
Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Forking a Sketch: How the OpenProcessing Community Uses
Remixing to Collect, Annotate, Tune, and Extend Creative Code

Blair Subbaraman
b1air@uw.edu

University of Washington
Seattle, Washington, USA

Shenna Shim
shenns@uw.edu

University of Washington
Seattle, Washington, USA

Nadya Peek
nadya@uw.edu

University of Washington
Seattle, Washington, USA

Figure 1: We pair network analysis with qualitative techniques to capture high-level patterns and meaningful details about
how creative coders remix sketches. An excerpt of a remix subgraph is shown. Roni Kaufman iterates on their original sketch
(A) in multiple ways (B, C). Code snippets highlighting example changes are shown below.

ABSTRACT
Creative coders create programs that generate visual output. Frame-
works such as p5.js support sketching with creative code. Given the
focus on expressivity over functionality, code reuse in creative cod-
ing practice is distinct from other programming contexts. Remixing
facilitates iteration on existing code, but we have yet to under-
stand how creative coders use remixing in practice. To understand
creative coder remixing strategies, we studied the community of
OpenProcessing, a site dedicated to sharing code-generated art-
works. We found that 30% of the 1.2 million sketches in our data set
were involved in remixing. For in-depth insight, we qualitatively
analyze source code and visual output of 350 antecedent-remix
pairs. We present on the diversity of ways that authors remix to
curate projects, annotate process, explore variations, and transform
existing sketches. We discuss the prevalence of these types and

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DIS ’23, July 10–14, 2023, Pittsburgh, PA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9893-0/23/07.
https://doi.org/10.1145/3563657.3595969

implications for supporting a multiplicity of remixing strategies in
creative work.

CCS CONCEPTS
• Human-centered computing→ HCI theory, concepts and mod-
els; Empirical studies in HCI .

KEYWORDS
Creative Code, Remixing, p5.js, Processing, Creativity, Digital Art

ACM Reference Format:
Blair Subbaraman, Shenna Shim, and Nadya Peek. 2023. Forking a Sketch:
How the OpenProcessing Community Uses Remixing to Collect, Annotate,
Tune, and Extend Creative Code. In Designing Interactive Systems Conference
(DIS ’23), July 10–14, 2023, Pittsburgh, PA, USA. ACM, New York, NY, USA,
17 pages. https://doi.org/10.1145/3563657.3595969

1 INTRODUCTION
In the early 1970s at Bell Labs, artist-in-residence Lillian Schwartz
was advising statistician John Chambers on the use of color in his
visualizations [50]. The visuals, intended for a scientific audience,
were produced using an early domain-specific language for creat-
ing still and moving images with code [26]. In their work together,

2023-05-18 20:09. Page 1 of 1–17.

https://doi.org/10.1145/3563657.3595969
https://doi.org/10.1145/3563657.3595969

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

DIS ’23, July 10–14, 2023, Pittsburgh, PA, USA Subbaraman et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Chambers identified lines of the program for Schwartz to edit. Re-
flecting on the experience in a 2014 interview, Schwartz recalled
how “miraculously, just changing that one line changed the whole
image” [58]. The ensuing collaboration turned into “Papillons”,
one of Schwartz’ many computer-generated films which are now
genre-defining early works of computational art [49]. Schwartz was
able to explore visual outputs by creatively reusing existing code,
transforming a mathematical visualization into a novel artwork.

We can view Schwartz’ story as an example of remixing: re-
purposing an existing media artifact into something new. At the
same time that Schwartz was creating her early computer visu-
als, music producers in Jamaica were stripping vocals from songs
and re-recording them with new sonic effects. It is this creative
practice that informs contemporary understandings of a remix cul-
ture which champions the free exchange of ideas [39]. Remix in
music hit popular culture in the 1980s concurrently with the first
personal computers, and the ability to easily edit digital media cat-
alyzed remixing practices across a range of content creation areas.
Competing social theories advocate for remixing as a site of open
innovation [28] and deride it for generating unoriginal content [23].
Following this work, HCI researchers have empirically investigated
what makes some projects more suitable for remixing than others
[4, 15, 41], when a remixed creative project is of higher quality than
the original [14], and how remixing can support computational
thinking with code [8]. This prior work successfully evaluates mo-
tivations for and effects of remixing. By contrast, our research is
focused on how creative practitioners use remixing in their work.
Artists value quickly exploring new ideas [31], and remixing has
emerged as a way to iterate on existing code. As our starting insight
for this work, we hypothesize that creative practitioners’ approach
to code reuse is distinct from other programming contexts.

Since Schwartz’s early explorations, artists have developed nu-
merous domain-specific software tools to support programming
for expressivity over functionality, including Processing, p5.js, and
openFrameworks [32, 46, 57]. While each is anchored around a
specific creative focus, all combine artistic practice with general
purpose programming to offer new opportunities for creative ex-
pression. These software tools have evolved into communities of
practitioners who together have come to be known as creative
coders: “artists, designers, architects, musicians, and poets who use
computer programming and custom software as their chosenmedia”
[30]. In this paper, we focus on OpenProcessing: an online commu-
nity dedicated to sharing p5.js and Processing projects. Authors
on OpenProcessing can browse artworks, post new projects, and
remix existing work. The site therefore offers an empirical setting
to investigate remixing in the context of creative practice.

We aim to shed light on the diversity of current remixing practice.
To this end, we ask: What remixing strategies do creative coders
employ to reuse code? While code reuse has been studied in various
software engineering [9] and novice programming [54] contexts,
we focus on creative coders. HCI researchers have increasingly
considered how digital tools can support expressive practices [20];
our intent is not to classify what a remix can or cannot be, but rather
to help situate the development of useful tools by understanding
the actions of existing communities.

To examine creative code remixing strategies, we designed a
three phase analysis. We first conducted a network analysis of

OpenProcessing, an existing creative coding community. Using a
comprehensive data set of 1.2 million projects, we recreated the
network of all projects which are remixed or remixes. We leveraged
this remixing graph to surface subgraphs relevant to our research
questions, including the most remixed projects and the longest
chains of remixes. In the second phase, we used these subgraphs as
field sites for reflexive thematic analysis. Using traditional qualita-
tive coding approaches in conjunction with file comparison tools,
we analyzed remixed code and conceptualized four themes which
we believe speak to current remixing practice. While remixing is
commonly appreciated for the generation of new artifacts, we find
creative coders collect artifacts without making any code changes;
we see a variety of annotations which use inline code comments to
log personal process and informally version code snippets; small
code edits can have large visual consequence, and we see creative
coders tune existing parameters to explore variations in output; and
finally, we explore the range of ways that creative coders extend
sketches with precise stylistic interventions and larger reinterpreta-
tions of existing code. Beyond a single remix, we moreover see how
remixing is used to manage families of changes which pursue multi-
ple aesthetic directions. In a final phase, we measure the prevalence
of these strategies in the community using our themes as codes in a
content analysis. The results provide an additional layer of insight
to our initial community analysis, indicating that over half of all
remixes tune pre-existing parameters while comparatively fewer
add code or inline comments. We discuss the implications of both
our methodology and findings for building systems which support
creative code and other exploratory programming community. As
creative code is increasingly used to support computational educa-
tion, we finally consider the implications of our remixing strategies
for understanding and facilitating informal learning.

In summary, our overall contributions are:

• An interpretive analysis of remixing on OpenProcessing;
• A set of remixing strategies and their prevalence;
• Design provocations for HCI systems which seek to support
creative community through remixing.

2 BACKGROUND & RELATEDWORK
Our work contributes to two areas of HCI research: (1) studies of on-
line remixing behavior, and (2) inquiry into creative practice. Build-
ing on existing remixing research, we complement community-
scale network analysis with qualitative techniques to analyze code
changes between remixed programs. Doing so grants insight into
specific creative code reuse practices. We further situate our work
against related software engineering and end-user programming
research to distinguish creative coding from previously studied
programming settings. In this section, we provide an overview of
related work and detail how our approach builds upon prior studies.

2.1 Remixing in HCI
While remixing has been the subject of theory and analysis across
disciplines from the humanities to the social sciences, we focus on
HCI research to contextualize our contributions. Large remixing
communities which grew online over the last 15 years offered an
opportunity to empirically investigate social theories at a scale not

2023-05-18 20:09. Page 2 of 1–17.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Forking a Sketch DIS ’23, July 10–14, 2023, Pittsburgh, PA, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

previously possible. One thread of this research has focused on or-
ganizing and quantifying community-scale data. Cheliotis and Yew
[5] undertook a network analysis of a music remixing community
to understand structural patterns. They found, for example, that ar-
tifacts which inspire multiple new remixes (i.e. branching patterns)
were the most common in the community. While we use tools from
social network analysis, we also use the results to surface field sites
for subsequent qualitative analysis. In this way, we take inspiration
from Oehlberg et al. [41]. Following a network analysis of remix-
ing on the digital design file sharing site Thingiverse, the authors
thematically cluster highly remixed source files to identify patterns.
Our approach differs in that we are concerned with specific changes
made between remixed code files. Textual programming files ad-
ditionally permit qualitative analysis techniques not possible with
3D design files. We undertake an inductive thematic analysis to
conceptualize remixing strategies.

