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In this paper, efficient approximate solutions are developed for microscale diffusion inside porous electrodes. Approximate
solutions developed for the microscale diffusion are then coupled with governing equations for the macroscale to predict the
electrochemical behavior of a lithium-ion cell sandwich. Approximate solutions developed facilitate the numerical simulation of
batteries by reducing the number of differential algebraic equations resulting from the discretization of governing equations.
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Electrochemical models that predict the performance of batteries
accurately are usually complex because of the nonlinear coupling of
the dependent variables in the governing equations and nonconstant
kinetic and transport parameters.1-4 These models have been used by
various researchers to optimize the cell design and to study the
effect of system parameters and thermal behavior. These models for
porous electrodes involve two scales: electrolyte transport, electro-
lyte conduction, and solid-phase conduction in the macroscale �x�
and solid-state diffusion in the microscale inside the particle �r�.

Battery models typically solve electrolyte concentration and
electrolyte potential in the separator; and electrolyte concentration,
electrolyte potential, solid-state potential, and solid-state concentra-
tion in the porous electrode.1-4 Even when one-dimensional trans-
port in the macroscale �x� is considered, these models involve two
coupled nonlinear partial differential equations �PDEs� �in x,t� in the
separator and three coupled nonlinear PDEs �in x,t� in the porous
electrode.1-4 In addition, solid-state diffusion should be solved in the
pseudodimension �r,t� in the electrode. For predicting the thermal
behavior, one has to add an additional equation for temperature. The
finite-difference technique2,3 is the most common technique used for
simulation of batteries, though collocation, finite element, and other
techniques have also been used by some researchers.3

If one has to simulate these battery models rigorously, it would
involve discretization of spatial derivatives in the macroscale and
also in the microscale. For example, if one were to use 100 node
points in the macroscale �x� and 20 node points in the microscale
�r�, one has to solve 4 � 100 � 20 = 8000 differential algebraic
equations resulting from the discretization of the governing equa-
tions. Duhamel’s superposition theorem was used by Doyle et al.3 to
eliminate the pseudodimension �r�. This involves an infinite series
and has to be taken care of while integrating macroscale equations
numerically in time. This means that one cannot use existing ad-
vanced numerical solvers directly for the integration of macroscale
equations in time.2,3 In addition, this method cannot be used for
concentration-dependent diffusion coefficients.

Wang and co-workers23,24 used volume averaged equations and a
parabolic profile approximation for solid-phase concentration. This
helped reduce the solid-phase partial differential equation to two
differential algebraic equations. Their work for Ni–Cd and Ni–MH
systems included the addition of an empirical term to take care of
the discrepancy in the short-time solution. Along similar lines,
Srinivasan et al.25 used a volume averaged approach for the analysis
of thermal behavior of Li-ion cells. However, they did not enumer-
ate when their models fail. The two-parameter model introduced in
this paper yields results similar to the parabolic profile model de-
scribed by Wang and co-workers. It is also noted that the approach
developed in this paper can be used to increase the accuracy of the
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model by adding parameters, instead of using empirical terms. The
performance of the new model is found to be valid even at short
times.

In this paper, efficient approximations are developed for the mi-
croscale diffusion, which reduce the microscale diffusion �1 PDE� to
two or three differential algebraic equations. These approximations
are developed by assuming that the solid-state concentration inside
the spherical particle can be expressed as a polynomial in the spatial
direction.5 Subramanian et al.5 developed approximate solutions for
solid-phase diffusion based on polynomial profile approximations
for constant pore wall flux at the surface of the particle. However,
these models cannot be used for battery modeling directly because
the pore wall flux at the surface of the particle changes both as a
function of time and distance across the porous electrode.

In this paper, approximations are developed for the microscale
diffusion for time-dependent pore wall flux. These approximations
are then tested with the exact numerical solution of particle diffusion
for various defined functions in time for the pore wall flux. Next,
these approximations are used with the macroscale model to predict
the electrochemical behavior of an Li-ion cell sandwich. The ap-
proximations developed reduce the computation time for simulation
without compromising accuracy.

