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 Trading Costs and Returns for US Equities:  
The Evidence from Daily Data 

Abstract 
 This study examines various approaches for estimating effective costs and price 

impacts using data of daily frequency. The daily-based estimates are evaluated by 

comparison with corresponding estimates based on high-frequency TAQ data. The 

analysis suggests that the best daily-based estimate of effective cost is the Gibbs sampler 

estimate of the Roll model (suggested in Hasbrouck (1999)). The correlation between this 

estimate and the TAQ value is about 0.90 for individual securities and about 0.98 for 

portfolios. Daily-based proxies for price impact costs, however, are more problematic. 

Among the proxies considered here, the illiquidity measure (Amihud (2000)) appears to 

be the best: its correlation with the TAQ-based price impact measure is 0.47 for 

individual stocks and 0.90 for portfolios. 

 The study then extends the Gibbs effective cost estimate to the full sample 

covered by the daily CRSP database (beginning in 1962). These estimates exhibit 

considerable cross-sectional variation, consistent with the presumption that trading costs 

vary widely across firms, but only modest time-series variation. In specifications using 

Fama-French factors, the Gibbs effective cost estimates are found to be positive 

determinants of expected returns. 

 

JEL classification codes: C15, G12, G20
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1. Introduction 

 The notion that individuals must take into account the costs of acquiring, 

divesting and rebalancing their portfolios, and that these costs affect equilibrium expected 

returns, is driving a convergence of market microstructure and asset pricing (see the 

recent survey of Easley and O'Hara (2002)). Asset pricing tests generally require large 

cross-sectional and long time samples in order to reliably estimate differences in expected 

returns on risky assets. Measures of trading cost common in empirical microstructure 

work, on the other hand, are generally based on high-frequency trade and quote data, and 

are so limited to the samples for which these data exist.1  Trading cost measures based on 

data of daily or lower frequency are therefore highly desirable. In this context, the present 

paper seeks to examine various daily-based trading cost measures utilized in other 

studies, explore their relationships to high-frequency cost measures, and to discuss a 

promising new daily-based liquidity measure. 

 The analysis starts with existing high-frequency measures of trading cost. 

Roughly speaking, these fall into two categories: spread-related and price-impact 

measures. Neither of these is a comprehensive measure of trading cost. Spread-related 

measures reflect the cost faced by a trader contemplating a single order of small size. 

Price impact functions are more indicative of the costs associated with dynamic strategies 

in which an order is broken up and fed to the market over time. 

 The paper then turns to the various proxies that may be constructed from daily 

return and (in some cases) volume data. As with the high-frequency measures, these tend 

to resemble either spread-related or price impact proxies. Spread proxies include the 

standard moment-based estimates of the Roll model and a new measure, the Gibbs 

sampler estimate of the Roll model. Price impact proxies include the liquidity ratio (used 

                                                 
1 Representative studies using high-frequency data in asset pricing specifications include 

Brennan and Subrahmanyam (1996) and Easley, Hvidkjaer, and O'Hara (1999). 
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by Cooper, Groth, and Avera (1985) and others), the illiquidity ratio (Amihud (2000)) 

and the reversal (gamma) measure of Pastor and Stambaugh (2002). 

 Both high-frequency and daily-based measures are constructed for a comparison 

sample comprising roughly 1,800 firm-years in 1993 to 2001 (for which we possess both 

daily CRSP and high-frequency TAQ data). The correlations between the CRSP-based 

and TAQ-based measures are used as a guide to the validity of the former as proxies. By 

this measure, the Gibbs estimate is an excellent proxy for effective cost, both for 

individual stocks and portfolios. Among the price impact proxies, the illiquidity ratio is 

modestly correlated with the TAQ measure for individual stocks, and more strongly for 

portfolios. 

 In view of the strong performance of the Gibbs effective cost estimate in the 

comparison analysis, these estimates are constructed for the CRSP daily database. These 

estimates exhibit substantial cross-sectional variation. Time-series variation, however, is 

large only for subsamples that have low market capitalization.  

 The paper also presents a preliminary analysis of the relation between the 

effective cost estimates and returns, to assess whether effective cost is associated with a 

liquidity premium. In specifications that include the three Fama-French factors, excess 

returns are found to be positively related to effective costs. 

 The paper is organized as follows. The next section discusses empirical 

measurement of trading costs from a microstructure perspective, and develops the two 

classes of measures (spread and price impact). The following two sections discuss 

proxies that may be constructed from daily data. Section 3 analyzes spread proxies; 

Section 4, price impact proxies. Section 5 describes the data samples. The properties of 

the cost estimates in the TAQ/CRSP comparison sample are discussed in Sections 6 

(TAQ) and 7 (CRSP).  Section 8 describes the correlations between the CRSP estimates 

and the TAQ values they are supposed to proxy. Effective cost estimates for the full daily 

CRSP sample are described in Section 9, and their relation to returns is analyzed in 

Section 10. A brief summary concludes the paper in section 11. 
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2. Measures of trading cost based on detailed (high-frequency) data 

 Most computations of transaction costs can be discussed within the context of the 

implementation shortfall approach advocated by Perold (1988). For an executed trade (or, 

more generally, a sequence of trades), this approach suggests measuring the cost as the 

difference between the average transaction price and a hypothetical benchmark price 

taken prior to the initial trade. The most straightforward calculations are for institutional 

traders, for whom the time of the trading decision and the exact sequence of trades are 

usually well-documented (Keim and Madhavan (1995), Keim and Madhavan (1996), 

Chan and Lakonishok (1997), Conrad, Johnson, and Wahal (2001)). More commonly, 

data limitations or the need for prospective (rather than retrospective) measures introduce 

complications. In such situations, it is useful to group the measures as “spread-related” 

and “impact-related”, and the following discussion is organized on these lines. 

a. Spreads: posted and effective 

 A trader who demands to trade a small amount of the security  immediately must 

be prepared to pay the market’s prevailing ask price (if buying) or receive the market’s 

prevailing bid (if buying). The difference between the two is the posted market spread. 

Taking the midpoint as a benchmark, the half- spread is a sensible first estimate of the 

trading cost.  For comparability across firms and time, this paper’s definition uses logs. 

The half-spread is: 

 ( )1
2t ts a bt= −  

where at is the log of the ask price prevailing at time t and bt is the log of the bid. For a 

particular firm over some time period, a useful summary measure of the half-spread is the 

time-weighted average of st. Posted bid-ask spreads have been used in asset pricing 

studies by Stoll and Whalley (1983), Amihud and Mendelson (1986), Amihud and 

Mendelson (1989), Eleswarapu and Reinganum (1993), Kadlec, McConnell, and Purdue 

U (1994), and Eleswarapu (1997), among others. 
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 In many markets, however, for a variety of reasons, actual trade prices are often 

better than the posted quotes (due to “price improvement”). Accordingly, the effective 

cost is defined as  

  (1) 
, for a buy order
, for a sell order

t t
t

t t

p m
c

m p
−

=  −

where pt is the actual log price of the tth trade and  mt is the log quote midpoint prevailing 

at the time the order was received. The effective cost is most meaningful for small market 

orders that can be accommodated in a single trade. For a particular firm over a given time 

interval, a useful summary measure of ct is the dollar-volume-weighted average. 

 The effective cost occupies a prominent role in US securities regulation. Under 

SEC rule 11ac1-5, market centers must periodically report summary statistics of this 

measure, disaggregated by order size and security characteristics. 

 Accurate computation of the effective cost requires knowledge of order 

characteristics, most importantly the arrival time and direction (buy or sell). Since order 

data are not widely available, the effective cost is commonly estimated from transaction 

and quote data.  A trade priced above the midpoint of the bid and ask (prevailing at the 

time of the trade report or a brief time earlier) is presumed to be a buy order; a trade 

priced below the midpoint is presumed to be a sale. Effective costs computed in this 

fashion are extensively used in academic studies. 

b. Price impact measures 

 Incoming orders give rise to both temporary and permanent effects on the security 

price.  From an economic perspective, temporary components may arise from transient 

liquidity effects, inventory control behavior, price discreteness, etc. Permanent effects are 

generally attributed to the information content of the order. It is difficult to differentiate 

permanent and transient effects empirically: what appears to be permanent over a window 

of five minutes may be transitory over a day.  Nevertheless, for simplicity, the following 

discussion will assume that the entire impact is permanent.  
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 To illustrate the importance of price impact for trading costs, suppose that the 

evolution of the quote midpoint is given by: 

 1t t tm m x tuλ+ = + +  (2) 

where xt is the signed order flow, λ is a liquidity parameter and ut is a zero-mean 

disturbance reflecting newly arriving non-trade-related public information. Suppose that 

the effective cost on each trade is c, and consider a buy order that is broken into two 

trades of n1 and n2 shares. Relative to the initially prevailing quote midpoint, the expected 

total cost of the order is 

 ( ) ( ) ( ) ( ) ( )1 1 1 2 2 1 1 1 1 2 2 2 2 1 1 2n p m n p m n p m n p m m m c n n n1λ− + − = − + − + − = + +  

That is, in addition to the effective cost on the order, the total cost reflects the price 

impact of the first trade. Extension to more than two trades is straightforward. 