A related body of work empirically tests social theories around
remixing. The Scratch online community features heavily in this
scholarship. Scratch offers a visual, block-based programming lan-
guage targeted at novice programmers and students. Scratch is the
largest online remixing community, composed of a core audience
of 8-16 year olds [47]. Hill and Monroy-Hernández [14] utilized
Scratch projects to test the theory that remixed artifacts are of
higher quality than individually authored projects. They found that
remixes receive lower peer-ratings than single-authored works.
Related work also reveals a trade-off between generativity and
originality in remixed works on Scratch [15]. Given Scratch’s fo-
cus on young programmers, researchers have additionally studied
ways remixing can support informal learning [8]. Our research is
similarly interested in understanding how remixing plays out in a
real-world community. We differ in employing inductive, descrip-
tive methods to speak to the diversity of ways that practitioners
remix. Additionally, we propose a novel group of practitioners (i.e.
creative coders) in a novel community setting (i.e. the creative cod-
ing platform OpenProcessing). To this end, our study of remixing
intersects with accounts of collaborative art practice [22], error and
surprise in creative practice [21, 53], and the repurposing of found
objects [18]. In our analysis, we focus on specific remixing practices
distinct to creative code.

2.2 Creative Coding Tools and Community
Frustrated by the incongruence between their creative goals and the
software available to them, visual artists have developed domain-
specific software tools surrounded by vibrant communities [32, 35,
46, 57]. Our work focuses on a related set of creative coding tools
and associated communities. Processing is a popular Java-based pro-
gramming software started in 2001 [46]. The project has since been
reinterpreted for the web as p5.js, which has over 1.5 million users
[34]. p5.js (or p5 for short) provides a Javascript library to make
sketching with code as intuitive as sketching with paper and pen.
These tools are used diverse settings, from computer science class-
rooms to professional artworks [43]. The website OpenProcessing
is an independently created social website which supports shar-
ing and remixing projects made with Processing and p5.js. To our
knowledge, it is the largest online community for sharing creative
code projects.

Prior HCI work has engaged creative code in a variety of ways.
Li et al. [31] set out to understand how artists use and develop
custom software. To do so they interview visual artists, several of
whom report the use of Processing or p5.js. Their results surface
frictions between the priorities of commercial tools the goals of
artists, and suggest collaboration opportunities between artists and
systems designers. Related work has similarly argued for pairing art
production with tool production, as artists already actively shape
the tools they use [19]. VeranoMerino and Sáenz [62] further reflect
on the particularities of creative coding through interviews with
code artists. The intimate relationships between artists and their
technical tools motivates our interest in creative coders’ remixing
practices. Recent research also probes how creative practitioners
across a range of mediums use version histories in their process
[56]. The authors find that conventional version control systems are
misaligned to creative practice. In line with this work, our findings
suggest ways that artists appropriate remixing as a method of
informal version control. Related systems support creative coders’
creative process through integrated version control systems [45]
and screenshot driven version control approaches [33]. Overall,
our study builds on this rich body of work concerning code and
creative practice. Where previous work focuses on practitioners’
individual practice through interview-based methodologies, we
focus on the computational artifacts themselves. In particular, we
isolate remixing as one key aspect of creative coding practice which
is particularly important in building and sustaining community.

2.3 Tailoring and Customizing Software
In the HCI literature, creative coders have been cited as end-user
programmers [e.g. 25, 27]. We follow Ko et al. [27] in their definition
of end-user programming as coding for personal, rather than public,
use. We similarly note that this distinction does not denote inexpe-
rience. In addition to domain expertise in the visual arts, creative
coders can have years of programming experience and might also
work as professional software developers. OpenProcessing hosts
projects from creative coders with a variety of backgrounds and
expertise including students, hobbyists, and professional artists.

The framing of creative coders as end-user programmers allows
us to make connections to prior literature. Mørch [38] defined cus-
tomizing, integrating, and extending as three levels of end-user
software application tailoring. Only the final category, extending,
involves adding new code. This context differs from remixing on
OpenProcessing, where all changes involve editing code. In refer-
ence to this prior work we renamed our final theme “extending”.
The definition of our theme did not change in the renaming pro-
cess, consistent with our inductive approach to thematic analysis.
Creative coding has also factored in more contemporary literature
around exploratory programming. Kery and Myers [25] define ex-
ploratory programming as a task wherein (1) programming is used
as a medium to experiment with new ideas, and (2) the program-
mer is not coding to a predefined specification. Research around
exploratory programming has largely focused on data scientists.
Our focus on creative coders thus contributes to this existing body
of literature.

Finally, our focus on coding practices intersects with prior work
in software engineering. Prior work has studied the relationship

2023-05-18 20:09. Page 3 of 1–17.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

DIS ’23, July 10–14, 2023, Pittsburgh, PA, USA Subbaraman et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 2: The OpenProcessing browser-based interface. Users can look at both the code (left) and corresponding visual (middle).
Edits can be made directly to the code to observe output. These changes can be saved and published as a fork, or remix. Users
can view all projects which fork the current sketch in a sidebar (right). The sketch shown is by caaatisgood.

between inline code comments and documentation [13], how soft-
ware developers forage for relevant information [9], and how to
automatically detect sections of code which might benefit from
refactoring [61]. In its pursuit of creativity over functionality, we
are interested in how creative coding compares and differs from
traditional software engineering contexts.

3 EMPIRICAL SETTING: OPENPROCESSING
To gain insight into creative code remixing strategies, we turn to
an existing online community. OpenProcessing is an online com-
munity for creative coders to write and share projects. It supports
code written using the popular creative coding libraries p5.js and
Processing. OpenProcessing was independently founded by Sinan
Ascioglu, separate from the development of the p5.js library itself
[52]. Ascioglu continues design and development of the website.
The site has accumulated over a million creative code projects since
launching in 2008. It is free to make an account and paid features are
also available with particular relevancy for educators and students.
The site development is active and the creator regularly adds new
features, such as a recent ChatGPT integration to help debug code
errors.

We walk through the OpenProcessing interface, defining several
key terms along the way. A creative code project is called a sketch. A
sketch is comprised of a visual output and the code used to generate
the visual. Sketches on OpenProcessing are uploaded by authors
with optional descriptions. The site’s landing page shows trending
projects; upon selecting one, users are shown the visual (Figure
2 center). Importantly, users can not only view a sketch’s source

code (Figure 2 left) but also fork it. A common feature in software
engineering contexts, an author who forks a project duplicates
the sketch to their own account. They can then edit the code and
re-publish it under their username. In doing so, the relationship
between the fork and its source is preserved. When navigating to a
forked sketch, a pop-up will appear linking to the parent project.
Forks are contrasted with de-novo sketches, which are projects
directly published by the author. To consolidate language, we will
refer to the original sketch as the antecedent and the sketch which
is a fork as a remix. Notably, these actions can be chained. One
project’s antecedent might be another project’s remix. A tree rep-
resenting all sketches derived from the current project is navigable
from a sidebar (Figure 2 right), though traversing up the tree must
happen manually.

4 METHODS
Our analysis of remixing on OpenProcessing was conducted

in three phases. Phase one uses the tools of social network anal-
ysis to discover all sketches involved in remixing. In addition to
presenting community-level data, network analysis helps us select
productive field sites for subsequent qualitative investigation. Phase
two consists of a reflexive thematic analysis wherein we sample
antecedent-remix pairs from subgraphs identified in phase one. We
make use of source code comparison software to make easily visible
the changes between a remix and its antecedent. We subsequently
use this ‘code diff’ as a key piece of data to qualitatively analyze in
our thematic analysis. We conceptualize themes which we present
as distinct remixing strategies; phase three uses these themes in a

2023-05-18 20:09. Page 4 of 1–17.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Forking a Sketch DIS ’23, July 10–14, 2023, Pittsburgh, PA, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

1 function myCircle(x, y, rad) {
2 let numLayers = 200
3 for(let i = 0; i < numLayers; i++) {
4 let vertices = []
5
6
7
8
9
10 for (
11 let theta = 0;
12 theta < TAU;
13 theta += TAU / 20) {
14 ...

1function myCircle(x, y, rad) {
2let numLayers = random(100, 300)
3for(let i = 0; i < numLayers; i++) {
4let vertices = []
5let flick = random(10,11)
6// for(
7// let theta = 0;
8// theta < TAU;
9// theta += TAU / random(10,30)) {
10for (
11let theta = 0;
12theta < TAU;
13theta += TAU / flick) {
14...

Figure 3: Illustrating our qualitative coding process using an antecedent (left) and remix (right) pair from our data set. In
remixing a sketch from user Taiki Saito, Owaun Scantlebury demonstrates tuning (blue), creative code extensions (purple),
generic extending (green), and annotating (yellow).

content analysis to measure their relative frequency. We detail our
methods in this section.

4.1 Network Analysis
Sketch metadata on OpenProcessing can be retrieved by querying
an API with the sketch ID. In the case of a remix, this includes the
ID of the sketch’s antecedent. We collected data from all possible
identification numbers in May 2022. As our analysis is interested
in identifying remixing patterns which might be atypical, compre-
hensive data collection is necessary over representative sampling.

A social network is commonly abstracted as a graph wherein
nodes represent individuals and edges communicate a relationship
between them [64]. Our goal is to create the remixing graph where
each node is a sketch, and edges point from an antecedent sketch
to a remixed sketch. We used custom Python code to prepare the

collected data for analysis, the NetworkX library [11] to analyze
the data, and the open-source software Gephi [1] to visualize the
network. Howard [17] contends that network analysis is useful to
justify case selection for subsequent qualitative analysis. We take
such a network ethnography approach, using the remixing graph
to identify sources of remixing which would be otherwise invisible.

4.2 Thematic Analysis
We follow Braun and Clarke [2] to conduct a reflexive thematic
analysis. While the relevant data for a thematic analysis is tradi-
tionally text such as an interview transcript, our unit of analysis is
a antecedent-remix pair of OpenProcessing sketches; that is, the
program and visual output from both an antecedent sketch and
a fork of the antecedent. Our full data set was comprised of 350
antecedent-remix pairs identified in our network analysis.