Approximate Solution for Microscale Diffusion

Transient diffusion in a spherical electrode particle having an
initial concentration c0 is given by
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Initial and boundary conditions are

c = c0 at t = 0 and for 0 � r � Rp �fully charged state� �2�
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where jn is the pore wall flux at the surface of the particle and Rp is
the radius of the particle. The pore wall flux is a function of both the
distance across the electrode �x� and time �t�.2 Next, we develop
approximate solution for Eq. 1 based on polynomial profile approxi-
mations developed earlier for constant pore wall flux at the surface.5

Two-parameter model.— The concentration profile inside the
particle is assumed to be a parabola in r5-24

c�r,t� = a�t� + b�t�� r2

Rp
2� �5�

Substituting Eq. 5 in Eq. 1, we obtain
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The boundary condition at r = 0 is automatically satisfied. The
boundary condition at r = Rp �Eq. 4� becomes

2
DS

Rp
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For battery modeling, we are mainly interested in the average con-
centration �for state of charge� and surface concentration �for elec-
trochemical behavior�. Hence, constants a�t� and b�t� are expressed
in terms of the volume-averaged concentration c̄�t� and surface con-
centration cS�t�. The volume-averaged concentration is given by
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Applying Eq. 5 in Eq. 8, we get

c̄�t� = a�t� +
3

5
b�t� �9�

Surface concentration cS is obtained by substituting r = Rp in Eq. 5

cS�t� = a�t� + b�t� �10�

Equations 9 and 10 are solved to obtain
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The concentration profile given by Eq. 5 is now purely in terms of
the volume-averaged concentration c̄�t� and the surface concentra-
tion cS�t�
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We now need two equations to evaluate the average concentration
c�t� and the surface concentration cS�t�. The volume-averaged con-
centration can be evaluated by volume averaging the entire govern-
ing Eq. 1
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Substituting Eq. 12 in Eq. 13 and evaluating, we have

d
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c̄�t� + 3
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The second equation required to evaluate for cS�t� is obtained by
evaluating the boundary condition at r = Rp. Evaluating Eq. 5 using
Eq. 12, we get
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5
�16�

It is clearly seen that Eq. 14 and 15 are purely in terms of the
average concentration and surface concentration. It must be noted
here that Eq. 15 and 16 are valid even if the pore wall flux jn is a
function of time.

Higher-order polynomial profile model.— As shown in the pre-
vious publication, two-parameter models may not be valid at higher
discharge rates.5,26 In this section, an efficient three-parameter
model is now developed.26 The concentration profile is taken to be
c�r,t� = a�t� + b�t�� r2

Rp
2� + d�t�� r4

Rp
4� �17�

Substituting Eq. 17 in Eq. 1 gives
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The boundary condition at r = 0 is automatically satisfied again. The
boundary condition at r = Rp now becomes

2DSb�t�
Rp

+
4DSd�t�

Rp
= − jn �19�

Next, the constants a�t�, b�t�, and d�t� are solved in terms volume-
averaged concentration c̄�t�, surface concentration cS�t�, and
volume-averaged concentration flux q̄�t�. The volume-averaged con-
centration flux is a physically meaningful term, which defines the
average change of concentration with respect to the position in the
system.26

Volume-averaged solid-phase concentration can be evaluated us-
ing Eq. 8 and is found to be

c̄�t� =
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7
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5
b�t� + a�t� �20�

Surface concentration is obtained by evaluating c�r,t� at the surface

cS�t� = a�t� + b�t� + d�t� �21�

The volume-averaged concentration flux term is evaluated using the
following expression
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Substituting Eq. 17 in Eq. 22, the average concentration flux is
found to be

q̄�t� = 2
d�t�
Rp

+
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2
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Rp