 Although some theoretical models imply a relation close to eq. (2), market 

features such as discreteness, inventory control, serial correlation in order flow, etc., 

militate in favor of more general specifications. These specifications are often estimated 

at the transaction level, and often involve the joint dynamics of order flow and other 

variables, as well as prices. 

 To facilitate estimation over a large sample of stocks, estimations in the present 

paper are based on returns and signed order flows aggregated over fifteen-minute 

intervals. The empirical evidence is mixed on the exact specification of the order 

variables.  Accordingly, four variants of eq. (2) were considered (for each stock), using 

singly and jointly the following order flow variables. Let v  represent the signed dollar 

volume of the ith trade in fifteen-minute interval t, signed in the usual fashion (by 

comparing the trade price to the prevailing midpoint). Then V

,i t

t is the cumulative signed 

dollar volume, V , where the summation is over all trades in interval t; N,t i
= ∑ i tv t is the 

signed number of trades, ( ),t ii
N Sign v= ∑ t  where ( )x 1 if 0Sign x= + >  , and 

0 if x=0; and, S

1 if 0x− >

it is the signed square-root dollar volume, ( ),t i
S Sign i tv vit= ∑ . With 

these definitions, the models are: 
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1 2 3

Model I: 
Model II: 
Model III: 
Model IV: 

I
t t t

II
t t t

III
t t t

IV IV IV
t t t t

r N u
r S u
r V u
r N S V

λ
λ
λ
λ λ λ

= +
= +
= +

tu= + + +

 (3) 

Price-impact related measures of trading cost have been used in asset pricing 

specifications by Brennan and Subrahmanyam (1996). A related measure is the PIN 

statistic used in Easley, Hvidkjaer, and O'Hara (1999). PIN is a measure of information 

asymmetry, but it is not a measure of price impact. It is based solely on signed order 

flows, and most directly reflects the strength of one-sided runs in the order flow. 

3. Estimates of the effective cost constructed from daily data 

 The effective cost and price impact measures described above may be estimated 

from transactions level data. This section turns to consider of estimates constructed from 

data at a daily or longer frequency. 

a. The Roll model 

 Roll (1984) suggested a simple model of the spread in an efficient market. A 

variant of this model is as follows. Let the logarithm of the efficient price, mt, evolve as: 

 1t tm m u− t= + . (4) 

where . The term “efficient price” is used here in the sense 

common to the sequential trade models, i.e., the expected terminal value of the security 

conditional on all public information (including the trade history). The ut reflect new 

public information. The (log) bid and ask prices are given as 

0 and 0 for t t sEu Eu u t s= = ≠

c
 t t

t t

b m c
a m

= −

= +
 (5) 

where c is the nonnegative half-spread, presumed to reflect the quote-setter’s cost of 

market-making.  

The direction of the incoming order is given by the Bernoulli random 

variable { }1, 1tq ∈ − + , where –1 indicates an order to sell (to the quote-setter) and +1 

indicates an order to buy (from the quote-setter). Buys and sells are assumed equally 
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probable. In the standard implementation, qt is assumed independent of , i.e., 

that the direction of the trade is independent of the efficient price movement. Depending 

on qt, the (log) transaction price is either at the bid or the ask: 

tm u∆ = t

 
if 1
if 1

t t
t

t t

b q
p

a q
= −

=  = +
 (6) 

The cost parameter is c. Inference is based on a time series sample of trade 

prices { }1 2, , , Tp p p p= … . Since the prices are those at which transactions actually occur, 

c is in principle the effective cost, rather than half the posted spread. 

b. Moment estimates of c (cM and cMZ) 

 Roll proposed estimation by method-of-moments. The model implies 

 ( )1 1t t t t t t tp m c q m c q c q u− −∆ = + − + = ∆ + ,  (7) 

from which it follows that: 

 ( )
( )

2 2

2
1

2
,

t u

t t

Var p c
Cov p p c

σ

−

∆ = +
∆ ∆ = −

 (8) 

The corresponding sample estimates for the variance and autocovariance imply estimates 

for σu and c that possess all the usual properties of GMM estimators, including 

consistency and asymptotic normality. The estimate obtained in this fashion will be 

denoted cM. Moment estimation for this model is relatively easy to implement and often 

satisfactory. 

 A sample moment estimate of c only exists, however, if the first-order 

autocovariance is negative. In finite samples, particularly of the sort that arise with daily 

data, however, this is often not the case. When estimating the spread using annual 

samples of daily return data, Roll found positive autocovariances in roughly half the 

cases. Harris (1990) discusses the incidence of positive autocovariances, and other 

properties of this estimator. His results show that positive autocovariances are more 

likely for low values of the spread. Accordingly, one simple expedient to the problem of 

infeasible moment estimates is to simply assign an a priori value of zero. This gives rise 

to a moment/zero estimate:  cMZ = cM, if cM is defined, and zero otherwise.  
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c. The Gibbs-sampler estimate, cGibbsibbs 

 Hasbrouck (1999) advocates Bayesian estimation using the Gibbs sampler. To 

complete the Bayesian specification, I assume here that ( 2~ . . . 0,
d

t uu i i d N )σ .  In this 

approach, the unknowns comprise both the model parameters { }2, uc σ and the latent data, 

i.e., the trade direction indicators { }1, , Tq q q≡ … and the efficient prices { }1, , Tm≡ …m m . 

The parameter posterior ( , u )f c σ p  is not obtained in closed-form, but is instead 

characterized by a random sample drawn from it. These draws are constructed by 

iteratively drawing from the full conditional distributions.  

 To start this process, suppose that q and σu are given, and consider the 

construction of ( , ,u )f c q pσ

( 2,~ 0,
d

prior
cσ+

. Given q, eq (7) is a simple linear regression with c as the 

coefficient. With a normal prior for c, this is a standard Bayesian regression model (see, 

for example, Kim and Nelson (2000)). The prior used here is actually a modification, 

specifically, c N  where the “+” superscript denotes restriction to the 

positive domain. In the implementation, I set 

)
2, 1prior
cσ = . As posted spreads are usually 

much lower than 50%, this implies a prior that is relatively flat over the region of 

interest.2 The posterior for c is also normal, and a random draw is made from this.  

 Next, given q, p and the newly-drawn value of c, we may compute the residuals in 

eq (7). A convenient prior for 2
uσ  is the inverted gamma distribution. I use 

(2 ~ ,
d

u IG )σ α β  with , implying a fairly uninformative prior. The posterior is 

also inverted gamma, and a draw of 

1210−α β= =
2
uσ  is made from this distribution. The next step is to 

make random draws of m and q, conditional on c, 2
uσ , and p. The details of this are 

                                                 
2 Choice of is important in one respect. The Gibbs estimate of c is essentially 

formed by estimating equation (7) as a simple linear regression conditional on simulated 

values of qt. It is possible that in some draws, all of the values of qt are either +1 or –1. In 

this case, all of the ∆qt are zero, the regression is uninformative, and the posterior 

distribution for c is identical to the prior. An extremely large draw of c can draw the 

Gibbs sampler into a region where mixing is poor. 

2, prior
cσ
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discussed in Hasbrouck (1999). This completes one cycle (“sweep”) of the Gibbs 

sampler.3 The appendix to the present paper provides an illustration. 

 This treatment of the Roll model is almost certainly misspecified in a number of 

important respects. Actual samples of stock returns contain many more extreme 

observations than a normal density would likely admit. Trade directions are unlikely to be 

independent of the efficient price evolution. Realized prices are discrete. The effective 

cost is unlikely to be constant within a sample. Etc. Hasbrouck discusses various 

extensions to deal with some of these features. For computational expediency and 

programming simplicity, however, the present paper uses the most basic form of the 

sampler. 

 Lest misspecification appear to be of major potential importance, it must be 

emphasized that the Gibbs estimates are to be compared against values constructed 

independently from high-frequency data. There is accordingly no immediate need to 

assess the appropriateness of the model assumptions or implementation procedures. If the 

Gibbs estimates are strongly correlated with the corresponding high-frequency values, 

these concerns are of secondary importance. 

4. Measures of price impact constructed from daily data. 

 The price impact parameters, the λs in Models I-IV, are coefficients of signed 

order flow variables. These are generally not available. The closest thing reported by 

most markets on a daily basis is the trade volume, the total number of shares that changed 

hands. A number of price impact measures based on (unsigned) volume have been 

proposed by other researchers. I examine here three representative proxies, and propose a 

third.  