2023-05-18 20:09. Page 5 of 1–17.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

DIS ’23, July 10–14, 2023, Pittsburgh, PA, USA Subbaraman et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Two researchers assigned qualitative codes1 to the data using
a browser-based tool. This tool provided links to remix and an-
tecedent sketches so that all relevant information could be inspected
online, including: the sketch program, its associated visual, author
descriptions, and user comments on the platform. After an initial
period of data familiarization, we observed that changes to the
program are crucial to understanding what occurred between an
antecedent and its remix. We therefore added a ‘diff’ view to our
tool which highlights the differences between the remix and an-
tecedent programs. Such file comparison utilities are common in
software engineering contexts to easily identify what has changed
between two files.

Over 8 weeks, we developed a codebook using an inductive
open-coding approach. Over time, qualitative code categories in-
creasingly focused on changes made visible by the program diff.
We wrote memos to produce text that worked across the code set.
We ultimately conceptualized four themes which we believe each
capture a distinct remixing strategy. After naming and defining our
themes, we found they could productively be put into conversation
with prior research in end-user programming. In a final meeting,
we updated our theme names to align with prior work where rele-
vant. The definition of our themes did not change in this process,
consistent with our inductive approach to thematic analysis.

4.3 Content Analysis
Each of our themes involve specific program edits. These include
no change to the original code (collecting), adding inline comments
(annotating), editing pre-existing parameters (tuning), using func-
tionality exposed by the creative coding library (creative code ex-
tensions), and adding new code which does not require the creative
coding library (generic extensions). After we contextualized these
strategies in a thematic analysis, we sought to measure the preva-
lence of each on OpenProcessing. Two human coders analyzed a
randomly sampled collection of antecedent-remix pairs from the
remix graph. We coded sketches for the presence or absence of
each theme. In accordance with Neuendorf [40], we begin with a
norming stage wherein each researcher coded the same 100 projects
and disagreements were discussed. These disagreements were sub-
sequently accounted for in our coding process. In a reliability phase,
the coders then coded the same set of 200 projects. We found we
were able to code for each theme reliably with the following Krip-
pendorf’s alpha values: collecting (𝛼 = 0.97), annotating (𝛼 = 0.92),
tuning (𝛼 = 0.88), creative code extending (𝛼 = 0.91), and generic
extending (𝛼 = 0.92). An additional 100 projects were then coded
by a single coder for a total of 400 projects.

4.4 A Worked Example
While we further discuss the meaning and nuance of each theme in
our findings, we walk through an example to clarify our qualitative
coding process. Figure 3 shows an antecedent-remix pair from our
data set alongside a matching excerpt from each program. We use
a unique color to differentiate each change based on the qualita-
tive code we assign it. Line two edits the value of the pre-existing
variable numLayers (tuning), by way of the p5-specific function

1To avoid confusion, we use ‘code’ in this section to refer to qualitative codes, and
‘program’ to refer to computer code.

random() (creative coding extension). The remix goes on to declare
the new variable flick (generic extension) and comments out a for
statement (annotation). We would therefore assign each of these
qualitative codes to this remix. Our qualitative coding process does
not measure intensity; although there are multiple instances of tun-
ing in Figure 3, we code only for presence or absence. Moreover, we
treat all inline comments as annotations and do not assign tuning
or extension qualitative codes to their contents. Finally, we do not
assign any qualitative codes to lines of the program which have
been removed.

4.5 Limitations
We note several limitations regarding our chosen methods. Our
focus on sketches themselves does not grant us insight into why
an author decided to remix. While we pair network analysis with
qualitative techniques to capture both high-level patterns andmean-
ingful details, interview based studies would complement our ap-
proach. An analogous study might create the network of authors
who remix each other; the resulting author remixing graph can
guide researchers in recruiting interview participants. Tseng and
Resnick [60], for example, found that most readers on the project
documentation website Instructables are searching for project ideas
and new techniques rather than recreating a project directly. Un-
derstanding the reasons why an author chooses to remix can add
additional depth to our analysis. Moreover, OpenProcessing does
not necessarily reflect the practices of all creative coders. Commu-
nities built around other tools might have correspondingly different
interests and values. The practices of creative coders offline might
be different from the ones demonstrated in a public platform. With
these limitations in mind, we aim to understand how the code reuse
practices of this community can inform future systems and studies.

5 UNDERSTANDING HIGH-LEVEL REMIXING
PRACTICES

At the onset of our research, the members of the OpenProcessing
community had shared over a million sketches on the platform.
We use the tools of social network analysis to make sense of this
data. Of the 1,500,800 queried sketches, 75% had publicly available
metadata, while the remaining 25% of sketches were either private,
deleted by the author, or removed for violating the terms of service.
We use the remaining 1,119,988 sketches for our analysis. We find
that 30% (356,946 sketches) of the accessible sketches were either
sources for remixing, remixes themselves, or both. This number
excludes 123 erroneous ‘self-loops’ in which sketches are their own
remix, likely due to an error at the time of upload. This percentage
speaks to the prevalence of remixing within the community.

The remixing graph is built as shown in Figure 4a, where nodes
are sketches and edges are directed from antecedents to remixes.
The full network is visualized with Gephi to make clusters of
remixes visible (Figure 4b). We note key takeaways from the remix-
ing graph. The entire graph is composed 79,453 subgraphs. Most of
these subgraphs are small, with a mean size of four nodes. This data
tells us that most sketches that are not heavily remixed. An example
of a smaller subgraph is shown in Figure 4c, where a de-novo sketch
is remixed five times, one of which generates an additional two
remixes. Our network analysis allows us to filter and find subgraphs

2023-05-18 20:09. Page 6 of 1–17.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Forking a Sketch DIS ’23, July 10–14, 2023, Pittsburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 4: (a) We conceptualize remixing as a directed graph wherein nodes are sketches and edges points from antecedents to
remixes. (b) The OpenProcessing remixing graph consists of almost 80,000 subgraphs. 30% of accessible sketches are involved
in remixing. (c) An example subgraph consisting of 8 sketches. (d) We filter the remixing graph to find subgraphs with specific
features. Shown is the largest subgraph in our data set consisting of 1594 total sketches. (b)-(d) were made using Gephi. [1]

by size. For example, the largest subgraph is shown in Figure 4d
and is made up of 1,594 sketches. Altogether, this data suggests that
sketches are remixed in a diversity of ways.

The proportion of sketches which are remixes (30%) aligns with
current statistic from the the Scratch community [65]. However,
we note two key differences in our OpenProcessing data set. First,
Scratch does not allow remixes which do not make any changes to
the original sketch, whereas OpenProcessing does. Moreover, on
Scratch it is not possible to remix your own sketch. While there are
workarounds noted in the forums [65], the fact that it is against com-
munity guidelines hinders this behavior. No such guidelines exist
on OpenProcessing. In fact, we find it is common: we assembled the
graph of remixes which have the same author as its antecedent on
OpenProcessing and found that 49% of all remixed sketches (14.7%
of all publicly available sketches) are involved in such self-remixing.
We take note of this behaviour throughout our analysis.

We collate a selection of antecedent-remix pairs sampled from
the remixing graph for in-depth analysis. In addition to randomly
chosen antecedents and remixes, we identify a set of superlative
subgraphs which we hypothesize are productive sites for quali-
tative investigation. These include the largest overall subgraphs,
the sketches with the most direct descendants, and the longest
remix chains. Our final data set for qualitative analysis consisted
of 350 antecedent-remix pairs sampled from these field sites, in-
cluding: 100 pairs randomly selected from the remixing graph, 5
pairs randomly selected from each of the 20 largest subgraphs, 5
pairs selected from each of the 20 most remixed sketches, and 1
pair selected from each of the 50 longest remixing chains. This data
set was used to conduct a reflexive thematic analysis.

6 CONCEPTUALIZING REMIXING
STRATEGIES

We conceptualize four high-level remixing strategies, each of which
we tie to specific code edits. While broadly applicable to any edited
code, we provide illustrative examples to distinguish the use of
these strategies in a creative coding context. While remixing is
often appreciated for its ability to create new artifacts, we see cre-
ative coders collecting sketches without making any edits. We see a

variety of annotations which use code comments to log personal
process and informally version code. Small code edits can have
large visual consequence, and we observe creative coders tuning
existing variables to explore a range of visual output. We finally
see a broad set of extensions which add new code. In particular, we
observe remixes which make targeted changes to build on a sketch
in specific ways, remixes which use the antecedent as conceptual
inspiration in larger changes, and families of remixes which ex-
plore multiple creative directions. A single remixed sketch might
demonstrate several of the behaviors we describe, and we there-
fore consider the productive interplay and frictions between each
strategy.

We have decided not to anonymize the OpenProcessing user-
names of the authors whose work we include in this paper. We
have contacted or attempted to contact the 20 accounts whose work
we include. All eleven who have responded have asked for their
usernames to be included alongside their work. Given that commu-
nity members have a preference for public attribution, we believe
it is still appropriate to use the usernames of the accounts from
whom we did not receive a response– for an in-depth discussion of
when not to anonymize in internet research, see [12]. We have also
added all usernames to this paper’s acknowledgements section. We
present all code as it was published on OpenProcessing, with the
exception of small formatting changes for clarity in presentation.

6.1 Collecting Sketches Without Making
Changes

Conventional understanding of remixing focus on the creation
of new artifacts. However, we find that many remixes on OpenPro-
cessing contain identical code and therefore visual output. We call
this behavior collecting. The most straightforward of our themes,
we define collecting as a remix with no changes made to the code.
It is therefore the only mutually exclusive remixing behavior we
present.