�23�

Equations 20, 21, and 23 can be solved for constants a�t�, b�t�, and
d�t� in terms of the average concentration c̄�t�, the surface concen-
tration cS�t�, and the average concentration flux q̄�t� to obtain
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The concentration profile given by Eq. 17 is now purely in terms of
the volume-averaged concentration c̄�t�, the volume-averaged con-
centration flux q̄�t�, and the surface concentration cS�t�
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We now need three equations to solve for the average concentration,
the surface concentration, and the average flux. The equation for the
volume-averaged concentration is obtained by volume averaging the
entire governing Eq. 1 as given by Eq. 14
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The second equation for the volume-averaged flux is obtained by
volume averaging the differential of the governing equation
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Equation 29 yields
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The third equation can be obtained by evaluating the boundary con-
dition at r = Rp given by Eq. 19
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It is clearly seen that Eq. 28, 30, and 31 are purely in terms of the
average concentration, surface concentration and average concentra-
tion flux. It must be noted here that the pore wall flux jn can be a
function of time �t�.

Note that the approximate equations are developed in dimen-
sional form so that they can be coupled with the governing equa-
tions for the macroscale models of batteries. However, to test the
accuracy of the approximate models developed, it is convenient to
convert the equations to dimensionless form as illustrated in the next
section.

Dimensionless Analysis

Equation 1 is converted to dimensionless form using the follow-
ing dimensionless variables
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The governing equation in dimensionless form is
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The boundary and initial conditions in dimensionless form are

C = 1 at � = 0 and for 0 � z � 1 �34�
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where ���� = jnRp/Dsc0 is the dimensionless pore wall flux.

Two-parameter model.— The parabolic profile approximation
takes the form

C�z,�� = a��� + b���z2 �37�
Following the procedure described earlier for dimensional equa-
tions, the governing equations for volume-averaged dimensionless
concentration and surface concentration are obtained as
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5
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Next, to verify the accuracy of the approximations developed, dif-
ferent test functions are tried for the dimensionless pore wall flux
����.
Case (i): Linear function ���� = �.—Substituting ���� = � in Eq.
38 and 39 and solving for the average concentration and the surface
concentration in terms of the independent variables time ��� and
position in the system �z�, we get
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2
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A closed form expression is obtained for the concentration as a
function of dimensionless position in the system �z� and dimension-
less time ���
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Case (ii): Oscillatory function ���� = sin���.—Substituting ����
= sin��� in Eq. 38 and 39 and solving for the average concentration
and the surface concentration, we get

C̄��� = − 2 + 3 cos��� �43�

CS��� = − 2 −
sin���

5
+ 3 cos��� �44�

The concentration profile is obtained as

C�z,�� = − 2 −
sin���

2
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Case (iii): Exponential function ���� = exp�−��.—Substituting
���� = exp�−�� in Eq. 38 and 39 and solving for the average
concentration and the surface concentration, we get

C̄��� = − 2 + 3 exp�− �� �46�

CS��� − 2 +
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5
�47�

The concentration profile is obtained as

C�z,�� = − 2 +
33 exp�− ��

10
−

exp�− ��z2

2
�48�

Three-parameter model.— The polynomial profile is taken to be

C�z,�� = a��� + b���z2 + d���z4 �49�

Following the procedure described earlier for dimensional equa-
tions, the governing equations for volume-averaged dimensionless
concentration, volume-averaged dimensionless flux, and surface
concentration are obtained as
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Next, different test functions are tried for dimensionless pore wall
flux ����. Only the final equations are reported.
Case (i): Linear function ���� = �.—
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Case (ii): Oscillatory function ���� = sin���.—

C̄��� = − 3 cos��� + 4 �57�
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Figure 1. Comparison of approximate models developed for ���� = �.

Figure 2. Comparison of approximate models developed for ���� = 5�.
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Case (iii): Exponential function ���� = exp�−��.—

C̄��� = − 3 exp�− �� + 4 �61�
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Figure 3. Comparison of approximate models developed for ���� = 10�.