                                                 
3 For each stock, I ran 1,000 sweeps of the sampler, discarding the first 200 as a burn-in 

period. The mean of the c draws in the remaining 800 sweeps was taken as the summary 

estimate of c. 
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a. The (Amivest) liquidity ratio, L 

 The Amivest liquidity ratio is the average ratio of volume to absolute return: 

 d

d

VolL
r

 
= 

 
  (9) 

where the average is taken over all days in the sample for which the ratio is defined, i.e., 

all days with nonzero returns. It is based on the intuition that in a liquid security, a large 

trading volume may be realized with small change in price. This measure has been used 

in the studies of Cooper, Groth, and Avera (1985), Amihud, Mendelson, and Lauterbach 

(1997), and Berkman and Eleswarapu (1998), among others. 

b. The illiquidity ratio, I 

 Amihud (2000) suggests measuring illiquidity as: 

 d

d

r
I

Vol
 

= 
 

  (10) 

where rd is the stock return on day d and Vold is the reported dollar volume. The average 

is computed over all days in the samples for which the ratio is defined, i.e. days with 

nonzero volume. In terms of units (return per dollar volume), this measure roughly 

corresponds to the price impact coefficient IIIλ  in Model III, eq. (3). The variables are 

substantially different, however, as the IIIλ  relates signed volume to signed return, 

whereas I relates absolute return and cumulative (unsigned) volume. This measure is also 

used by Acharya and Pedersen (2002). 

c. The reversal measure, γ 

 Pastor and Stambaugh (2002) suggest measuring liquidity by γ in the regression 

 ( )1
e

d d d dr r sign r Vol dθ φ γ+ = + + + ε  (11) 

where  is the stock’s excess return (over the CRSP value-weighted market return) on 

day d in month m, and Vol
,

e
d mr

d,m is the dollar volume. The liquidity measure is the coefficient 

of lagged signed volume. Intuitively, it measures the subsequent day’s “correction” to an 
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order flow shock.  In principle, it should be negative, with more negative values implying 

lower liquidity. 

5. Data for the comparison analysis 

 The analysis draws on TAQ data for the high-frequency measures, and on CRSP 

for daily data. There are two samples. The TAQ comparison sample is a random sample 

of firms that are present and could be matched on TAQ and CRSP databases. Estimation 

of the high-frequency specifications was performed on a sample drawn from the NYSE’s 

TAQ database, from 1993 through 2001. The sample was constructed as follows. For a 

given year, a stock was eligible if it was a common stock, was present on first and last 

TAQ master file for the year, had the NYSE, Amex or Nasdaq as the primary listing 

exchange, and didn’t change primary exchange, ticker symbol or cusip over the year. 

(Constancy of primary exchange, ticker symbol and cusip facilitated the subsequent 

matching to the CRSP data.) All eligible stocks for a year were randomly permuted, and 

the first 200 were selected. Each of the nine years was sampled separately, resulting in a 

total sample of 1,800 firm years. Firms that could not be matched subsequently to CRSP 

were deleted. Most of the results discussed below are based on annual estimations. 

Alternative analyses employed monthly and quarterly estimations. 

6. Cost estimates based on TAQ data 

  reports counts for the TAQ comparison sample by year and listing 

exchange. In all years, Nasdaq firms are most numerous. 

Table 1

a. Spread-related measures 

  reports summary statistics for the spread-related measures estimated from 

the TAQ data. The mean log effective cost is 0.014 (roughly 1.4%), while the mean 

posted log half-spread is about a third higher (0.020). This is the usual result, consistent 

with widespread betterment of the posted quotes. The relatively high skewness and 

kurtosis, however, reflect a distribution that has an extreme upper tail. That is, a few 

stocks have very high posted and effective costs. 

Table 2



Page 12 

b. Price impact measures 

  also reports summary statistics for RTable 2

Table 2

2s for each of the four return/signed 

order flow models discussed in Section 2.b. Among models I, II and III, which each rely 

on a single signed order flow proxy, Model II (which uses the square-root order flow, St) 

is, by a small margin, the best (judging by mean R2). Interestingly, Model III (the signed 

dollar volume) is the worst. Finally, the incremental improvement in fit (relative to model 

II) achieved by putting in all three variables (model IV) is small. Accordingly in the 

interests of proceeding on to the next stage of the analysis with a single price impact 

coefficient, Model II is preferable to the others. 

 It is worth emphasizing, however, that the distribution of the price impact 

coefficient λII, is sharply skewed and highly leptokurtotic. While some of the high values 

might arise from estimation error, it is also acknowledged as a practical matter that 

impact costs in thinly traded issues are extremely high. There is no obvious reason to 

exclude these observations from the analysis. The character of the distributions does 

argue, however, in favor of robust statistical analysis. 

7. Daily return-based (CRSP) cost estimates in the TAQ comparison sample 

  presents summary statistics for the cost estimates in the TAQ comparison 

sample that are based solely on CRSP daily data.  That is, although the firms and time 

periods were selected to match the TAQ sample, the estimates discussed in this section 

do not employ the TAQ data. 

Table 3

a. Spread-related cost measures. 

 Summary statistics for the Gibbs-sampler estimate of the effective cost, cGibbs, are 

presented in the first row of Table 3. The similarity of the distributional parameters to 

those for the effective cost estimated from the transaction data ( ) is striking. 

Means, standard deviations, and skewness and kurtosis parameters are very close. 

 The moment estimate of effective cost, cM, does not fare as well. In over one-third 

of the cases it is undefined (due to positive return autocovariances). The alternative 
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estimate that sets otherwise undefined values to zero, cMZ, offers some improvement.  

While the mean and standard deviation of cMZ are similar to those for the TAQ-based 

effective cost, the skewness and kurtosis are somewhat lower. 

b. Impact-related cost measures 

 The bottom part of Table 3 presents summary statistics for the price impact 

proxies. Unlike the effective cost estimates discussed above, however, we would not 

expect the distributions for these proxies to closely resemble that of the price impact 

parameter (λII) described in Table 2. The proxies in Table 3 nevertheless exhibit a 

kurtosis that is even higher than that of λII. 

8. Correlations and proxy relationships in the TAQ comparison sample 

  presents correlation matrices for the principal TAQ and CRSP measures 

used in the study. The variables are grouped as to type of measure (effective cost or price 

impact) and source of data (TAQ or CRSP). The table presents both Pearson and 

Spearman (rank order) correlations. Furthermore, in view of prominent role of market 

capitalization as an explanatory variable in both microstructure and asset pricing 

analyses, the table presents both and partial (with respect to log market capitalization) 

correlations. 

Table 4

 The upper left-hand section of each matrix summarizes correlations between 

effective cost estimates. Across all correlation measures, both cGibbs and cMZ 

are positively correlated with the cTAQ, but the Gibbs correlation is stronger. The Pearson 

correlation between the cTAQ and cGibbs is 0.901, while that for the moment/zero estimate 

is 0.825. This pattern also appears in the Spearman correlations (Panel B), Pearson partial 

correlations (Panel C), and Spearman partial correlations (Panel D). The relationship 

between cTAQ and cGibbs is illustrated visually in , which presents a scatter plot 

and best-fit regression lines. The relationship is visually strong both in the overall sample 

(Panel A) and a sample restricted to low values of TAQ effective cost (Panel B).  The fit 

Figure 1
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is, however, obviously looser for firms with high effective costs, suggesting that 

measurement error is higher for these firms.  

 In summary, within the class of effective cost estimates based on daily data, the 

Gibbs estimate consistently dominates. It is always feasible (in contrast with the moment 

estimate). Furthermore, however measured (simple or partial, Pearson or Spearman 

correlation), it has the strongest relationship to the target value. 

 Correlations between the impact measures appear in the lower right-hand corner 

of each correlation matrix.  A high value of λII suggests illiquidity. In principle, therefore, 

the correlation should be negative for the liquidity ratio L, and positive for the illiquidity 

ratio I and the reversal measure γ. The results suggest proxy relationships that are weaker 

and more variable than those found for the effective cost estimates.  Judging by the 

simple Pearson correlations (Panel A), only I is strongly correlated in the expected 

direction. Given the distributional extremities noted above, however, the Spearman 

correlation may well be more meaningful. Here, all proxies are correlated in the expected 

direction, with the liquidity ratio L being highest, followed closely by I, and then γ. The 

partial correlations, which measure the residual relationship after controlling for log 

market capitalization suggest a similar story. The Spearman partial correlations, however, 

are substantially reduced relative to the corresponding Spearman simple correlations in 

Panel A. 

