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Internet Appendix 1: Proof of Theorem I

The derivations are done with a one-factor market model for simplicity. A gen-

eralization to multi-factor pricing models is trivial as long as the factors are traded

assets in order to measure abnormal performance with α.

Each FoF i invests an amount Tij in project j at date tij. There is a total of

ni projects per FoF i and a liquidation dividend Dij is paid at date dij for each

project. The first project of FoF i starts at the inception date t0i and the last project

is terminated at the liquidation date Li. From assumption 1, the dividend of the

project j at date dij is given by

Dij = Tij
dij

Π
t=tij+1

(1 + rf,t + α + βrm,t + εij,t) (1)

We then divide by
dij

Π
t=tij+1

(1 + rf,t + α + βrm,t) and take expectations on both sides

of equation (1). From assumption 1, expectations of the cross-products of the form

εij,tεij,s are equal to zero (as well as higher-order cross-products) for t 6= s, and we

obtain

Etij

 Dij

dij

Π
t=tij+1

(1 + rf,t + α + βrm,t)

− Tij

 = 0 (2)

This equation simply says that the expected pricing error of a project equals zero if

one uses the correct pricing model, conditional upon the information set at time tij.

It is essential to note that in equation (2) we take the expectation with respect to
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the idiosyncratic terms εij,t present in Dij and take the realized market returns rm,t

as given. In other words, in (2) we condition upon the realized market returns. We

do this because β is identified by observing a cross-section of FoFs that are exposed

to different realizations of market returns.

We have also derived that because of assumption 2, equation (2) holds irrespective

of the timing of the dividend dij (endogeneity). Hence, our method allows for the

possibility of exit timing (e.g. early exit if good performance). The mathematical

proof is available on request.

Equation (2) cannot be applied directly given the nature of our sample because we

only observe the time series of cash flows at the fund level. We do observe investment

and dividend cash flows separately, but we do not know which dividend corresponds

to which investment and one investment can deliver multiple dividends. Our solution

is to discount all cash flows from time tij to the inception date of FoF i (t0i). We thus

divide equation (2) by
tij

Π
s=t0i+1

(1 + rf,s + α + βrm,s) to obtain

E

 1
tij

Π
s=t0i+1

(1 + rf,s + α + βrm,s)

 Dij

dij

Π
t=tij+1

(1 + rf,t + α + βrm,t)

− Tij


 = 0 (3)

Note that the weighting factor 1/
tij

Π
s=t0i+1

(1+rf,s+α+βrm,s) enters the expectation as

a result of assumption 1: if the pricing model is correctly specified then, by definition,

pricing errors are not predictable by any variable in the information set at time tij.
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Importantly, multiplying the pricing error by this weighting factor does not imply

any assumption on how the investor reinvests dividends or how the investor invests

his cash before it is taken by the fund at tij. The weighting factor simply weights the

pricing error. We could have used any other weighting factor (observable at date tij)

but our choice ensures that we only need fund-level data to estimate the parameters.

This can be seen when we rewrite Equation (3) as

E

 Dij

dij

Π
t=t0i+1

(1 + rf,t + α + βrm,t)

 = E

 Tij
tij

Π
s=t0i+1

(1 + rf,s + α + βrm,s)

 (4)

The moment condition (4) is the basis of the GMM estimation. We construct the

sample equivalent of the expectations in equation (4) by averaging across projects

within a FoF. The left hand side of (4) is estimated by

PV
Di

(α, β) =
1

ni

ni∑
j=1

 Dij

dij

Π
t=t0i+1

(1 + rf,t + α + βrm,t)

 (5)

which is simply the present value of all dividends of the FoF. The right hand side of

(4) is then estimated by

PV
Ti

(α, β) =
1

ni

ni∑
j=1

 Tij
tij

Π
s=t0i+1

(1 + rf,s + α + βrm,s)

 (6)
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Note that the expressions (5) and (6) can be calculated even if we do not know the

correspondence between each investment and its dividend. We then have N moment

conditions, one for each FoF, so that we can construct a GMM estimator if N ≥ 2

(in case of the market model). The first-step GMM estimator with identity weighting

matrix is then the solution of

min
α,β

N∑
i=1

[PV
Di

(α, β)− PV Ti
(α, β)]2 (7)

which can directly be rewritten as the optimization in (3). As ni tends to infinity, the

averages PV
Di and PV

Ticonverge to the expectations in equation (4). Therefore, the

parameters estimated from the GMM optimization (7) are consistent under standard

GMM regularity conditions.

Internet Appendix 2: Calibration of the shifted lognormal

distribution

This appendix describes how we calibrate the parameters of the shifted lognormal

distribution for the market return and idiosyncratic shocks. The shifted lognormal

distribution of ex − c, where x ∼ N(µ, σ), has 3 parameters: µ, σ, and c.