While users of OpenProcessing have the ability to ’like’ sketches,
we see some accounts dedicated to collecting. Several usernames
in our data set include “Best Sketches” or similar language in their

2023-05-18 20:09. Page 7 of 1–17.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

DIS ’23, July 10–14, 2023, Pittsburgh, PA, USA Subbaraman et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

function drawJoiningWalls () {
/* for each pair of agents for whom there is no
other agent nearer to either, draw a wall */

Figure 5: Neill Bogie explains how walls are being drawn in
Naoki Tsutae’s sketch.

handle. These accounts feature only collected sketches, appropriat-
ing the remixing features of the platform to curate projects. Prior to
manual investigation, there is no way to know what has changed
between an antecedent and remixed program. This can make navi-
gating the remixing history of a sketch difficult, as it is not apparent
if a past or future version is any different that the current one.

6.2 Annotating Sketches with Inline Comments
Not all changes to code necessarily affect the visual output. We

find that annotating code using inline code comments frequently
occurs in our data set. Code commenting is well-studied in software
engineering [13] and other exploratory programming contexts such
as data science [24]. Here we present examples from our data,
noting overlaps and differences from prior work. In particular, we
see annotations used to learn about others’ sketches, log personal
process, and informally version lines of code.

In our analysis, we see comments used in remixes to annotate
sketches as the remix author learns how it works. In Figure 5,
an antecedent visual is shown above a remixed code excerpt, with
additionsmade in the remix presented in orange.Neill Bogie remixes
a sketch by Naoki Tsutae. In the description of the sketch, they write
that they are “breaking down Naoki Tsutae’s work to learn from it.”
Throughout the code, the remix adds comments which provide
high-level explanations of various functions. The original sketch
animates the position of various particles, or ‘agents’. The remixed
excerpt shown notes how the walls are being drawn between these
particles. After annotating this sketch, the remix author goes on to
create several de-novo sketches in which they re-implement this
algorithm themselves. While leaving explanatory comments in code
is not new behavior, remixing serves as a way for other authors to
annotate a sketch as they learn how it works. We additionally see
examples of annotations which extend inline comment explanations
and fix grammatical errors.We also saw several examples of remixes
which translated comments into different languages.

We contrast explanatory annotations with process-oriented ones.
Process-oriented comments log personal process in ways distinct
to creative code. In our data set, process-oriented comments were
often brief expressions of an issue or frustration left by authors
remixing their own sketch. A particularly illustrative example is
shown in Figure 6. A year after posting their original sketch, Aaron
Reuland (a_soluble_fish) remixed it to annotate their process. These
comments include links to references they draw from including
other OpenProcessing authors and online examples, explanations of
what various sections of code accomplish, and reflections on what
they have learned in the past year. Throughout, these comments
make transparent the author’s process. In the excerpt shown, they
describe where they sourced the code snippet to create a “papery”
texture.While they say they copy-pasted it at the time of the original
sketch, in their annotation they take time to explain its use. In other
sections, they clarify what techniques are original and similarly
cite inspirations. Comments such as these would not usually be
found in production code. In a creative coding context however,
such comments reveal process in a public setting. We moreover see
these annotations as a way to reckon with attribution; a remix can
only have a single antecedent, but code might be inspired by many
prior works. The effort of manual credit-giving has been shown to
be valued by community members in prior research [37].

/* ok, this texture algorithm I definitely stole. 98% sure
it was from **Che-Yu Wu (openprocessing.org/user/139364)**
an amazingly talented artist, who also adds lots of
in-progress stuff to openProcessing- nice to learn from
(not that I learned from this at the time I made this,
so much as I copied and pasted it) creates a nice papery
texture by applying noise to the pixel array, that is
blended with the rest of the ’art’ later on. */

Figure 6: Annotations can log personal process in addition
to providing explanations. Aaron Reuland (a_soluble_fish)
remixed their own sketch a year later, adding explanatory
details, sources of inspiration, and reflections.

2023-05-18 20:09. Page 8 of 1–17.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Forking a Sketch DIS ’23, July 10–14, 2023, Pittsburgh, PA, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

margin = mySize / 100;
for (let i=0; i<int(random (50, 100)); i++) { ... }
theShader.setUniform(

'u_time ',
millis () / 1000

);
let version = random ([1,2,4,6,8]) *100;
let c = random (2000, 5000);
colorMode(HSB , 360, 100, 100, 100);

margin = mySize / 10;
for (let i=0; i<int(random(500, 100)); i++) { ... }
theShader.setUniform(

'u_time ',
millis () / 1
);

let version = random ([200,150,77,50,140]*100;
let c = random(1000, 2000);
colorMode(HSB , 21, 10, 10, 10);

Figure 7: Remixes can explore variations in visual output by tuning existing parameters. A remix by naha (right), achieves
distinct visual output through editing pre-existing paramters set in the original by SamuelYAN (left). All of the changes made
are shown in the accompanying code block, with edits in orange. Note that these tuned lines appear throughout the sketch, and
are presented sequentially here to illustrate the effects of tuning.

While the explanatory and process-oriented comments above are
straightforward to interpret, others require contextualization in the
remixing history. Figure 8 shows amatching line from an antecedent
and remix in our data set. In the remix, it is not immediately clear
where the number 150 comes from. By consulting the antecedent
sketch, we see that this was the previous value for this variable. This
strategy to archive previous values before changing them recurs
throughout our data set. We also see new values left as comments.
We infer that such comments are values which yielded output that
authors wished to save. In this behavior, we surmise that authors
of these remixed sketches are using inline comments to quickly
backup, or version, individual lines of code. This informal version
control aligns with previous studies of data scientists [24]. A key
difference distinct to OpenProcessing is how archiving parameters
can become collaborative. It is often not the original author who is
versioning the previous line of code but others building from it.

Finally, comments can directly affect visual output. By comment-
ing out lines with visual or interactive consequence, remixes can
affect the look and feel of a sketch. Examples in our data set include

var length = 150; var length = 100; // 150

Figure 8: The value 150 is left as a comment in the remix
(right). Comparing the code with the antecedent shows us
that this was the previous value for the variable line.

commenting out lines which draw shapes to the screen or limit the
number of frames to be drawn each second. Deliberately comment-
ing out lines can produce different output; by commenting instead
of deleting the line entirely, the remix retains a strong trace to the
antecedent. Notably, this permits exploring visuals without writing
any new code. This use of comments aligns with prior studies of
computational notebooks for data science wherein comments are
used to control program flow [48].

2023-05-18 20:09. Page 9 of 1–17.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

DIS ’23, July 10–14, 2023, Pittsburgh, PA, USA Subbaraman et al.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

pal = bigpal(3, pal);
br.disp (150)
this.swarm = new swarm(40, 29, 20)

pal = bigpal(6, pal)
br.disp(110 + random(-50, 50));
this.swarm = new swarm(10, 29, 20)

Figure 9: By tuning existing variables in code, authors can generate a set of possible visual outputs. After implementing a base
algorithm, Trrrrrr remixes their own sketch multiple times to tune a set of relevant variables. The visual differences shown are
a result of manipulating existing values. The code showing the tuned variables is shown. Note that these tuned lines appear at
different locations in the sketch code and are shown here sequentially to illustrate the effects of tuning.

6.3 Tuning Existing Parameters to Explore
Visual Outputs

Oneway to explore visual outputs is tomanipulate values in existing
code. We observe such tuning frequently in our data set. In Figure
7, we see naha remixing a sketch by SamuelYAN. A distinct visual
output is reach solely through tuning existing paramters; all of the
changes made in the remix are shown in the accompanying code
block. In particular, we see the remix manipulating the values of pre-
existing variables, the arguments to functions such as colorMode(),
and the end condition of a for loop. We take all of these changes
to be instances of tuning, defined by the explicit manipulation of
an existing value in code.

In our data, we see that highly remixed sketches feature many
tuning remixes. For example, the longest remixing chain on Open-
Processing at the time of our data collection was 106 sketches long.
The source sketch consists of a face drawn with simple shapes,
whose eyes follow the mouse as it moves. Almost all of the remixes
of this sketch involve other authors tuning colors.

In addition to tuning others’ sketches, we see that remixes by
a single author can be used to manage variations. Figure 9 shows
a set of sketches by Trrrrrr. After implementing a base algorithm,
they manipulate various parameters to generate a set of distinct
outputs. The code edited between two of these variations is shown;
while these lines appear throughout the code, we present them

sequentially to highlight the effects of tuning. Trrrrrr remixed the
original sketch several times, making slight changes to the base
algorithm each time to explore the possible outputs.

We emphasize the close relationship between tuning and anno-
tating. In Figure 8, we saw how previous values of tuned variables
were archived with inline comments. In other cases, we see tun-
ing can make inline documentation obsolete. One such example is
shown in Figure 10. In the remixed sketch, the RGB values which de-
fine the color of lines drawn on the screen are changed from a shade
of red to black. The comment, however, is now out of alignment.

stroke (244, 37, 37, 60); // red

stroke(0, 0, 0); // red

Figure 10: Tuning can result in inline documentation becom-
ing outdated.

