and a recovery component. However, for the American-style
put the solution provided by Nunes (2009, Equation 56) for such recovery component is

wrong. Section II corrects the pricing solution of Nunes (2009, Equation 56) while Section
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IIT identifies the nonlinear integral equation satisfied by the first hitting time density through
the early exercise boundary and under the JDCEV model. Finally, Section IV summarizes

the changes made to Nunes (2009, Section VII) and recomputes Nunes (2009, Table 5).

II. Corrected Pricing Solutions

Under the JDCEV model, and assuming that { > ty, the time-t;, value of an American put
(if » = 1) or call (if ¢ = —1) on the stock price S, with strike price K, and with maturity
date T' (> tp) is represented by Nunes (2009, Equation 53), i.e.:

(1) Vu(SKT;e) = sup{Eg|e o " (0K — 6Sra)" Licornn

TET
G}

where T is the set of all stopping times (taking values in [tg, oc]) for the enlarged filtration

G :{gt 0t Z t()}, with gt == .E\/Dt.l

G|
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+Eq [e Lo ™ (SR Wyearnn

The second term on the right-hand side of equation (4) is zero for an American-style call
option; for an American put, it corresponds to a recovery payment equal to the strike K
at the default time ¢ (and as long as the default event precedes both the expiry and early
exercise dates). The error in Nunes (2009) concerns the evaluation of this recovery value for
the American-style put: Nunes (2009, Equation 56) wrongly assumes that {( < T AT} =
{¢ < T}, ie. evaluates the recovery component associated not to an American-style but
rather a European-style put option. However, the recovery component of an American-style
put must be worth less than the one associated to the corresponding European-style contract

because there can be no default after the (possible) early exercise event.?

To correct Nunes (2009, Equation 56), and following, for instance, Carr and Linetsky

(2006, Equations 3.2 and 3.4), equation (4) can be rewritten in terms of the restricted

D ={D; : t > to} is the filtration generated by the default indicator process D; = Dgisey
ZNote that Nunes (2009) assumes that the recovery value is paid at the default time but Carr and Linetsky

(2006, Equation 3.11) considers also the possibility of recovery only at the maturity date of the option (for

European-style puts). For American-style options, this latter case would be even simpler to model.



filtration [F as long as the short-term interest rate is replaced by an intensity-adjusted short-
rate:

_ T/\‘I'r
() Vi (S.K.T50) = sup{Eq e o "I GK — 650, Nprporany
TE
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to
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Moreover, since S behaves as a pure diffusion process with respect to the filtration F, Detem-

ple and Tian (2002, Propositions 1 and 2) show that there exists (at each time ¢ € [to, T])
a critical asset price E; below (above) which the American-style put (call) price equals its
intrinsic value and, therefore, early exercise should occur. Consequently, and represent-

ing the first passage time of the underlying asset price S to its early exercise boundary

{E, to <t < T} by Nunes (2009, Equation 5), i.e.
(6) Te = inf {t 2 to . St = Et},

equation (5) can be restated as:

(7) Vi (S, K, T;0) = V2 (S, K, T;¢) + V;P (S, K, T; ¢),
where
(8) V;f?) (S, K, Tu ¢) - E@ |:€_ fto B (Tl+/\(l7s'))dl <¢K - ¢ST/\Te)+ ]]'{7'0>T/\Te} E0i|

corresponds to Nunes (2009, Equation 55) i.e. to the American option price conditional on

no default (before the expiry and early exercise dates), and

TNATe .
(9) VP (S, K,T;¢) = (¢K)"Eg {/ e oA () )Ty sy

to

)

represents the present value of the recovery payment at the default time associated to the

American-style put.

Nunes (2009, Equation 57 and Proposition 7) correctly decomposes the American option
value conditional on no default (8) into the corresponding European option value (conditional

on no default until the maturity date) and an early exercise premium, i.e.:
(10) Vo (8. K, T;¢) = vy, (S, K, T; ¢) + EEF, (S, K, T; ¢),
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where
(11) of, (S, K, T50) = ¢ Jo""Bq [(6K — ¢51)" Licomy| Gao]
corresponds to Carr and Linetsky (2006, Equations 3.8 and 3.10), and
(12) EEPY (S,K,T;0)
T u
~ / e I (oK — 6B, — ol (B, K, T; )] SP (to,u) Q (7, € du| F,),
to

with

(13) SP (to,u) := g [e o Sy

)

representing the risk-neutral probability of surviving beyond time u > t,. However, the
recovery component (9) must not be given by Nunes (2009, Equation 56) but, instead, must
be also decomposed into an European-style recovery value and an additional (negative) early
exercise premium component. Next proposition provides such decomposition and corrects

Nunes (2009, Equation 56).