Figure 4. Comparison of approximate models developed for ���� = sin���.
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Accuracy of approximate models.— Electrochemical behavior is
governed by the surface concentration. Hence, the accuracy of the
approximate models developed is verified by plotting the dimension-
less surface concentration. To compare the accuracy, a rigorous nu-
merical solution is obtained by solving Eq. 33 subject to boundary
conditions/initial conditions given by Eq. 34-36 using numerical
method of lines.17,18 The exact numerical solution is obtained by
applying finite differences in the spatial direction and by integrating
the resulting system of coupled ordinary differential equations nu-
merically in time. Twenty node points were found to be sufficient
for the purpose of this paper.

Table I. Summary of model equations and boundary equations in th
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Figure 5. Comparison of approximate models developed for ����
= exp�−��.
In Fig. 1, dimensionless surface concentration is plotted as a
function of dimensionless time � for a linear function for the dimen-
sionless pore wall flux, ���� = �. From Fig. 1, we conclude that both
two- and three-parameter models fit exactly with the exact numeri-
cal solution for the linear function of time �.

In Fig. 2, dimensionless surface concentration is plotted as a
function of dimensionless time � for a linear function for the dimen-
sionless pore wall flux, ���� = 5�. From Fig. 2, we conclude that the
three-parameter models fit better than the two-parameter model with
the numerical exact model for the linear function of time 5�. The
increase in magnitude causes the two-parameter model to show a
small deviation.

In Fig. 3, dimensionless surface concentration is plotted as a
function of dimensionless time � for a linear function for the dimen-
sionless pore wall flux, ���� = 10�. From Fig. 3, we conclude that
the three-parameter models fit better than the two-parameter model
with the numerical exact model for the linear function of time 10�.
The increase in magnitude causes the two-parameter model to pre-

croscale.
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Figure 6. Lithium-ion cell sandwich, consisting of lithium-foil, separator,
and porous electrode.
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dict erroneous results. Further increase in the magnitude causes the
two-parameter model to deviate further from the exact numerical
model.

In Fig. 4, dimensionless surface concentration is plotted as a
function of dimensionless time � for a linear function for the dimen-
sionless pore wall flux, ���� = sin���. From Fig. 4, we can infer that
both two- and three-parameter models fit exactly with the numerical
exact model for a sinusoidal function in time.

In Fig. 5, dimensionless surface concentration is plotted as a
function of dimensionless time � for a linear function for the dimen-
sionless pore wall flux, ���� = exp�−��. We observe that the two-
parameter model fails at very low values of time. The three-
parameter model shows good fit to the exact numerical model at all
the values of state of charge. It is interesting to note, however, that
the two-parameter model shows good fit to the exact numerical
model at high values of time.

From Fig. 1-5 we can conclude that three-parameter models can
be used safely without compromising the accuracy. Also, two-
parameter models can be used as long as � � 1. Also, even for
higher values of �, two-parameter models can be used at long times.
In addition, two parameters work if � starts from zero. This obser-
vation is useful for battery modeling because pore wall flux is zero
before the beginning of discharge. After the discharge begins, the
pore-wall flux inside the porous electrode increases with time. The
approximate models developed for the microscale diffusion are
coupled with the macroscale equations to predict the electrochemi-
cal behavior of an Li-ion cell sandwich in the next section.

Electrochemical Behavior of an Li-Ion Cell Sandwich

In the previous sections, approximate models were developed for
microscale diffusion of ions inside a spherical particle. The approxi-
mate models developed convert one PDE to two or three differential
algebraic equations. The approximate models developed were then
validated by comparing with the exact numerical solution. If one has
to solve just one PDE inside the particle, then one can get a closed-

Table II. Values for various parameters for LiCoO2.