6.4 Extending Sketches with New Code
Our themes so far have not involved writing new code. In analyz-

ing our data set, we found that many remixes make visually impact-
ful additions by using Processing and p5.js-specific functionality.
These creative coding libraries provide functionality to aid graphics

2023-05-18 20:09. Page 10 of 1–17.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Forking a Sketch DIS ’23, July 10–14, 2023, Pittsburgh, PA, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

acc = new PVector (0,0);
lifeSpan = int(random (30, 90));
decay = random (0.75, 0.9);

c = color(random (255),random (255) ,255);

acc = new PVector (0,0);
lifeSpan = 90;
decay = 0.75;
this.h = h;
h += 0.5;
if (h > maxH) {

h = minH+h-maxH;
}
c = color(h, 255, 255, 10);

Figure 11: Extensions involve adding new code in a remix. Jason Labbe (right) remixes Raven Kwok’s (left) sketch. The remix
stays close to the original source material; in the code excerpt shown, the remix tunes several values and specifies color. The
remix tunes and adds additional code in other locations.

vertex(xPosition , yPosition);

curveVertex(xPosition , yPosition);

Figure 12: The only change between Sasha T.’s antecedent
(top) and shrike’s remix (bottom) is the use of the curveVertex
command to join points using curved splines rather than
straight lines. This results in rounded shapes in the face
generator.

programming. Among these include functions to render lines (e.g.
line(), curveVertex())) and shapes (e.g. ellipse(), box()) to
the screen, change and blend colors (e.g. fill(), stroke()), and
handle device input events (e.g. mouseClicked(), keyIsDown()).
All of this functionality is tailored to the task at hand: creating visu-
als and interactivity using code. We define changes which require
the creative coding library as creative coding extensions. For exam-
ple, shrike changed a single function in Sasha T.’s face generator
to make smooth, rounded curves (Figure 12). Instead of connect-
ing points directly with vertex(), curveVertex() is another p5.js
function which will generate a spline between points. By taking
advantage of the creative coding library, the remix is able to make
a small but visually substantial change to the sketch.

We distinguish creative coding extensions from changes which
do not require specific use of the creative coding library. Instead,
generic extensions rely only on the general purpose programming
language and can be run without the use of the creative code library.
Common examples of generic extensions in our data set include
declaring new variables, writing custom functions and classes, and
implementing control flow statements (e.g. for loops) to specify
behavior. We distinguish between creative code and generic ex-
tensions to gain analytic insight in our content analysis; here, we
consider sketches which make use of both.

Extensions can be used to achieve a desired result through tar-
geted interventions. One example is shown in Figure 11. In remixing
a sketch by Raven Kwok, Jason Labbe left an inline comment that
they “Changed how it renders to feel more stylized”. To accomplish

2023-05-18 20:09. Page 11 of 1–17.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

DIS ’23, July 10–14, 2023, Pittsburgh, PA, USA Subbaraman et al.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

function randomShape(x_, y_, w_, h_, col) {
let grfx = createGraphics(w_, h_);
let rnd = int(random (6));
let num = int(random(1, 4));
...
for (let i = 0; i < num; i++) {

let w = random(5, w_ * 0.35);
let h = random(5, h_ * 0.35);
let x = (random (1.4) -0.2)*grfx.width;
let y = (random (1.4) -0.2)*grfx.height;
...

}

function drawTrees(x_, y_, w_, h_, col) {
let grfx = createGraphics(w_, h_);
count = int(random(30));

...
for (let i = 0; i < count; i++) {

let w = random(2, 10);
let h = w * random(2, 5);
let x = (random (1.4) -0.2)*grfx.width;
let y = (random (1.4) -0.2)*grfx.height;
...

};

Figure 13: @Okazz created a generated series of panels (left). In each, random circles, triangles, and quadrilaterals are drawn
according to a specified set of rules. @JFrench reuses and expands parts of the original sketch to create landscapes within each
panel (right).

this goal, the remix edits pre-exiting variables in the original parti-
cle simulation (i.e. tuning), adds a function to cycle through preset
colors instead of using a random number generator (i.e. generic
extending), and makes use of various built-in math functions (i.e.
creative code extending). Much of the antecedent code is left in tact
with specific sections changed to achieve the desired effect. Figure
11 shows a section of the remixed code. Specific variables are tuned
to explicit values, and additional code has been added to set the
color and size of the of the shapes drawn. These edits stay close to
the source material to “stylize” the sketch in a new way.

In other examples, we see targeted changes used to add function-
ality to the antecedent sketch. Common examples include adding
camera orbit controls, binding keystrokes to reset the elements of
the sketch, or adding mouse interactivity. Author Richard Bourne
has over 11,000 sketches on OpenProcessing, many of which are
forks. Consulting their user page, we see they frequently remix
sketches to add built-in functions for saving still images from the

sketch when a user clicks their mouse. We finally note that remixes
which make targeted extensions can occur by the same author
as the original sketch. For example, Figure 14 (left) shows how
garabatospr remixed their original sketch into a grid of outputs.
Among other small edits, the remixed code abstracts elements of
the original code into functions which can then be called multiple
times.

Extensions can also reuse, repeat, and reinterpret the antecedent.
Okazz’s sketch in Figure 13 (left) creates a grid of panels. Each panel
is filled with a different set of random shapes. JFrench remixed this
sketch to create generative landscapes. In the code excerpts shown,
we can see how the same code which draws random triangles has
been slightly modified to give the effect of trees; the same technique
is used with larger triangles to create the mountains. While the code
shown highlights how the remix repurposes this particular excerpt,
the remix additionally makes larger changes to the overall code
organization. For example, it also adds a function to style the sun

2023-05-18 20:09. Page 12 of 1–17.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Forking a Sketch DIS ’23, July 10–14, 2023, Pittsburgh, PA, USA

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Figure 14: A set of antecedents (top) and remixes (bottom). In each, we see the remixes repurposing and repeating code from
the antecedent. (Left) garabatospr remixes their own sketch to create an array of outputs. (Center) Hans Peter remixes Sayama
to turn generative birds into owls. (Right) Naoki Tsutae remixes themselves to add circle packing to their collision-free paths.

and moon in the sky, ensuring exactly one circle is drawn. Similarly,
Hans Peter reworks Sayama’s generative birds into owls (Figure 14
center), and Naoki Tsutae remixes themselves to add circle packing
to their collision-free paths (Figure 14 right). Across these examples,
we see the remix stays conceptually connected to its antecedent
through reusing prior code, even in code-intensive changes.

The remixes considered till now have involved one antecedent
and one remix. We see authors can explore multiple creative di-
rections in a family of remixes. Figure 15 shows a subgraph of
remixed sketches beginning with “Square packing study” by Roni
Kaufman; however, we only show sketches by the original author.
We see the author remixes the original sketch in three different
ways. They then elaborate on the resulting sketches. We highlight
two takeaways from this subgraph.

First, the relationship between sketches in distinct chains is ob-
scured without a top-level view of the whole subgraph. Second,
in lieu of presenting the code changes between each sketch, we
note the edit distance between each remix and antecedent. The
edit distance between two texts is quantified by the number of
character insertion, deletions, and replacement must be made to

transform between the two [29]. It is has been widely used in soft-
ware engineering contexts as a metric of originality. We point out
that the edit distance decreases over each chain. These measure-
ments map to larger bursts of extending over the first generations
of remixes, followed by shorter extensions and tuning. We noted in
our network analysis that 49% of all remixed sketches are involved
in self-remixing. Filtering the self-remix graph by subgraph size,
we find that 48,600 sketches (14.4% of all remixed sketches) are a
part of self-remix subgraphs with five nodes or more. This statistic
speaks to the frequency with which authors manage families of
versions through remixing.

7 MEASURING THE PREVALENCE OF
REMIXING GENRES

Our themes provide an interpretive analysis of remixing behav-
iors in the OpenProcessing community. We seek to measure the
prevalence of the remixing strategies in our data set. To do so, we
conducted a content analysis. Table 1 reports the overall frequency
with which we observe each strategy in a content analysis of 400
projects. Notably, tuning occurs in over half of all remixes. In our

2023-05-18 20:09. Page 13 of 1–17.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

DIS ’23, July 10–14, 2023, Pittsburgh, PA, USA Subbaraman et al.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Figure 15: A self-remixing subgraph with sketches by Roni
Kaufman. The original sketch is taken in three distinct di-
rections. Each of these ideas is then further pursued. Com-
ponents of this graph are also shown in Figure 1.

content analysis, we divide extending into the subcategories of
creative code extensions and generic extensions, as discussed in
Section 6.4. This distinction shows that code additions which makes
use of the creative code library are more common than those which
rely solely on the general purpose programming language. Finally,
approximately a quarter of remixes are collections with no changes.

Theme Frequency
Collecting 26.3%
Annotating 29.8%
Tuning 55.3%
Creative Code Extending 40.3%
Generic Extending 32.5%

Table 1: The frequency with which we observe each remixing
strategy in a content analysis. With the exception of collect-
ing, multiple strategies can be present in a given sketch.

While this is the least frequently occurring of our themes, we note
that each of the other strategies might differ in scope and scale. All
collections, on the other hand, are remixes with no changes made
to the code.

8 DISCUSSION
Our analysis of OpenProcessing sheds light on a diversity of remix-
ing practices in the community. Practitioners collect, annotate, tune,
and extend code in ways which are difficult to discernwithout exam-
ining code directly. In this section, we discuss important takeaways
from our work. (1) We reflect on lessons we can learn from Open-
Processing and our analysis, offering design provocations for HCI
researchers interested in building systems which support creative
code and related practices through remixing. (2) While our findings
are intimately tied to creative coding, we discuss the possible ben-
efits of our methodology in the study of other remix and coding
contexts.

8.1 Design Provocations to Support Creative
Community through Remixing

Our study of OpenProcessing provides insights relevant to the
development of HCI systems which seek to support creative pro-
cess and community. We outline design provocations derived from
our analysis. These provocations include incorporating code diffs
within the interface to rapidly discern changes, tagging remixes for
refined discovery, supporting collaborative annotation of remixing
graphs, and decreasing the relevant unit of analysis from sketches
to individual lines of code when considering what makes a remix.
For each, we highlight how such a feature might support individual
creative coders as well as cultivate creative community. Rather than
informing the design of OpenProcessing–which already makes de-
sign improvements guided by the interests of their community–we
do so to bring empirical insight to prior HCI research. Recent re-
search notes that only 25% of HCI systems which support creativity
are made publicly available [10], and just 5% are intended to support
a specific population [7]. OpenProcessing inverts this landscape,
and we focus on lessons we can learn from an active community.