Proposition 1 Under the JDCEV model, and assuming that > tq, then

(14) Vil (S, K,T;¢) = v (S,K,T; ) — EEPY (S, K, T; ¢),
where
T
(15) vl (S, K, T;¢) = (¢K) " Eq { / e I AN () )T s EO]
to

is the recovery (at the default time) component of an European-style option contract, as given

in Carr and Linetsky (2006, Equation 3.4), and
T

(16)  BEP] (S, K.T;¢) = / e oD (B, K, T; ) SP (to,u) Q (7. € du| Fy,)
0

is the early exercise component of the recovery value.

Proof. Since 1, >y = 1 — {7 <7y, equation (9) can be rewritten as:

T
VP (S,K,.T;6) — (6K)"Eq [ [ R )y

to

)

+(pK) Eg [ / e S AN () ) 1o re ey dv

to

= U£ (S7K7T7¢) _EEPtlo) (S7K7T7¢)7

)
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i.e. as in equation (14), where

T
EEPP (S,K,T;¢) = (¢K)'Eq { / e TN (4 VT sureerydv

to

_((bK)JrEQ |:/ e ft%(rl+>\(l75))dl)‘(va S)]l{To>v,TE<T}dU

to

)

)

T
(17) = (¢K)*Eq { / e AN (4 VT s sureerydv

Te

)

Taking advantage of the Markovian nature of the underlying price process S, the expec-
tation on the right-hand side of equation (17) can be written as a convolution against the

density of the first passage time 7., yielding
EEP; (S,K,T:¢)

T T
= / (¢K)+EQ |:/ 67ft0(m+)\(l’s))dl)\(v,S)ﬂ{TO>U}dUﬂ{Su:Eu}

to u

f} Q(7. € dul F)

{infyy<i<u(S1)>0}

T
= (¢K)" / e o Ry [e—f;gw,sw]l

to

T
_[v r A l7S dl
]EQ (/ e Ju (rAQS)) A(U, S)]l{infuglgu(sl)>0}dv

T
_ / eGP (0. )P (B, K, T: 6) Q (70 € du| Fy) |

to

Su - Eu) ‘ thoj| Q (7—6 € dU| ‘/—-.t())

where the last line corresponds to equation (16), and follows from equations (13) and (15). 1
Since A (t,.S) > 0, for t € [ty, T], Proposition 1 implies that
VD (S, K, T; ) < v (S, K,T; ¢).

Hence, and as expected, Nunes (2009, Equation 56) overvalues the recovery component of

the American-style put since it simply corresponds to equation (15).

III. The First Passage Time Density

Under the geometric Brownian motion or the CEV process, the optimal stopping time 7. is
recovered by solving the nonlinear integral equation of Nunes (2009, Equation 35) through

the standard partition method proposed by Park and Schuurmann (1976). However, under
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the JDCEV model, the early exercise event only occurs at the stopping time 7. if 7. < (.
Therefore, under the JDCEV model, the density of the first passage time 7. solves not Nunes
(2009, Equation 35) but rather the following nonlinear integral equation.

Proposition 2 Assuming that the underlying asset price Sy follows a JDCEV process and
considering that the optimal exercise boundary is a continuous function of time, the first
passage time density of the underlying asset price to the moving exercise boundary is the
implicit solution of the following nonlinear integral equation:
(18) G_ (to, Stp; u, Eyy) = / G_y (v, Eyyu, E,) SP (to,v) Q (7. € dv| Fy,) ,

to
for ¢Sy, > ¢E;, and u € [to, T], and where ¢ = —1 for an American call or ¢ = 1 for an

American put, with?

(19) Gy (v, Ey;u, Ey)

w 2 - B ﬁ 1 2 - B 2 - B
e_f'” bldl k (U7U? ’U) (bdp _ —, k (U,'U/, U)’Q (1 + U+) , k (/07/07 1})
7 (v,u) 218" 7 (v,u) 7 (v,u)
c+1
20 vy = —=2,
(20) += 5
(21) o) = [ ate e
1 e, 2 u
(22) k(v,u;S) = —SlBle[Bl S enct
18]
and
(23) o) = Tl—ql—f-bl.
Proof. By the law of total probability,
(24) Q(¢Su < 0By, ¢ > ulGyy) = Q(9Sy < PEy, ¢ > u,Te < ulGyy)

3The function @4 (p,y;v, ) = EX*(v:A) (Xp]1{¢XZ¢y}) represents, for ¢ € {—1,1}, the truncated p-
th moments of a noncentral chi-square random variable X with v degrees of freedom and noncentrality

parameter A, as defined in Carr and Linetsky (2006, Equations 5.11 and 5.12).
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since Q (¢S, < ¢E,,( > u, 7. > u|Gy,) =0

Starting with the left-hand side of equation (24) and using Carr and Linetsky (2006,
Equation 3.2), then