 We now turn to the correlations between price impact and effective cost 

measures. First note that the Pearson correlation between TAQ-based measures cTAQ and 

λII is moderately positive (0.515). The strength of this relation is not uniform, however, 

across all types of correlation. The partial Spearman correlation is only 0.090. In 

principle, some positive correlation would be expected. Price impacts arise from 

asymmetric information considerations, which would presumably be impounded into 

posted and effective spreads and costs. Spreads should also be driven, however, by 

inventory and clearing costs, which would not necessarily be reflected in the price impact 

coefficient. Thus it is not too surprising that these two measures appear to be capturing 

different things. 
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 In considering the correlations between cTAQ and the CRSP-based price impact 

proxies, and between λII and the CRSP-based effective cost estimates, it is worth noting 

that both the liquidity L and illiquidity I measures are (in the Spearman full and partial 

correlations) strongly correlated with the TAQ estimate of the effective cost cTAQ. This 

may reflect the fact that both L and I use volume information and cTAQ is a volume-

weighted measure. The corresponding Pearson full and partial correlations are weaker. 

 The analysis to this point has involved correlations between estimates constructed 

at the firm level. In many asset pricing applications, however, these estimates are 

averaged over portfolios. To the extent that estimation errors are uncorrelated, these 

averages should have lower measurement errors. To assess the improvement offered by 

forming portfolios, correlation analyses parallel to the ones discussed above were 

performed for grouped data. The grouping was by year, and within each year by cTAQ or 

λII. In the cTAQ analysis, for example, ten portfolios were formed for each year by ranking 

on cTAQ. 

  reports the correlations between the various measures for portfolios 

grouped by c

Table 5
TAQ. (For the sake of brevity, Spearman correlations are not reported.) The 

results for the effective cost proxies are striking. The correlation between cTAQ and the 

Gibbs estimate cGibbs is 0.987, while that for cMZ is only slightly lower (Panel A). The 

partial correlations (net of log market capitalization) are also high, although cTAQ is now 

more clearly preferable to cMZ (Panel B). Table 6 presents correlations in portfolios 

grouped by the TAQ impact measure λII. All of the proxy relations are somewhat 

strengthened, but as with the ungrouped estimates, the illiquidity ratio I is apparently the 

best proxy. Its full correlation with λII is 0.899, and its partial correlation is 0.837. This is 

markedly better than either L or γ. 

 The results of this section may be summarized as follows. Most importantly, for 

both individual stocks and portfolios, the CRSP-based Gibbs estimate of effective cost is 

an excellent proxy for the corresponding TAQ-based estimates. Among the price impact 

proxies, the illiquidity ratio appears to offer the most consistent relationship to the TAQ-

based λII. The CRSP-based measures of price impact are weaker proxies than the 
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effective cost estimates.Whereas Corr(cTAQ, cGibbs) is 0.901 for individual stocks (and 

0.987 for portfolios), however, Corr(I, λII) is 0.473 for individual stocks (and 0.899 for 

portfolios). 

9. The Gibbs estimates in a broader sample 

 Given the strong performance of the Gibbs effective cost estimates in the 

TAQ/CRSP comparison sample, it is of some interest to investigate the properties of 

these estimates over the full historical sample (beginning in 1963) for which daily CRSP 

data are available. To this end, annual estimates of the daily-based trading cost estimates 

and proxies were computed for all firms in the daily CRSP file. Firms with few valid 

observations in a given year were excluded.  

 Nasdaq closing prices are not extensively reported on the CRSP database until the 

middle of 1982 (with Nasdaq’s introduction of the National Market System). Due to 

relatively small numbers of stocks, however, the Nasdaq estimates developed in this 

paper are only reported beginning in 1985. The CRSP Nasdaq sample also changed 

markedly in 1992 with the inclusion of the Nasdaq SmallCap market. 

  depicts the average estimates of effective cost for the NYSE/Amex and 

Nasdaq samples. The estimates for Nasdaq are substantially higher than those of the 

NYSE/Amex sample. This is not surprising given the differences in market structure and 

listed companies. 

Figure 2

 The NYSE/Amex estimates provide a more complete picture of the long-run time-

series variation. Although the series appears roughly stationary, there is substantial 

volatility, with the largest peak occurring around 1975. In 1975, commission levels 

dropped following the SEC’s deregulation. It is possible that liquidity suppliers increased 

posted and effective spreads to compensate for decreased commission revenue. Another 

possible explanation is short-run stickiness in absolute dollar spreads. Most market 

indices dropped over 1974. At the new lower price levels, relative spreads would be 

higher. 
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 The graphs in Figure 3 plot average effective costs within subsamples constructed 

as quintiles on equity market capitalization. These quintiles were formed by collapsing 

the CRSP market value deciles. From these graphs, it becomes apparent that most of the 

variation is occurring in relatively low-capitalization stocks. This is particularly true of 

the NYSE/Amex sample, for which the variation in the effective costs for the third and 

higher market capitalization quintiles is essentially minor. It should be emphasized that 

neither sample was subject to any minimum price filters. 

 It is useful to compare this figure with Jones (2001) historical series for the posted 

bid-ask spread on the Dow stocks (his Figure 1).  Compared with the Dow posted spreads 

(Jones), the effective spread estimates in the largest market capitalization quintile appear 

to be more stable over time. 

10. Effective costs and stock returns 

 This section describes the relations between the Gibbs estimates of the effective 

cost and returns over the period covered by the daily CRSP database, 1962-2001. 

Because CRSP coverage of Nasdaq is more extensive in the later portion of this sample, 

separate analyses are performed for NYSE/Amex and Nasdaq issues. The analysis 

proceeds by constructing portfolios sorted on market capitalization and effective cost, and 

analyzing the average monthly returns in a standard multifactor framework (Fama and 

French (1992)). 

 More specifically, the portfolios are formed by independent sorts on end-of-year 

market capitalization and the effective cost estimates formed over the year. The grouping 

is by quintiles. Market capitalization quintiles are formed by collapsing the CRSP market 

value deciles. These portfolios are then used as groupings for excess returns over the 

subsequent year. The excess return on a stock in a given month is the total return less the 

one-month T-bill return.4 

                                                 
4 The risk-free return and Fama-French factors used in this study are from the U.S. 

Research Returns data on Ken French’s web site. 
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  reports results for the NYSE/Amex sample. From Panel A, the highest 

average excess returns are found in highest effective cost quintile. This is consistent with 

the hypothesis of a liquidity premium. Within the lower effective cost quintiles, however, 

the average excess return is not monotonically increasing in effective cost. Panel B 

reports the average effective costs for the portfolios. It is important to note here that the 

values for the highest effective cost quintile are markedly higher than the others. The 

increase in going from the fourth to the highest quintiles is several times larger that the 

difference between the fourth and lowest quintiles. This suggests that there is relatively 

little cost variation apart from the highest quintile. This may contribute to the absence of 

a relationship between costs and average expected returns in the lower effective cost 

quintiles. 

Table 7

 The results for the Nasdaq sample, reported in  are slightly stronger. The 

highest average excess returns are found in the highest effective cost quintile. For all 

except the second market capitalization quintile, the second-highest average excess 

returns are found in the fourth effective cost quintile. As in the NYSE/Amex sample, the 

largest variation in average effective costs is found in the higher quintiles. 

Table 8

 Although these results provide some evidence for a liquidity premium, there is a 

strong possibility that effective cost is acting as a proxy for some priced risk factor. To 

investigate this, two types of return specifications were estimated: a one-factor market 

model and a three-factor Fama-French model. The one-factor market model is estimated 

to provide a point of comparison for Amihud and Mendelson (1986) and Amihud (2000) 

and other studies.  

 The one-factor specification is: 

 , , , , , , ,i j t i j i j m t i j ir a r eβ= + +  (12) 

where i and j index portfolios:  i indexes market capitalization quintiles, j indexes 

effective cost quintiles. ri,j,t and rm,t are excess returns on the portfolio and the Fama-

French market factor. The model is estimated in a GMM framework: the reported  

t-statistics are based on an error covariance structure that allows for heteroskedasticity 

and cross-sectional correlation in the ei,j,t. 
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  reports the estimates of the model intercepts (the ai,j). The estimates for 

the NYSE/Amex sample (Panel A) display a cross-sectional pattern similar to that found 

for the average excess returns (cf. Table 7). As before, the highest values are found in the 

highest effective cost quintiles, but there is no evident pattern in the lower effective cost 

groups.  Estimates for the Nasdaq sample (Panel B) are also similar to the corresponding 

averages (cf. Table 8). 

Table 9

 The three-factor Fama-French specification is: 

 , , , , , , , , ,i j t i j i j m t i j t i j t i jr a r s SMB h HML e iβ= + + + +   (13) 

where ri,j,t is the average portfolio excess return in month t, i and j index market 

capitalization and effective cost quintiles. rm,t , SMBt and HMLt are respectively the 

Fama-French excess market return, size and book-to-market factors.  

 Panel A of Table 10 reports estimates of the intercepts for the NYSE/Amex 

sample. The results are less conclusive than the corresponding single-factor estimates. 

In the lowest market capitalization quintile, consistent with a positive liquidity premium, 

the highest intercept is found in the highest effective cost portfolio. This is not the case, 

however, for the other market capitalization quintiles. The results for the Nasdaq sample, 

however, reported in Panel B, remain essentially unaltered from those for the single-

factor model. 