For the market return, we set the minimum return c to -20% (the minimum is

-20.9% in our sample). µm and σm are so that we match the average S&P 500 return
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and volatility over the 1980-2003 sample period. That is, µm and σm solve

E(Rm) = eµm+
σ2m
2 − cm

V ar(Rm) = (eσ
2
m − 1)(e2µm+σ

2
m) (8)

For the idiosyncratic error εij,t, cε is so that return is always above -100%:

α +Rf + β ∗ (cm −Rf ) + cε = −1 (9)

µε and σε solve a system of two equations. First, like above, we have E(εij,t) =

eµε+
σ2ε
2 − cε = 0. Second, we match the Cochrane (2005b) estimate for the standard

deviation of idiosyncratic shocks (86% per year in a log-CAPM setting).1

Internet Appendix 3: Characteristics in alpha and beta

In this appendix we analyze whether the alpha and beta depend on fund charac-

1Cochrane (2005b) uses the following log-CAPM specification ln(Vt+1Vt
) = Rf+a+b(Rm−Rf )+η,

where η is normal with variance σ2. Doing a Taylor-expansion, we get Vt+1Vt
= eRf+a+b(Rm−Rf )+η ∼=

(1 + Rf + a + b(Rm − Rf ))e
η−σ2/2. Here we centralize η such that E(eη−σ

2/2) = 1, and choose

α=a+ σ2/2 and β = b. For the CAPM we have ε = Vt+1
Vt
− (1 +Rf + α+ β(Rm −Rf )). This gives

ε = Vt+1
Vt
− (1 +Rf + α+ β(Rm −Rf )) = (1 +Rf + α+ β(Rm −Rf ))(eη−σ

2/2 − 1).

Using the law of total variance and E(ε|Rm) = 0 (since E(eη−σ
2/2) = 1), we

have V ar(ε) = E [V ar(ε|Rm)] = E
[
(1 +Rf + α+ β(Rm −Rf ))2V ar(eη−σ

2/2)|Rm)
]

=

E
[
(1 +Rf + α+ β(Rm −Rf ))2

]
(eσ

2 − 1)eσ2e−σ2 . Hence, µε and σε are so that V ar(ε) = (eσ
2
ε −

1)(e2µε+σ
2
ε) = E

[
(1 +Rf + α+ β(Rm −Rf ))2

]
(eσ

2 − 1), where σ is set to 0.86.
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teristics. For example, Kaplan and Schoar (2005) find that fund returns (measured

by Public Market Equivalent or IRR) are positively related to the fund size. Our

framework allows us to investigate whether this effect is due to higher abnormal per-

formance or higher risk exposures. We make alpha and beta a function of fund size

using a dummy which equals one if committed capital is above the median value across

funds. Next, we form size-sorted portfolios (i.e. FoFs) for each vintage year. This

allows us to pin down the effect of size from the cross-section of moment conditions.

If we would use the 14 vintage-year portfolios, size effects would only be identified to

the extent that funds with different vintage years have different size. We thus form 2

portfolios per vintage year - one with large funds and one with small funds.

We show results in Table A.1. We first include the size dummy in the alpha

specification only and confirm that the performance is positively related to size, but

it is only significant for venture capital funds. However, when we allow beta to depend

on size as well, this size effect in alpha (for venture capital funds) becomes smaller

and insignificant while the size effect in beta is positive but also insignificant. Hence,

once we control for differences in beta, we do not find that large funds outperform

small funds. The result is similar for buyout funds.

We repeat the same exercise with a dummy capturing whether a fund is a first-

time fund or not (capturing experience of the firm) and fund focus (US / Europe).

Overall, we do not find significant effects for these variables, although US funds seem

to have slightly better performance than European funds.
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Table A.1: Risk, Abnormal Performance and Fund Characteristics 

This table shows monthly abnormal performance (Alpha; in percentage) and risk loadings using a one-factor market model. Alpha and beta are 

specified as a function of fund characteristics as follows: Alpha = a0 + afund_characteristic*fund_characteristic and Beta = b0 + 

bfund_characteristic*fund_characteristic. Fund characteristics include a dummy variable that is one if the fund’s committed capital is larger than the median, a 

dummy variable that is one if the fund is not a first-time fund, and a dummy variable that is one if the fund is US focused. Estimation is executed by 

GMM with joint estimation of final market values and equally weighting moment conditions. Standard errors are obtained by bootstrapping and are 

shown between parentheses. *, **, and *** indicate significance at 10%, 5%, and 1% levels, respectively. 

  
  Venture Capital Funds  Buyout Funds 
Alpha (%, monthly)             

a0  ***-1.69 ***-1.26 ***-1.96 ***-1.48 ***-1.22 ***-1.68  **-0.83 *-0.64 **-0.78 -0.47 **-0.77 **-0.82 
  (0.12) (0.14) (0.19) (0.24) (0.43) (0.33)  (0.34) (0.35) (0.34) (0.29) (0.35) (0.42) 
asize  ***0.52   0.30    0.21   -0.23   
  (0.12)   (0.27)    (0.24)   (0.38)   
aexperience   0.06   0.01    0.19   0.47  
   (0.16)   (0.47)    (0.38)   (0.81)  
aUS focused    ***0.82   0.55    0.25   0.23 

    (0.22)   (0.34)    (0.38)   (0.68) 

(market) Beta               
b0  ***3.05 ***2.94 ***3.43 ***2.53 **2.50 ***2.44  ***1.62 ***1.43 **1.50 ***1.15 ***1.71 **1.52 
  (0.42) (0.48) (0.29) (0.67) (1.12) (0.64)  (0.53) (0.41) (0.63) (0.35) (0.60) (0.59) 
bsize     0.56       0.56   
     (0.80)       (0.44)   
bexperience      0.47       -0.51  
      (1.24)       (1.00)  
bUS focused       1.03       0.06 
       (0.70)       (0.87) 
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