8.1.1 Diff in the Loop Remixing. In our analysis, we found it was
impossible to know what changed in a remix without consulting
the code for both the antecedent and remix. This can be tedious,
particularly when it is unknown if there are any changes to be
found and when changes are scattered among several files. “Diff
in the Loop” explores visualizing differences in data sets to aid
exploratory analysis in data science contexts [63]. Our research

2023-05-18 20:09. Page 14 of 1–17.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Forking a Sketch DIS ’23, July 10–14, 2023, Pittsburgh, PA, USA

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

approach to consult code diffs suggests ways to make differences
between remixed code more easily legible. In particular, we can
consider a live code diff view incorporated within the editor. With
such a view, a user might open a pair of sketches to immediately see
the differences in both code and visual output. For creative coders,
this can help identify sections of code which produce desired visual
effects.

8.1.2 Tagging Remixes. In addition to examining code diffs directly,
the remixing strategies we identified can be used to tag remixes.
Currently, discerning the changes made among remixes requires
manually opening each sketch. By contrast, tags can be leveraged
to filter remixes which are collections, only show remixes which
extend the current one, or show all remixes which provide annota-
tions to help make sense of the sketch. This feature can aid creative
coders in the discovery of remixes of interest. Tagging posts when
sharing a project is already supported in OpenProcessing and other
similar online communities; our analysis suggests that tagging
remixes in particular can aid exploration.

8.1.3 Collaborative Annotation of the Remixing Graph. While remix-
ing is often presented as a method for collaborative peer produc-
tion, our analysis suggests ways that current remixing interfaces
limit collaboration. Linear navigation of remixes can hinder ex-
ploration by obscuring relationships between related sketches (as
shown in Figure 15). To elaborate possible correctives, we recall the
process-oriented annotations discussed in Section 6.2. While there
is a rich body of prior work around understanding code comments
to help programmers more easily find information [42, 51, 55],
these works focus on professional software engineering contexts.
Process-oriented comments like the ones we discuss exceed exist-
ing taxonomies. Creative coders’ process-oriented comments are
therefore closer to programmer note-taking, a comparatively less-
explored area [16]. Creative code remixing communities make for
productive sites to investigate such annotation systems as authors
are consistently confronted with code written by others.

Going beyond previous recommendations to make the remixing
graph visible to users, our analysis suggests we might promote
collaboration by allowing authors to share text, images, and notes
to annotate the remixing subgraph. In a similar vein, Quickpose
makes the versioning graph visible and editable in a canvas to
support version control requirements specific to creative coding
[45]. Compared to managing versions in an individual’s creative
practice, we imagine public remix graphs can promote collaborative
production of new sketches. In the context of DIY maker projects,
Tseng [59] argues for process-oriented documentation tools which
facilitate storytelling over product-oriented write-ups. Such tools
can add depth to creative code sketches, making creative process
as open and transparent as the code itself.

8.1.4 Smaller Units of Analysis. Our analysis surfaced productive
connections between version control and remixing. While remix-
ing inherits a parent-child relationship between antecedents and
remixes from software forks, we see remixing often happens at
the level of function arguments and chunks of code. This behav-
ior aligns well with prior exploratory programming studies [24].

Our study therefore agrees with related work that similar micro-
versioning tools would also be useful for creative coders [62]. Be-
yond version control for individual practice, we can consider ways
that authors might remix smaller chunks of code. Since a remix can
have only one parent, the remix graph cannot capture relationships
to code snippets referenced from multiple sources. Considering
functions, classes, and other code snippets smaller than a full sketch
as remixable content can promote collaboration, with implications
for both how practitioners remix and the high-level remixing graph
characteristics.

8.2 Applicability to Other Remixing and Coding
Contexts

In our analysis, we see how creative coders leverage remixing
towards a variety of ends. What constitutes a remix is community-
dependent. We see this reflected in community guidelines; Scratch
does not allow authors to remix their own projects, whereas self-
remixes constitute almost half of all remixes on OpenProcessing.
This difference is critical for the activity in question: in the context
of creative coding, we see self-remixing is a way to version sketches
and manage process.

There is an opportunity, then, to investigate how other commu-
nities employ remixing in application-specific ways. Our identified
strategies might be applied to other open remixing data sets such
as Scratch. Scratch is primarily aimed at younger students– as a
result, we expect the prevalence and use of remixing strategies to
differ. As Scratch is a visual programming language, our qualita-
tive coding methodology cannot map directly. In other visual arts
communities, our strategies might fit off-the-shelf. Shadertoy is an
online community dedicated to sharing shaders made with WebGL
[44]. Shadertoy also permits forking existing projects, and thus a
similar analysis can be undertaken. While aligned in its pursuit of
creative and visual output, shader programming is quite different
than the Javascript and Java based programming on OpenProcess-
ing. A comparative analysis of different remixing communities can
help discern productive idiosyncrasies specific to each. We reiterate
the benefits that future interview-based studies can offer in this
process. Our analysis has helped discern how remixing plays out
on OpenProcessing, but understanding why create coders choose
to remix would provide useful and complementary insights.

Our findings might also prove useful to understand how remix-
ing is taken up in informal learning contexts. Dasgupta et al. [8]
found that users who remix more on Scratch go on to use a larger
variety of programming commands, and that exposure to compu-
tational concepts via remixing leads to a higher chance of using
those concepts in later projects. Creative coding communities like
OpenProcessing offer novel empirical settings to investigate related
questions with a textual programming language. For example, do
authors who tune go on to make more code-intensive extensions, or
do annotations lead to larger programming repertoires? The strate-
gies which we present might be operationalized to pursue these
questions. Related research builds and uses an experimental editor
to teach creative coding in physical classrooms [36]. For online com-
munities, user-driven community resources tend to concentrate
around a limited set of mainstream interests. This has the effect

2023-05-18 20:09. Page 15 of 1–17.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

DIS ’23, July 10–14, 2023, Pittsburgh, PA, USA Subbaraman et al.

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

of limiting sources of inspiration, thus unintentionally restrict-
ing participation by a broader audience [6]. Beyond participation,
supporting a diversity of niche interests is critical to developing
long-lasting community [3]. Future research into editors, remixing,
and other platform features can expound the relationship between
creative code and education.

9 CONCLUSION
Members of OpenProcessing reuse creative code in a diversity of
ways. In this paper, we have worked to understand creative code
remixing practices by pairing community network data with in-
depth qualitative analysis of code changes. We see creative coders
use remixes to collect artifacts, annotate process, version chunks of
code, explore generative variations, build on the work of others, and
manage personal practice. We showcased a range of community
work, paying attention to the ways that creative code corroborates
and complicates previous studies of remixing and code reuse in
other programming contexts. Creative code platforms nurture and
sustain active communities of artists, hobbyists, educators, and
students. In linewithHCI interests to support each of these domains,
it is important to understand the successes of existing open source
communities. In doing so, we can learn from and work with creative
practitioners moving forward.

ACKNOWLEDGMENTS
Wewould like to thank Sinan Ascioglu for his work onOpenProcess-
ing along with the broader OpenProcessing community for sharing
their sketches. We’d like to specifically thank the 20 creative coders
whose work is discussed here: Roni Kaufman, caaatisgood, Taiki
Saito, Owaun Scantlebury, Richard Bourne, Neill Bogie, Naoki Tsutae,
Aaron Reuland (a_soluble_fish), Naha, SamuelYAN, Trrrrrr, Sasha
T. (@tequibo), shrike, Raven Kwok, Jason Labbe, Okazz, JFrench,
garabotospr, Hans Peter, and Sayama . Many thanks to the p5.js and
Processing contributors and community. We’d like to thank Hannah
Twigg-Smith for her development on the open-source qualitative
coding tool we used, SuperCoder 3000. Thanks also to Mako Hill
and Jasper Tran O’Leary for feedback on this work. This research is
supported by NSF Award 2007045 and the Gordon and Betty Moore
Foundation.

REFERENCES
[1] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. 2009. Gephi: an open

source software for exploring and manipulating networks. In Proceedings of the
international AAAI conference on web and social media, Vol. 3. Association for the
Advancement of Artificial Intelligence, USA, 361–362.

[2] Virginia Braun and Victoria Clarke. 2012. Thematic analysis. In APA handbook
of research methods in psychology, Vol 2: Research designs: Quantitative, quali-
tative, neuropsychological, and biological. American Psychological Association,
Washington, DC, US, 57–71. https://doi.org/10.1037/13620-004

[3] Leah Buechley and Benjamin Mako Hill. 2010. LilyPad in the Wild: How Hard-
ware’s Long Tail is Supporting New Engineering and Design Communities. In
Proceedings of the 8th ACM Conference on Designing Interactive Systems (Aarhus,
Denmark) (DIS ’10). Association for Computing Machinery, New York, NY, USA,
199–207. https://doi.org/10.1145/1858171.1858206

[4] Giorgos Cheliotis, Nan Hu, Jude Yew, and Jianhui Huang. 2014. The antecedents
of remix. In Proceedings of the 17th ACM conference on Computer supported co-
operative work & social computing. Association for Computing Machinery, New
York, NT, USA, 1011–1022.