 The discussion to this point has been based on the intercepts in multifactor 

specifications. Parametric models offer another perspective. The Fama-French factor 

model in eq (13) is modified to include a term that is quadratic in the effective cost: 

  (14) ( )2

, , 0 1 , 2 , , , , , , ,
Gibbs Gibbs

i j t i j i j i j m t i j t i j t i jr a a c a c r s SMB h HML eβ = + + + + + +  i

where c is the mean Gibbs estimate of effective cost in portfolio i, j.  Table 11 reports 

estimates of a
,

Gibbs
i j

0, a1, and a2. Figure 1 depicts the relation between effective costs and 

excess returns implied by the estimates. 

 For the NYSE/Amex analysis, the implied function is essentially flat over the 

region that encompasses the preponderance of stocks in this sample. The highest mean 

value of the effective cost in the portfolios is approximately 0.02 (cf. Panel B of Table 7). 
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Beyond this point, however, the relation is strongly positive. The Nasdaq sample, in 

contrast displays a consistently positive relationship throughout the range.  It is 

noteworthy that in both samples, the curvature is convex, rather than concave (as 

suggested by the model of Amihud and Mendelson (1986)). 

 With respect to the existence and direction of the liquidity premium, these results 

are broadly consistent with the results of earlier studies based on alternative measures. As 

the present study is based on effective costs, the most directly comparable earlier studies 

at those based on posted bid-ask spreads: Ho and Stoll (1981), Amihud and Mendelson 

(1980), Amihud and Mendelson (1989), Eleswarapu and Reinganum (1993), Kadlec, 

McConnell, and Purdue U (1994), and Eleswarapu (1997). Most of these studies find a 

positive liquidity premium, with stronger results for Nasdaq than NYSE/Amex. To the 

extent that the effective cost is partially proxying for asymmetric information and/or price 

impact, the present results can be viewed as consistent with the studies of Brennan and 

Subrahmanyam (1996), Easley, Hvidkjaer, and O'Hara (1999), Chordia, Subrahmanyam, 

and Anshuman (2001), and Amihud (2002). 

11. Conclusion 

 Motivated by the need for trading cost measures in samples where we don’t 

possess detailed trading data, this paper addresses the problem of inferring trading costs 

from daily data. The first step of the analysis is to construct a set of trading cost measures 

from daily CRSP price and volume data, and then to compare these proxies to measures 

constructed from TAQ trade and quote data. 

 Two common TAQ-based trading cost measures are the effective cost (the 

difference between the trade price and the prevailing quote midpoint) and the price 

impact coefficient (the permanent impact on the price for a trade of a given size). To 

measure effective cost in daily data, this study examines two estimates of the bid ask 

spread based on the Roll (1984) model: the conventional moment estimate (a 

transformation of the first-order return autocovariance) and a Gibbs sampler estimate. In 

this context, the Gibbs estimate is the clear winner. Its correlation with the TAQ-based 
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estimate of effective cost is 0.90 in individual stocks and 0.98 in portfolios. Furthermore, 

unlike the moment estimate of the effective cost, the Gibbs estimate is always defined 

and positive in small samples. 

 Price impact measures, however, are more difficult to proxy. The present paper 

examines the relationship between price impact coefficients estimated 15-minute 

return/signed order flow specifications for the TAQ data and three proxies estimated from 

daily return/volume data. These proxies are the liquidity ratio, the illiquidity ratio and the 

reversal measure. Among these, the illiquidity ratio appears to have the strongest 

correlation with the transaction-level estimated impact coefficient. The sample 

distributions of all estimates, however, exhibit an extreme tail. This suggests that when 

these estimates are used as proxy variables in subsequent analyses, robust statistical 

methods should be considered. 

 The strong performance of the Gibbs effective cost estimates in the TAQ 

comparisons supports reliance on these estimates outside of the TAQ sample period. The 

second part of this paper considers Gibbs effective cost estimates computed over the full 

range of the daily CRSP file (beginning in 1962) and their relation to returns. The 

estimates suggest that average effective cost has varied substantially over the past forty 

years, but that this variation is largely driven by low-capitalization issues. Effective 

trading cost for the highest market value quintile has remained relatively stable over the 

period. 

 Portfolios are formed by grouping on effective cost and market capitalization. The 

pattern of average excess returns on these portfolios is suggestive of a trading cost 

(“liquidity”) premium. Portfolios with high average effective costs exhibit relatively high 

average excess returns. The same pattern arises in the intercepts of one-factor market-

model specifications. When excess returns are estimated in a three-factor Fama-French 

model, the pattern in the intercepts is less conclusive. The Nasdaq sample, (which 

exhibits the largest cross-sectional variation in effective cost), still displays evidence of a 

liquidity premium, but the NYSE/Amex sample (which covers the longest time period) 

does not. In parametric specifications, however, where the dependence of excess returns 
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on effective cost is specified as a quadratic function, both samples evince economically 

and statistically significant evidence of a liquidity premium.  This is broadly consistent 

with the results of earlier studies. 

 The analysis suggests a number of promising directions for future research. First, 

since the Gibbs estimate of the effective cost relies solely on the transaction price record, 

the technique can readily be applied to historical and international settings where only 

trade prices are available. The present application is to daily data, but there is in principle 

no reason why the approach would not be useful in weekly or monthly data. Of course, as 

the frequency drops, drift and diffusion in the efficient price become more pronounced 

relative to the effective cost, and hence the signal-to-noise ratio is likely to be lower. 

 A second line of inquiry is refinement of the Gibbs estimation procedure. It seems 

particularly worthwhile to consider estimation of c jointly with β. The estimates of c 

should be improved because the market return is a useful signal in estimating the change 

in the efficient price ( , which is here taken as unconditionally normal. The 

estimate of β should also be improved, however, because the specification essentially 

purges the price change of bid-ask bounce in the firm’s return. 

)t tm u∆ =
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12. Appendix: An illustration of Gibbs estimates of the Roll Model 

 This section discusses the analysis of a simple simulated price record using the 

Gibbs sampler. The model is described in section 3.a and the Gibbs estimator is described 

in section 3.c. The parameter values used for the simulation are c=0.01 and 0.01uσ = . 

Since the model is stated in log terms, these values imply a standard deviation and half-

spread of approximately one percent. Starting at an initial valueof zero, twenty price 

observations were simulated. The price path exhibits both nonstationarity from the 

random-walk component of the price, and also reversals from bid-ask bounce (Figure 1). 

 
Appendix Figure 1. The simulated (log) price path. 

 

 Prior and (smoothed, simulated) posterior distributions are presented for c in 

Figure 2, and for σu in Figure 3. The prior for c used in this appendix is 

. ( )2,0, 0.01prior
cN σ+ =
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Appendix Figure 2. Prior and posterior distributions for the cost parameter. 

 
Appendix Figure 3. Prior and posterior distributions for σu. 

 

In both figures the dotted lines depict the prior distributions. The solid lines describe the 

posteriors. The latter are constructed as the kernel smoothed distributions of the Gibbs 

draws. Note that the scales of the priors and posteriors are different. The posteriors are 

concentrated in regions where the priors are relatively flat. Essentially, the posteriors are 

data dominated. 
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  In addition to parameter posteriors, the Gibbs procedure also produces posteriors 

for the latent data in the model – in this case the implicit efficient prices mt and the trade 

direction indicators qt. Although these are not analyzed in the main body of the paper, 

they provide useful confirmation for the reasonableness of the procedure.  Figure 4 

describes the distributions of the m and q. 

 
  Appendix Figure 4. Gibbs estimates of latent data. 
 
The figure presents two stacked graphs aligned by time. In the top section, the observed 
prices are plotted as dots. At each time, the posterior distribution of the efficient price is 
indicated by the box plots. The limits of the box represent the twenty-fifth and seventy-
fifth percentiles of the distribution. A line joins the medians. 

 Visually, the posteriors for the efficient prices resemble a smoothed version of the 

observed prices. This is reasonable, because the efficient prices are in principle purged of 

bid-ask bounce. Note too that the posteriors are not uninformly tight. When the observed 

prices exhibit a well-defined reversal (at times 3, 4, and 17, for example), the posteriors 
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are more concentrated than when the price path is smoother (in the middle range of the 

sample). 

 The bottom section in the figure graphs the posterior probability that the trade was 

a “buy”. A value near one (cf. times 4 and 17) indicates a relatively high certainty that the 

trade was a buy. A value near zero (time 3, for example) suggests a relatively high 

certainty that the trade is a sell. Certainty is highest when there is a clear reversal, as one 

would expect. In the middle range of the sample, the posterior probabilities are 

approximately fifty percent. 