Q(¢Sy < B, ¢ > u|Gyy) = Eg (Ligs,<om..coup| Gio)

(25) = Eq (67 o MDAy g s momu)

Fiu)
Moreover, Carr and Linetsky (2006, Proposition 5.4) allows equation (25) to be rewritten as

Q(Qbsu < ¢EU7C > u| gto)

e i)
k(to,tmsto) k (tO, tO; Sto)

‘ =

|B

u _ .
{¢efto % (1B| Ry (1,0 ) P! <¢Eu}

R 18]
]E(U+) T(tg,u) 1 2t 213l (5 ads
k(toﬂfo;sto) T(to,u) {¢R3_(t07u> <¢E3|/3|E 2‘6']}50 sd }

T(tg,u) — ‘B|2‘r(t0,u)

(26) = e ot

Y

where the expectation is taken with respect to the law of a Bessel process {RT(tO,u); u > to}
of index vy and started at R, 1) = k (to,to; St,). Finally, using Carr and Linetsky (2006,

Equations 5.11 and 5.12), and since the process M follows a noncentral chi-square law

7(to,u)
k2 (to,to;sto)

with 2 (1 + vy ) degrees of freedom and non-centrality parameter , equation (26)

7(to,u)
yields
@ ( k2 (to u; Eu) . 2 (1 + ’U+) k;Q(t(),tO;Sto))
u T r(tow) ) 7(to,u)
Q(¢Su < 9EwC > ulGy) = e o GG — :
k2 (to,to;sto) 2|B‘
7(to,u)

(27) = G_g4(to, Sty3u, E,) .

Concerning the right-hand side of equation (24),

Q(¢Su < OB, ¢ >u, 7 <ulGy) = Eg (Ligs,<opucoure<ut| Gro)

(28) = Eg <6_ Jio MEDAY 1 o <o mosure<u)

Fu)
where the last line follows again from Carr and Linetsky (2006, Equation 3.2). Since S;

behaves as a pure and Markovian diffusion process with respect to the filtration IF, equation
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(28) can be rewritten in terms of the convolution between the densities of the first passage

time 7. and of the random vector (S, 79):

Q(¢Su < OLu, (> u, Te < u| Gy

u
— [ (Sl
= / Eq (6 i 250 ﬂ{¢5u§¢Eu7To>u,Su:Ev}

to

Fo) Q(r. € dv] F)

(29) = / E@ |:EQ (6_ I /\(SJ)dl]1{¢Su§¢>Eu,infuglgu(sl)>0}’ Sv = Ev)

to

eI N e esis050y| Fio| Qe € o] Fy),

where the last equality follows from the tower law for conditional expectations. Comparing
the inner expectation on the right-hand side of equation (29) with equation (25), and using

equation (27), then
Eg (e‘ I A(S’l)dl]l{¢Su§¢Eu,infU§l§u(Sl)>0}‘ Sy = Ev) =G_4 (v, Ey;u, Ey),

and, therefore, equation (29) becomes

Q(¢Su S ¢Eu7<. > U, Te S U| gt())
_ / G_¢ (U, E,;u, Eu) E@ e fto A(S’l)dl]l{inftoglgv(sl)>0}‘ }—to] Q (7'6 S d"U| -/—';to)
¢

0

(30) = /u G_y (v, Ey;u, E,) SP (to,v) Q (7. € dv| Fyy)

to

where the last line follows from definition (13).

Combining equations (24), (27), and (30), equation (18) arises immediately. 1

IV. Changes to the Original Paper

In summary, the first correction that shall be done to the pricing solutions proposed in Nunes
(2009, Section VII) is to replace Nunes (2009, Equation 56) by equation (14). Combining
equations (7), (10), and (14), this is equivalent to rewrite the American-style option price

under the JDCEV model as

(31) ‘/to (Sa K7T’ ¢> - [U?O (Sa K7T7 ¢) +U£ (Sa K7T7 ¢)} +EEPto (Sa K7T7 ¢)7
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where
(32) EEP, (S,K,T;¢) = EEP) (S,K.,T;¢) — EEP? (S,K,T; ¢)

represents the overall early exercise premium while the first two terms on the right-hand side
of equation (31) are simply the price of an European-style option whose recovery component

assumes payment at the default time.

Since the time path {E};,ty <t < T} of critical asset prices is not known ex ante, to use
equation (31), we must first parameterize such early exercise boundary, and maximize (with
respect to those parameters) not Nunes (2009, Equation 60) but the overall early exercise pre-
mium (32). For this purpose, and as a second correction, the density of the optimal passage
time 7, shall be recovered by solving—through the standard partition method proposed by
Park and Schuurmann (1976)—the nonlinear integral equation (18) instead of Nunes (2009,
Equation 35).

Using the above two mentioned corrections, Table 1 recomputes Nunes (2009, Table 5).
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