[5] Giorgos Cheliotis and Jude Yew. 2009. AnAnalysis of the Social Structure of Remix
Culture. In Proceedings of the Fourth International Conference on Communities and
Technologies (University Park, PA, USA) (C&T ’09). Association for ComputingMa-
chinery, New York, NY, USA, 165–174. https://doi.org/10.1145/1556460.1556485

[6] Ruijia Cheng, Sayamindu Dasgupta, and Benjamin Mako Hill. 2022. How Interest-
Driven Content Creation Shapes Opportunities for Informal Learning in Scratch:
A Case Study on Novices’ Use of Data Structures. In Proceedings of the 2022 CHI
Conference on Human Factors in Computing Systems (New Orleans, LA, USA)
(CHI ’22). Association for Computing Machinery, New York, NY, USA, Article
228, 16 pages. https://doi.org/10.1145/3491102.3502124

[7] John Joon Young Chung, Shiqing He, and Eytan Adar. 2021. The Intersection
of Users, Roles, Interactions, and Technologies in Creativity Support Tools. In
Designing Interactive Systems Conference 2021 (Virtual Event, USA) (DIS ’21).
Association for Computing Machinery, New York, NY, USA, 1817–1833. https:
//doi.org/10.1145/3461778.3462050

[8] Sayamindu Dasgupta, William Hale, Andrés Monroy-Hernández, and Ben-
jamin Mako Hill. 2016. Remixing as a Pathway to Computational Think-
ing. In Proceedings of the 19th ACM Conference on Computer-Supported Co-
operative Work &; Social Computing (San Francisco, California, USA) (CSCW
’16). Association for Computing Machinery, New York, NY, USA, 1438–1449.
https://doi.org/10.1145/2818048.2819984

[9] Scott D. Fleming, Chris Scaffidi, David Piorkowski, Margaret Burnett, Rachel
Bellamy, Joseph Lawrance, and Irwin Kwan. 2013. An Information Foraging
Theory Perspective on Tools for Debugging, Refactoring, and Reuse Tasks. ACM
Trans. Softw. Eng. Methodol. 22, 2, Article 14 (mar 2013), 41 pages. https://doi.
org/10.1145/2430545.2430551

[10] Jonas Frich, Lindsay MacDonald Vermeulen, Christian Remy, Michael Mose
Biskjaer, and Peter Dalsgaard. 2019. Mapping the Landscape of Creativity Support
Tools in HCI. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing
Machinery, New York, NY, USA, 1–18. https://doi.org/10.1145/3290605.3300619

[11] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. 2008. Exploring network
structure, dynamics, and function using NetworkX. (Aug. 2008), 11–15.

[12] Eszter Hargittai and Christian Sandvig. 2016. When Should We Use Real Names
in Published Accounts of Internet Research? The MIT Press, Cambridge, MA, USA,
243–258.

[13] Andrew Head, Caitlin Sadowski, Emerson Murphy-Hill, and Andrea Knight. 2018.
When Not to Comment: Questions and Tradeoffs with API Documentation for
C++ Projects. In Proceedings of the 40th International Conference on Software Engi-
neering (Gothenburg, Sweden) (ICSE ’18). Association for Computing Machinery,
New York, NY, USA, 643–653. https://doi.org/10.1145/3180155.3180176

[14] Benjamin Mako Hill and Andrés Monroy-Hernández. 2013. The cost of collab-
oration for code and art: Evidence from a remixing community. In Proceedings
of the 2013 conference on Computer supported cooperative work. Association for
Computing Machinery, New York, NY, USA, 1035–1046.

[15] Benjamin Mako Hill and Andrés Monroy-Hernández. 2013. The Remixing
Dilemma: The Trade-Off Between Generativity and Originality. American Behav-
ioral Scientist 57, 5 (2013), 643–663. https://doi.org/10.1177/0002764212469359
arXiv:https://doi.org/10.1177/0002764212469359

[16] Amber Horvath, Brad Myers, Andrew Macvean, and Imtiaz Rahman. 2022. Using
Annotations for Sensemaking About Code. In Proceedings of the 35th Annual ACM
Symposium on User Interface Software and Technology (Bend, OR, USA) (UIST ’22).
Association for Computing Machinery, New York, NY, USA, Article 61, 16 pages.
https://doi.org/10.1145/3526113.3545667

[17] Philip N. Howard. 2002. Network Ethnography and the Hypermedia Or-
ganization: New Media, New Organizations, New Methods. New Media &
Society 4, 4 (2002), 550–574. https://doi.org/10.1177/146144402321466813
arXiv:https://doi.org/10.1177/146144402321466813

[18] Steven J. Jackson and Laewoo Kang. 2014. Breakdown, Obsolescence and Reuse:
HCI and the Art of Repair. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (Toronto, Ontario, Canada) (CHI ’14). Association
for Computing Machinery, New York, NY, USA, 449–458. https://doi.org/10.
1145/2556288.2557332

[19] Jennifer Jacobs, Joel Brandt, Radomír Mech, and Mitchel Resnick. 2018. Extending
Manual Drawing Practices with Artist-Centric Programming Tools. In Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal
QC, Canada) (CHI ’18). Association for Computing Machinery, New York, NY,
USA, 1–13. https://doi.org/10.1145/3173574.3174164

[20] Jennifer Jacobs, David Mellis, Amit Zoran, Cesar Torres, Joel Brandt, and
Theresa Jean Tanenbaum. 2016. Digital Craftsmanship: HCI Takes on Tech-
nology as an Expressive Medium. In Proceedings of the 2016 ACM Conference
Companion Publication on Designing Interactive Systems (Brisbane, QLD, Aus-
tralia) (DIS ’16 Companion). Association for Computing Machinery, New York,
NY, USA, 57–60. https://doi.org/10.1145/2908805.2913018

[21] Laewoo Kang, Steven Jackson, and Trevor Pinch. 2022. The Electronicists: Techno-
aesthetic Encounters for Nonlinear and Art-based Inquiry in HCI. In Proceedings
of the 2022 CHI Conference on Human Factors in Computing Systems. 1–17.

[22] Laewoo (Leo) Kang, Steven J. Jackson, and Phoebe Sengers. 2018. Intermodulation:
Improvisation and Collaborative Art Practice for HCI. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada)
(CHI ’18). Association for Computing Machinery, New York, NY, USA, 1–13.
https://doi.org/10.1145/3173574.3173734

2023-05-18 20:09. Page 16 of 1–17.

https://doi.org/10.1037/13620-004
https://doi.org/10.1145/1858171.1858206
https://doi.org/10.1145/1556460.1556485
https://doi.org/10.1145/3491102.3502124
https://doi.org/10.1145/3461778.3462050
https://doi.org/10.1145/3461778.3462050
https://doi.org/10.1145/2818048.2819984
https://doi.org/10.1145/2430545.2430551
https://doi.org/10.1145/2430545.2430551
https://doi.org/10.1145/3290605.3300619
https://doi.org/10.1145/3180155.3180176
https://doi.org/10.1177/0002764212469359
https://arxiv.org/abs/https://doi.org/10.1177/0002764212469359
https://doi.org/10.1145/3526113.3545667
https://doi.org/10.1177/146144402321466813
https://arxiv.org/abs/https://doi.org/10.1177/146144402321466813
https://doi.org/10.1145/2556288.2557332
https://doi.org/10.1145/2556288.2557332
https://doi.org/10.1145/3173574.3174164
https://doi.org/10.1145/2908805.2913018
https://doi.org/10.1145/3173574.3173734

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

Forking a Sketch DIS ’23, July 10–14, 2023, Pittsburgh, PA, USA

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

[23] Andrew Keen. 2007. The cult of the amateur: How today’s Internet is killing our
culture and assaulting our economy. Broadway Business, New York, NY, USA.

[24] Mary Beth Kery, Amber Horvath, and Brad Myers. 2017. Variolite: Supporting
Exploratory Programming by Data Scientists. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems (Denver, Colorado, USA)
(CHI ’17). Association for Computing Machinery, New York, NY, USA, 1265–1276.
https://doi.org/10.1145/3025453.3025626

[25] Mary Beth Kery and Brad A Myers. 2017. Exploring exploratory programming.
In 2017 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, IEEE, USA, 25–29.

[26] Kenneth C Knowlton. 1970. Explor-a generator of images from explicit patterns,
local operations, and randomness. In Proceedings of 9th Meeting of UAIDE. 544–
583.

[27] Amy J. Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett,
Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry Lieberman, Brad Myers,
Mary Beth Rosson, Gregg Rothermel, Mary Shaw, and Susan Wiedenbeck. 2011.
The State of the Art in End-User Software Engineering. ACM Comput. Surv. 43,
3, Article 21 (apr 2011), 44 pages. https://doi.org/10.1145/1922649.1922658

[28] Lawrence Lessig et al. 2008. Remix: Making art and commerce thrive in the hybrid
economy. Penguin, London, England.

[29] Vladimir I. Levenshtein. 1965. Binary codes capable of correcting deletions,
insertions, and reversals. Soviet physics. Doklady 10 (1965), 707–710.

[30] Golan Levin and Tega Brain. 2021. Code as Creative Medium: A Handbook for
Computational Art and Design. MIT Press, Cambridge, MA, USA.