 It is also useful to consider how inference changes when the relative values of c 

and σu change. Figure 5 presents three versions of the original simulated price path. Each 

uses a different value of c, while keeping constant the latent efficient price and trade 

direction series. The central line marked by black dots is the base case (c=0.01); the 

dashed lines follow from lower or higher values of c. Changing the value of c has the 

effect of exaggerating or attenuating the bid-ask bounce. 

 
Appendix Figure 5. Alternative simulated price paths. 

 Figure 6 depicts the parameter posteriors for c. The sharpest (most well-defined) 

posterior is obtained for the highest value of c. This is the case where bid-ask bounce is 

most well-defined, and it is easiest (both visually and in the estimation) to judge trade 
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direction. For the lowest value of c, it is difficult to separate out the bid-ask bounce and 

random-walk components. This translates into a relatively broad posterior that runs up 

against the nonnegativity constraint for the parameter (implied by the prior).  

 Figure 7 depicts the parameter posteriors for σu. It is noteworthy that these 

posteriors are relatively sharp for both the higher and lower values of c. For the higher 

value of c, the well-defined bid-ask bounce noted above also provides good identification 

of the efficient price. In the case of low c, the bid-ask bounce is not well-defined, but its 

magnitude is sufficiently low that the observed price changes are dominated by the 

efficient price changes. It is in the intermediate case, when the bid-ask bounce and 

efficient price change components are of comparable magnitudes that resolution is most 

difficult. 

 
Appendix Figure 6. Alternative parameter posteriors for c. 
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Appendix Figure 7. Alternative parameter posteriors for σu. 
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Table 1. Summary of the TAQ comparison sample 

From the TAQ database, 200 firms were randomly drawn for each of the years 1993-
2001 (1,800) firms. Only those firms that could be matched to the CRSP database were 
retained. The table reports numbers of firms by year and listing exchange. 

Exchange 
All 

Amex NYSE Nasdaq  

N N N N 

All 1,665 166 516 983

Year 

1993 189 23 54 112

1994 188 23 56 109

1995 190 16 66 108

1996 188 16 49 123

1997 187 17 60 110

1998 190 14 62 114

1999 180 21 62 97

2000 181 12 53 116

2001 172 24 54 94
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Table 2. Trading cost measures based on transactions data  
(TAQ comparison sample) 

The TAQ comparison sample consists of 1,800 firm-years randomly drawn from the 
TAQ database (200 in each year, 1993 to 2001), restricted to those that could be matched 
to the CRSP database. For a given stock, the average effective cost is the average 
absolute difference between the log trade price and the prevailing log quote midpoint, 
over all trades in the year, weighted by dollar volume of the trade. The half log spread is 
the time-weighted average of ( )lo  using all primary market quotes for the 
year. Models I-IV refer to linear specifications, estimated separately for each firm, of 
fifteen-minute returns and fifteen-minute aggregate signed volume: 

g / 2ask bid

  

1 2 3

Model I: 
Model II: 
Model III: 
Model IV: 

I
t t t

II
t t t

III
t t t

IV IV IV
t t t t

r N u
r S u
r V u
r N S V

λ
λ
λ
λ λ λ

= +
= +
= +
= + + + tu

where Nt is the signed number of trades in fifteen-minute interval t; Vt is the signed dollar 
volume; and, St is the cumulative signed square-root dollar volume. 

Variable N Mean Std. Dev. Skewness Kurtosis 

Effective cost 1,665 0.014 0.017 3.418 17.751 

Half log spread 1,665 0.020 0.024 2.704 9.856 

R2 for Model I 1,664 0.127 0.103 1.141 1.532 

R2 for Model II 1,664 0.123 0.092 0.886 1.069 

R2 for Model III 1,664 0.050 0.055 1.982 6.108 

R2 for Model IV 1,664 0.159 0.108 0.847 0.819 

λII 1,664 0.00003 0.00006 6.898 65.612 
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Table 3. Trading cost measures based on daily CRSP data  
(TAQ comparison sample) 

Estimates for each firm are based on CRSP daily returns for the year. The number of 
firms is less than 1,800 due to matching failures between CRSP and TAQ. cGibbs is the 
Gibbs-sampler estimate of the effective cost; cM is the moment estimate of the effective 
cost; and cMZ is equal to cM (when defined) and zero otherwise. L is the liquidity ratio 

( )d dL Vol r=  where Vold is the dollar volume on day d, and rd is the return on day d, 

and the average is taken over all days in the year. I is the illiquidity ratio ( )d dI r Vol= . 

γ is the reversal liquidity measure estimated from the regression 
( )1

e
d d d dr r sign r Vol dθ φ γ+ = + + + ε , where  is the excess return on day d. e

dr

 Variable N Mean Std. Dev. Skewness Kurtosis 

cGibbs 1,668 0.014 0.019 3.427 16.073 

cM 1,201 0.019 0.017 2.153 7.035 
Spread-related  
cost proxies 

cMZ 1,668 0.014 0.017 2.232 7.476 

L 1,668 794 5251 17.237 388 

I 1,668 6.286 29.923 13.866 272 
Impact-related  
cost proxies 

γ 1,668 0.0051 0.318 -6.536 148 
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Table 4. Correlations in the TAQ/CRSP comparison sample 

The TAQ/CRSP comparison sample comprises roughly 200 firms per year, for the years 
1993-2001, randomly chosen from the TAQ database, that could be subsequently 
matched to CRSP (a total of 1,664 firms). cTAQ is the effective cost estimated from 
transaction-level TAQ data;  cGibbs and cMZ are estimates of the effective cost based on 
daily CRSP data: cGibbs is the Gibbs-sampler estimate of the effective cost; cMZ is the 
moment estimate of the effective cost (when defined) and zero otherwise. λII  is a signed-
trade price impact measure estimated from TAQ data using the specification: 

, where rII
t tr Sλ= + tu t is the return, St is the cumulative signed square-root dollar 

volume, and t indexes fifteen-minute intervals. L, I, and γ are impact proxies based on 
daily CRSP data: L is the liquidity ratio ( )d dL Vol r=  where Vold is the dollar volume 
on day d, and rd is the return on day d, and the average is taken over all days in the year. I 
is the illiquidity ratio ( )d dI r Vol= . γ is the reversal liquidity measure estimated from 

the regression ( )1
e

d dr r Vold dr sign dθ φ γ= + + ε+ + , where  is the excess return on day 
d.  

e
dr

Panel A. Correlations (Pearson, full) 

 Effective cost measures Impact measures 
 TAQ CRSP TAQ CRSP 
 cTAQ cGibbs cMZ λII L I γ 

cTAQ 1.000 0.901 0.825 0.515 -0.112 0.641 -0.051
cGibbs 0.901 1.000 0.880 0.397 -0.071 0.657 -0.028
cMZ 0.825 0.880 1.000 0.391 -0.084 0.562 0.078
λII 0.515 0.397 0.391 1.000 -0.060 0.473 -0.058
L -0.112 -0.071 -0.084 -0.060 1.000 -0.031 -0.004
I 0.641 0.657 0.562 0.473 -0.031 1.000 0.178
γ -0.051 -0.028 0.078 -0.058 -0.004 0.178 1.000

Panel B. Correlations (Spearman, full) 

 Effective cost measures Impact measures 
 TAQ CRSP TAQ CRSP 
 cTAQ cGibbs cMZ λII L I γ 

cTAQ 1.000 0.851 0.756 0.658 -0.924 0.934 0.312
cGibbs 0.851 1.000 0.867 0.461 -0.741 0.782 0.293
cMZ 0.756 0.867 1.000 0.405 -0.671 0.706 0.300
λII 0.658 0.461 0.405 1.000 -0.763 0.737 0.213
L -0.924 -0.741 -0.671 -0.763 1.000 -0.968 -0.287
I 0.934 0.782 0.706 0.737 -0.968 1.000 0.297
γ 0.312 0.293 0.300 0.213 -0.287 0.297 1.000
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Table 4. Correlations in the TAQ/CRSP comparison sample (continued) 

Panel C. Correlations (Pearson, partial with respect to log market capitalization) 

 Effective cost measures Impact measures 
 TAQ CRSP TAQ CRSP 
 cTAQ cGibbs cMZ λII L I γ 

cTAQ 1.000 0.850 0.725 0.365 0.137 0.610 -0.093
cGibbs 0.850 1.000 0.821 0.225 0.151 0.620 -0.055
cMZ 0.725 0.821 1.000 0.211 0.145 0.498 0.072
λII 0.365 0.225 0.211 1.000 0.088 0.404 -0.080
L 0.137 0.151 0.145 0.088 1.000 0.077 0.009
I 0.610 0.620 0.498 0.404 0.077 1.000 0.176
γ -0.093 -0.055 0.072 -0.080 0.009 0.176 1.000

Panel D. Correlations (Spearman, partial with respect to log market capitalization) 

 Effective cost measures Impact measures 
 TAQ CRSP TAQ CRSP 
 cTAQ cGibbs cMZ λII L I γ 

cTAQ 1.000 0.662 0.544 0.090 -0.639 0.682 0.110
cGibbs 0.662 1.000 0.768 -0.108 -0.310 0.444 0.119
cMZ 0.544 0.768 1.000 -0.086 -0.307 0.411 0.150
λII 0.090 -0.108 -0.086 1.000 -0.387 0.292 -0.001
L -0.639 -0.310 -0.307 -0.387 1.000 -0.819 -0.044
I 0.682 0.444 0.411 0.292 -0.819 1.000 0.062
γ 0.110 0.119 0.150 -0.001 -0.044 0.062 1.000
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Table 5. Correlations in the TAQ/CRSP comparison sample with grouping by 
effective cost. 

The TAQ/CRSP comparison sample comprises roughly 200 firms per year, for the years 
1993-2001, randomly chosen from the TAQ database, that could be subsequently 
matched to CRSP (a total of 1,664 firms). cTAQ is the effective cost estimated from 
transaction-level TAQ data;  cGibbs and cMZ are estimates of the effective cost based on 
daily CRSP data: cGibbs is the Gibbs-sampler estimate of the effective cost; cMZ is the 
moment estimate of the effective cost (when defined) and zero otherwise. λII  is a signed-
trade price impact measure estimated from TAQ data. L, I, and γ are impact proxies based 
on daily CRSP data: L is the liquidity ratio ( )d dL Vol r=  where Vold is the dollar 

volume on day d, and rd is the return on day d. I is the illiquidity ratio ( )d dI r Vol= . γ is 
the reversal liquidity measure.  Within each year, ten groups were formed by ranking on 
cTAQ. Reported correlations are between group means (90 observations). 

Panel A. Correlations (Pearson, full) 

 Effective cost measures Impact measures 
 TAQ CRSP TAQ CRSP 
 cTAQ cGibbs cMZ λII L I γ 

cTAQ 1.000 0.987 0.970 0.753 -0.287 0.877 -0.001
cGibbs 0.987 1.000 0.962 0.727 -0.220 0.897 -0.001
cMZ 0.970 0.962 1.000 0.759 -0.258 0.804 0.091
λII 0.753 0.727 0.759 1.000 -0.210 0.754 -0.300
L -0.287 -0.220 -0.258 -0.210 1.000 -0.134 -0.042
I 0.877 0.897 0.804 0.754 -0.134 1.000 -0.180
γ -0.001 -0.001 0.091 -0.300 -0.042 -0.180 1.000

Panel B. Correlations (Pearson, partial with respect to log market capitalization) 

 Effective cost measures Impact measures 
 TAQ CRSP TAQ CRSP 
 cTAQ cGibbs cMZ λII L I γ 

cTAQ 1.000 0.981 0.923 0.537 0.415 0.884 -0.115
cGibbs 0.981 1.000 0.931 0.509 0.419 0.880 -0.095
cMZ 0.923 0.931 1.000 0.547 0.531 0.762 0.030
λII 0.537 0.509 0.547 1.000 0.306 0.644 -0.462
L 0.415 0.419 0.531 0.306 1.000 0.286 0.019
I 0.884 0.880 0.762 0.644 0.286 1.000 -0.266
γ -0.115 -0.095 0.030 -0.462 0.019 -0.266 1.000
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Table 6. Correlations in the TAQ/CRSP comparison sample with grouping by trade 
impact coefficient, λII. 

The TAQ/CRSP comparison sample comprises roughly 200 firms per year, for the years 
1993-2001, randomly chosen from the TAQ database, that could be subsequently 
matched to CRSP (a total of 1,664 firms). cTAQ is the effective cost estimated from 
transaction-level TAQ data;  cGibbs and cMZ are estimates of the effective cost based on 
daily CRSP data: cGibbs is the Gibbs-sampler estimate of the effective cost; cMZ is the 
moment estimate of the effective cost (when defined) and zero otherwise. λII  is a signed-
trade price impact measure estimated from TAQ data. L, I, and γ are impact proxies based 
on daily CRSP data: L is the liquidity ratio ( )d dL Vol r=  where Vold is the dollar 

volume on day d, and rd is the return on day d. I is the illiquidity ratio ( )d dI r Vol= . γ is 
the reversal liquidity measure.  Within each year, ten groups were formed by ranking on 
λII. Reported correlations are between group means (90 observations). 

Panel A. Correlations (Pearson, full) 

 Effective cost measures Impact measures 
 TAQ CRSP TAQ CRSP 
 cTAQ cGibbs cMZ λII L I γ 

cTAQ 1.000 0.977 0.957 0.792 -0.310 0.855 0.245
cGibbs 0.977 1.000 0.950 0.785 -0.229 0.851 0.234
cMZ 0.957 0.950 1.000 0.784 -0.257 0.789 0.257
λII 0.792 0.785 0.784 1.000 -0.171 0.899 0.128
L -0.310 -0.229 -0.257 -0.171 1.000 -0.142 -0.049
I 0.855 0.851 0.789 0.899 -0.142 1.000 0.302
γ 0.245 0.234 0.257 0.128 -0.049 0.302 1.000

Panel B. Correlations (Pearson, partial with respect to log market capitalization) 

 Effective cost measures Impact measures 
 TAQ CRSP TAQ CRSP 
 cTAQ cGibbs cMZ λII L I γ 

cTAQ 1.000 0.953 0.865 0.596 0.466 0.799 0.138
cGibbs 0.953 1.000 0.876 0.588 0.476 0.760 0.123
cMZ 0.865 0.876 1.000 0.578 0.564 0.648 0.158
λII 0.596 0.588 0.578 1.000 0.384 0.837 -0.007
L 0.466 0.476 0.564 0.384 1.000 0.365 0.101
I 0.799 0.760 0.648 0.837 0.365 1.000 0.228
γ 0.138 0.123 0.158 -0.007 0.101 0.228 1.000
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Table 7. Summary statistics for the NYSE/Amex portfolios, 1963-2001 

Average monthly excess returns for NYSE/Amex portfolios formed by independent 
ranking on the market capitalization at the end of the prior year and the Gibbs estimate of 
the effective cost formed over the prior year. Market capitalization quintiles were 
constructed by collapsing Crsp market capitalization deciles.  

Panel A. Average excess returns 
Effective Cost (cGibbs) Quintiles  

Low 2 3 4 High 
Low 0.0067 0.0069 0.0067 0.0067 0.0132

2 0.0068 0.0075 0.0077 0.0067 0.0110
3 0.0072 0.0072 0.0068 0.0071 0.0112
4 0.0060 0.0077 0.0073 0.0067 0.0105

Market  
Capitalization  
Quintiles 

High 0.0055 0.0080 0.0059 0.0045 0.0094

Panel B. Average Effective Cost 
Effective Cost (cGibbs) Quintiles  

Low 2 3 4 High 
Low 0.0014 0.0023 0.0033 0.0053 0.0194

2 0.0014 0.0023 0.0033 0.0053 0.0159
3 0.0015 0.0023 0.0033 0.0052 0.0157
4 0.0015 0.0023 0.0033 0.0052 0.0154

Market  
Capitalization  
Quintiles 

High 0.0016 0.0023 0.0033 0.0052 0.0163

Panel  C. Average Market Capitalization 
Effective Cost (cGibbs) Quintiles  

Low 2 3 4 High 
Low 759,190 595,538 345,181 167,253 39,301

2 1,560,007 917,546 729,977 401,997 257,749
3 1,845,771 1,658,789 801,740 542,726 107,720
4 2,601,945 1,996,642 1,305,900 915,959 249,015

Market  
Capitalization  
Quintiles 

High 3,248,395 2,821,790 1,995,721 993,622 467,564

Panel D. Counts 
Effective Cost (cGibbs) Quintiles  

Low 2 3 4 High 
Low 79 57 55 59 71

2 119 80 64 59 53
3 108 95 81 69 60
4 80 102 98 84 69

Market  
Capitalization  
Quintiles 

High 34 81 109 115 91
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Table 8. Summary statistics for the Nasdaq portfolios, 1985-2001 

Average monthly excess returns for Nasdq portfolios formed by independent ranking on 
the market capitalization at the end of the prior year and the Gibbs estimate of the 
effective cost formed over the prior year. Market capitalization quintiles were constructed 
by collapsing Crsp market capitalization deciles.  