[31] Jingyi Li, Sonia Hashim, and Jennifer Jacobs. 2021. What We Can Learn From
Visual Artists About Software Development. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems (CHI ’21). Association for
Computing Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/
3411764.3445682

[32] Zach Lieberman, Theo Watson, and Arturo Castro. 2021. openFrameworks.
https://openframeworks.cc/about

[33] Lingdong Huang. 2022. srcsnap. https://github.com/LingDong-/srcsnap
[34] Lauren McCarthy, Casey Reas, and Ben Fry. 2015. Getting started with P5. js:

Making interactive graphics in JavaScript and processing. Maker Media, Inc., USA.
[35] Lauren Lee McCarthy, Thomas Hughes, and Golan Levin. 2021. Open Source

Software Toolkits for the Arts (OSSTA): a Convening. https://github.com/
CreativeInquiry/OSSTA-Report

[36] Andrew M Mcnutt, Anton Outkine, and Ravi Chugh. 2023. A Study of Editor
Features in a Creative Coding Classroom. In Proceedings of the 2023 CHI Con-
ference on Human Factors in Computing Systems (Hamburg, Germany) (CHI ’23).
Association for Computing Machinery, New York, NY, USA, Article 121, 15 pages.
https://doi.org/10.1145/3544548.3580683

[37] Andrés Monroy-Hernández, Benjamin Mako Hill, Jazmin Gonzalez-Rivero, and
danah boyd. 2011. Computers Can’t Give Credit: How Automatic Attribution
Falls Short in an Online Remixing Community. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (Vancouver, BC, Canada)
(CHI ’11). Association for Computing Machinery, New York, NY, USA, 3421–3430.
https://doi.org/10.1145/1978942.1979452

[38] Anders Mørch. 1997. Three levels of end-user tailoring: Customization, integra-
tion, and extension. Computers and design in context 1997 (1997), 61.

[39] Eduardo Navas. 2014. Remix theory: The aesthetics of sampling. Birkhäuser,
Switzerland.

[40] Kimberly A Neuendorf. 2017. The content analysis guidebook. sage, USA.
[41] Lora Oehlberg, Wesley Willett, and Wendy E Mackay. 2015. Patterns of phys-

ical design remixing in online maker communities. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems. Association
for Computing Machinery, New York, NY, USA, 639–648.

[42] Yoann Padioleau, Lin Tan, and Yuanyuan Zhou. 2009. Listening to Programmers
Taxonomies and Characteristics of Comments in Operating System Code. In
Proceedings of the 31st International Conference on Software Engineering (ICSE
’09). IEEE Computer Society, USA, 331–341. https://doi.org/10.1109/ICSE.2009.
5070533

[43] Christiane Paul, Carol Mancusi-Ungaro, Melva Bucksbaum, and Clémence White.
2018. Programmed: Rules, Codes, and Choreographies in Art, 1965–2018. https:
//whitney.org/exhibitions/programmed

[44] Inigo Quilez and Pol Jeremias. 2013. Shadertoy. https://www.shadertoy.com/
[45] Eric Rawn, Jingyi Li, Eric Paulos, and Sarah E Chasins. 2023. Understanding

Version Control as Material Interaction with Quickpose. In Proceedings of the
2023 CHI Conference on Human Factors in Computing Systems. 1–18.

[46] Casey Reas and Ben Fry. 2014. Processing: A Programming Handbook for Visual
Designers and Artists (2 ed.). MIT Press, Cambridge, MA, USA.

[47] Mitchel Resnick, JohnMaloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, et al. 2009. Scratch: programming for all. Commun. ACM 52, 11 (2009),
60–67.

[48] Adam Rule, Aurélien Tabard, and James D. Hollan. 2018. Exploration and Ex-
planation in Computational Notebooks. In Proceedings of the 2018 CHI Con-
ference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI

’18). Association for Computing Machinery, New York, NY, USA, 1–12. https:
//doi.org/10.1145/3173574.3173606

[49] Lillian Schwartz. 1973. Papillon.
[50] Lillian Schwartz. 2013. Oral History of Lillian F. Schwartz.
[51] Yusuke Shinyama, Yoshitaka Arahori, and Katsuhiko Gondow. 2018. Analyzing

Code Comments to Boost Program Comprehension. In 2018 25th Asia-Pacific
Software Engineering Conference (APSEC). 325–334. https://doi.org/10.1109/
APSEC.2018.00047

[52] Sinan Ascioglu. 2018. OpenProcessing. https://www.wiredpieces.com/
openprocessing/

[53] KatherineW Song and Eric Paulos. 2021. Unmaking: Enabling and Celebrating the
Creative Material of Failure, Destruction, Decay, and Deformation. In Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems. 1–12.

[54] Sruti Srinivasa Ragavan, Sandeep Kaur Kuttal, Charles Hill, Anita Sarma, David
Piorkowski, and Margaret Burnett. 2016. Foraging Among an Overabundance
of Similar Variants. In Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems (San Jose, California, USA) (CHI ’16). Association for
Computing Machinery, New York, NY, USA, 3509–3521. https://doi.org/10.1145/
2858036.2858469

[55] Daniela Steidl, Benjamin Hummel, and Elmar Juergens. 2013. Quality analy-
sis of source code comments. In 2013 21st International Conference on Program
Comprehension (ICPC). 83–92. https://doi.org/10.1109/ICPC.2013.6613836

[56] Sarah Sterman, Molly Jane Nicholas, and Eric Paulos. 2022. Towards Creative
Version Control. Proc. ACM Hum.-Comput. Interact. 6, CSCW2, Article 336 (nov
2022), 25 pages. https://doi.org/10.1145/3555756

[57] the Processing Foundation. 2021. p5.js. https://p5js.org/
[58] Jer Thorp. 2014. Art at the Edge of Tomorrow. https://blprnt.medium.com/art-

at-the-edge-of-tomorrow-b78ad9302abe
[59] Tiffany Tseng. 2016. Build in progress: Building process-oriented documentation.

In Makeology. Routledge, USA, 237–254.
[60] Tiffany Tseng and Mitchel Resnick. 2014. Product versus Process: Representing

and Appropriating DIY Projects Online. In Proceedings of the 2014 Conference on
Designing Interactive Systems (Vancouver, BC, Canada) (DIS ’14). Association for
Computing Machinery, New York, NY, USA, 425–428. https://doi.org/10.1145/
2598510.2598540

[61] E. van Emden and L. Moonen. 2002. Java quality assurance by detecting code
smells. In Ninth Working Conference on Reverse Engineering, 2002. Proceedings.
97–106. https://doi.org/10.1109/WCRE.2002.1173068

[62] Mauricio Verano Merino and Juan Pablo Sáenz. 2023. The Art of Creating Code-
Based Artworks. In Extended Abstracts of the 2023 CHI Conference on Human
Factors in Computing Systems (Hamburg, Germany) (CHI EA ’23). Association
for Computing Machinery, New York, NY, USA, Article 271, 7 pages. https:
//doi.org/10.1145/3544549.3585743

[63] April Yi Wang, Will Epperson, Robert A DeLine, and Steven M Drucker. 2022.
Diff in the loop: Supporting data comparison in exploratory data analysis. In
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems.
Association for Computing Machinery, New York, NY, USA, 1–10.

[64] Stanley Wasserman, Katherine Faust, et al. 1994. Social network analysis: Methods
and applications. Cambridge university press, Cambridge, England.

[65] Scratch Wiki. 2022. Remix - Scratch Wiki. https://en.scratch-wiki.info/wiki/
Remix

2023-05-18 20:09. Page 17 of 1–17.

https://doi.org/10.1145/3025453.3025626
https://doi.org/10.1145/1922649.1922658
https://doi.org/10.1145/3411764.3445682
https://doi.org/10.1145/3411764.3445682
https://openframeworks.cc/about
https://github.com/LingDong-/srcsnap
https://github.com/CreativeInquiry/OSSTA-Report
https://github.com/CreativeInquiry/OSSTA-Report
https://doi.org/10.1145/3544548.3580683
https://doi.org/10.1145/1978942.1979452
https://doi.org/10.1109/ICSE.2009.5070533
https://doi.org/10.1109/ICSE.2009.5070533
https://whitney.org/exhibitions/programmed
https://whitney.org/exhibitions/programmed
https://www.shadertoy.com/
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1109/APSEC.2018.00047
https://doi.org/10.1109/APSEC.2018.00047
https://www.wiredpieces.com/openprocessing/
https://www.wiredpieces.com/openprocessing/
https://doi.org/10.1145/2858036.2858469
https://doi.org/10.1145/2858036.2858469
https://doi.org/10.1109/ICPC.2013.6613836
https://doi.org/10.1145/3555756
https://p5js.org/
https://blprnt.medium.com/art-at-the-edge-of-tomorrow-b78ad9302abe
https://blprnt.medium.com/art-at-the-edge-of-tomorrow-b78ad9302abe
https://doi.org/10.1145/2598510.2598540
https://doi.org/10.1145/2598510.2598540
https://doi.org/10.1109/WCRE.2002.1173068
https://doi.org/10.1145/3544549.3585743
https://doi.org/10.1145/3544549.3585743
https://en.scratch-wiki.info/wiki/Remix
https://en.scratch-wiki.info/wiki/Remix

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Remixing in HCI
	2.2 Creative Coding Tools and Community
	2.3 Tailoring and Customizing Software

	3 Empirical Setting: OpenProcessing
	4 Methods
	4.1 Network Analysis
	4.2 Thematic Analysis
	4.3 Content Analysis
	4.4 A Worked Example
	4.5 Limitations

	5 Understanding High-Level Remixing Practices
	6 Conceptualizing Remixing Strategies
	6.1 Collecting Sketches Without Making Changes
	6.2 Annotating Sketches with Inline Comments
	6.3 Tuning Existing Parameters to Explore Visual Outputs
	6.4 Extending Sketches with New Code

	7 Measuring the Prevalence of Remixing Genres
	8 Discussion
	8.1 Design Provocations to Support Creative Community through Remixing
	8.2 Applicability to Other Remixing and Coding Contexts

	9 Conclusion
	Acknowledgments
	References