Panel A. Average excess returns 
Effective Cost (cGibbs) Quintiles  

Low 2 3 4 High 
Low 0.0066 0.0048 0.0035 0.0060 0.0217

2 0.0067 0.0036 0.0081 0.0066 0.0096
3 0.0073 0.0054 0.0060 0.0083 0.0138
4 0.0083 0.0031 0.0046 0.0101 0.0178

Market  
Capitalization  
Quintiles 

High 0.0051 0.0005 0.0027 0.0065 0.0197

Panel B. Average Effective Cost 
Effective Cost (cGibbs) Quintiles  

Low 2 3 4 High 
Low 0.0035 0.0070 0.0123 0.0210 0.0511

2 0.0032 0.0068 0.0116 0.0208 0.0469
3 0.0031 0.0066 0.0116 0.0199 0.0447
4 0.0032 0.0065 0.0116 0.0199 0.0448

Market  
Capitalization  
Quintiles 

High 0.0035 0.0063 0.0113 0.0196 0.0482

Panel  C. Average Market Capitalization 
Effective Cost (cGibbs) Quintiles  

Low 2 3 4 High 
Low 212,978 135,114 78,360 57,744 20,711

2 406,857 168,146 108,608 50,293 23,074
3 587,282 214,919 131,928 75,140 35,741
4 811,351 303,948 222,518 84,883 31,685

Market  
Capitalization  
Quintiles 

High 1,476,968 469,413 440,918 289,626 95,571

Panel D. Counts 
Effective Cost (cGibbs) Quintiles  

Low 2 3 4 High 
Low 31 45 88 139 199

2 86 93 126 166 153
3 140 120 132 131 124
4 180 155 133 112 102

Market  
Capitalization  
Quintiles 

High 214 213 142 86 66
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Table 9. Market-model estimates 

Estimates of the intercepts ai,j in the monthly excess return regression  

 , , , , , , ,i j t i j i j m t i j ir a r eβ= + +   
where ri,j,t is the average portfolio excess return in month t, i and j index market 
capitalization and effective cost (cGibbs) quintiles, and rm,t is the excess return on the 
Fama-French market factor. Reported values are GMM estimates where the error 
covariance matrix allows for heteroskedasticity and cross-sectional dependence. 
NYSE/Amex estimations span 1963-2001; Nasdaq estimations are from 1985-2001. 

Panel A. NYSE/Amex  
  Effective Cost (cGibbs) Quintiles 
  Low 2 3 4 High 

0.0034 0.0033 0.0028 0.0026 0.0081 Low (3.06) (2.65) (2.06) (1.58) (2.76) 
0.0029 0.0032 0.0030 0.0016 0.0053 2 (3.11) (2.82) (2.28) (0.95) (1.96) 
0.0027 0.0022 0.0015 0.0014 0.0053 3 (2.98) (1.90) (1.06) (0.78) (1.86) 
0.0010 0.0022 0.0013 0.0005 0.0041 4 (1.00) (1.90) (0.92) (0.29) (1.39) 

-0.0003 0.0016 -0.0009 -0.0027 0.0026 

Market Capitalization 
Quintiles 

High (-0.24) (1.17) (-0.58) (-1.40) (0.79) 

Panel B. Nasdaq 
  Effective Cost (cGibbs) Quintiles 
  Low 2 3 4 High 

-0.0010 -0.0024 -0.0009 0.0018 0.0098 Low (-0.25) (-0.74) (-0.29) (0.69) (2.64) 
-0.0005 -0.0023 0.0020 0.0036 0.0063 2 (-0.22) (-1.06) (0.76) (1.35) (1.82) 
0.0001 -0.0019 -0.0010 0.0026 0.0093 3 (0.02) (-0.72) (-0.31) (0.72) (2.19) 
0.0003 -0.0053 -0.0042 0.0033 0.0124 4 (0.13) (-1.57) (-1.02) (0.69) (2.28) 

-0.0040 -0.0093 -0.0062 -0.0021 0.0140 

Market Capitalization 
Quintiles 

High (-1.18) (-2.13) (-1.23) (-0.34) (1.89) 
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Table 10. Regressions of returns on Fama-French factors 

Estimates of the intercepts ai,j in the regression  

 , , , , , , , , ,i j t i j i j m t i j t i j t i jr a r s SMB h HML e iβ= + + + +   
where ri,j,t is the average portfolio excess return in month t, i and j index market 
capitalization and effective cost (cGibbs) quintiles. rm,t , SMBt and HMLt are respectively 
the Fama-French excess market return, size and book-to-market factors. Reported values 
are GMM estimates where the error covariance matrix allows for heteroskedasticity and 
cross-sectional dependence. NYSE/Amex estimations span 1963-2001; Nasdaq 
estimations are from 1985-2001. 

Panel A. NYSE/Amex  
  Effective Cost (cGibbs) Quintiles 
  Low 2 3 4 High 

0.0003 -0.0005 -0.0009 -0.0015 0.0024 Low (0.31) (-0.47) (-0.78) (-1.34) (1.22) 
0.0003 -0.0002 -0.0009 -0.0027 -0.0005 2 (0.44) (-0.25) (-0.99) (-2.51) (-0.26) 
0.0004 -0.0012 -0.0026 -0.0034 -0.0004 3 (0.49) (-1.41) (-2.74) (-2.86) (-0.22) 

-0.0012 -0.0007 -0.0024 -0.0040 -0.0017 4 (-1.37) (-0.73) (-2.27) (-3.08) (-0.84) 
-0.0023 -0.0010 -0.0039 -0.0064 -0.0033 

Market Capitalization 
Quintiles 

High (-1.73) (-0.83) (-3.19) (-4.57) (-1.38) 
 
Panel B Nasdaq 
  Effective Cost (cGibbs) Quintiles 
  Low 2 3 4 High 

-0.0039 -0.0022 -0.0010 0.0018 0.0095 Low (-1.18) (-0.78) (-0.37) (0.90) (3.14) 
-0.0027 -0.0027 0.0016 0.0033 0.0054 2 (-1.67) (-1.65) (0.91) (1.72) (1.96) 
-0.0013 -0.0017 -0.0002 0.0039 0.0104 3 (-0.98) (-0.97) (-0.08) (1.36) (3.14) 
0.0008 -0.0034 -0.0010 0.0064 0.0153 4 (0.46) (-1.63) (-0.32) (1.70) (3.34) 

-0.0002 -0.0038 -0.0004 0.0037 0.0180 

Market Capitalization 
Quintiles 

High (-0.09) (-1.30) (-0.11) (0.81) (2.80) 
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Table 11. Factor return models with quadratic effective cost. 

 
The specification is: 

   ( )2
, , 0 1 , 2 , , , , , , ,i j t i j i j i j m t i j t i j t i jr a a c a c r s SMB h HML eβ= + + + + + + i

where ri,j,t is the average portfolio excess return in month t, i and j index market 
capitalization and effective cost (cGibbs) quintiles. rm,t , SMBt and HMLt are respectively 
the Fama-French excess market return, size and book-to-market factors; ci,j is the mean 
effective cost in portfolio (i, j).  Reported values are GMM estimates where the error 
covariance matrix allows for heteroskedasticity and cross-sectional dependence. 
NYSE/Amex estimations span 1963-2001; Nasdaq estimations are from 1985-2001. 

 
 a0 a1 a2 

NYSE/Amex –0.001 –0.316 20.260 
 (–6.54) (–6.16) (12.10) 

Nasdaq –0.002 0.180 1.493 
 (–3.65) (4.98) (3.35) 



Page 44 

Figure 1. TAQ vs. Gibbs (CRSP) estimates of effective cost  
(TAQ comparison sample) 

The TAQ comparison sample comprises approximately 1,800 firm-years (200 firms 
randomly drawn from each year, 1993-2001). Only firm-years that could be matched to 
CRSP data were retained. The figure depicts for each firm-year the average effective cost 
estimated from the TAQ data vs. the Gibbs estimate based on daily CRSP returns (cGibbs).  

Panel A: Full TAQ comparison sample 

 
Panel B: Detail (TAQ effective cost estimates < 0.04) 
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Figure 2. Gibbs estimates of effective cost by listing exchange 

The sample is all ordinary common equity issues on the CRSP daily database. 
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Figure 3. Gibbs estimates of effective cost by market capitalization quintile. 

The sample is all ordinary common equity issues on the CRSP daily database. 
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Figure 4. Relationship between effective cost and excess return implied by 
parametric specification. 

The plots are based on the factor return model: 

   ( )2
, , 0 1 , 2 , , , , , , ,i j t i j i j i j m t i j t i j t i jr a a c a c r s SMB h HML eβ= + + + + + + i

where ri,j,t is the average portfolio excess return in month t, i and j index market 
capitalization and effective cost (cGibbs) quintiles. rm,t , SMBt and HMLt are respectively 
the Fama-French excess market return, size and book-to-market factors; ci,j is the mean 
effective cost in portfolio (i, j).  The figures plot the estimated functions a c , with 
two-standard-error bounds. The figures are based on GMM estimates where the error 
covariance matrix allows for heteroskedasticity and cross-sectional dependence. 
NYSE/Amex estimations span 1963-2001; Nasdaq estimations are from 1985-2001. 

2
1 2a c+
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Figure 4. Relationship between effective cost and excess return implied by 
parametric specification. (Continued) 
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