Parameters Value Parameters Value

Ds 1.0 � 10−13 T 100°C
D 7.5 � 10−10 Ls 23 �m
iapp 60 A/m2 Lc 92 �m
�a,�c 0.5 c0 1000 mol/m3

cT 51554 mol/m3 �s 0.724
K 2.45 � 10−6 m4/mol s �p 0.39
cmax 51554
	 100 S/m

Figure 7. Potential obtained by using an approximate model for the solid
phase concentration is compared with potential obtained by using 20 nodes
in the particles. Solid line represents the node model �rigorous solution� and
solid dots represent the approximate model.
form solution or a numerical solution quite easily.27-30 The approxi-
mate models developed, though accurate, are not needed if one has
to solve just a single PDE. However, for battery modeling, a single
PDE for the microscale diffusion is coupled with other PDEs in the
macroscale.2,3 Next, we show the utility of the approximate models
developed for battery modeling.

The geometry modeled is shown in Fig. 6.2 The Li-ion cell sand-
wich modeled consists of lithium foil, a separator, and a porous
electrode. The governing equations and boundary conditions for the
in the macroscale are listed in Table I. The typical values of the
constants are given in Table II. There are two PDEs in the separator
and three PDEs in the porous electrode.2,3 In addition, for the porous
electrode, the solid-phase diffusion is solved inside the particle in
the pseudodirection r �microscale� �Eq. 1-4�.

For simulation purposes, the governing equations in the macros-
cale are discretized in the x direction using 100 node points in the
separator and 100 node points in the porous electrode. For a rigorous
numerical solution, if 20 node points are used inside the particle in
the microscale, then we have 4 � 100 � 20 = 8000 differential al-
gebraic equations in the porous electrode.2,3 When our approximate
model �Eq. 15 and 16� is used for the microscale diffusion, we have
4 � 100 � 2 = 800 differential algebraic equations in the porous
electrode. Both the rigorous numerical solution �with rigorous solu-
tion of particle diffusion� and the numerical solution with approxi-
mate models for the particle diffusion are compared in Fig. 7. We
observe that the approximate model for the particle diffusion
matches exactly with the rigorous simulation. In addition, we ob-
serve that the approximate model developed in this paper predicts
the electrolyte concentration and solid-phase concentration inside
the porous electrode accurately, as shown in Fig. 8 and 9.

Rigorous solution to predict one discharge curve with numerical
discretization of micro- and macroscale models takes around 2 min
in a 2.6 GHz processor. Numerical solution with the approximate
model for the microscale developed takes only 10 s to predict one
discharge curve. Discharge curves are compared for applied current
density 60, 90, and 120 A/m2. Note that higher-order polynomial
models �Eq. 28, 30, and 31� predict the same behavior. The two-
parameter model is found to be sufficient for this system. However,
for porous electrodes with high values of pore wall flux or very low
solid-phase diffusion coefficients, one might need three-parameter
models. Also, because it is expensive to get a rigorous numerical
solution, the best option is to simulate the behavior using both two-
parameter and three-parameter models for the highest possible ap-

Figure 8. Electrolyte concentration inside the cell sandwich predicted using
an approximate model for the solid phase concentration is compared with
electrolyte concentration obtained using 20 nodes in the particles. Solid line
represents the node model �rigorous solution� and solid dots represent the
approximate model.
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plied current and see if they match. If they match, then one can
safely use the two-parameter models even for pulse currents, volta-
mmetry, and other complicated boundary conditions, geometry, and
systems.

In this paper, approximations were developed and implemented
only for microscale diffusion in spherical particles. However, the
same methodology has been used by the authors for cylindrical and
rectangular particles with the same effect. The simplified equations
are very similar to the simplified equations for the spherical particle
�Eq. 15, 16, 29, 31, and 32� and are available upon request from the
corresponding author.

Currently, we are working on developing optimized two-
parameter and three-parameter models for various electrochemical
systems for both macroscale and microscale phenomena.

Conclusions

In this paper, approximate models were developed for solid-
phase diffusion in the microscale. The approximate models devel-
oped were tested for arbitrary functions of pore wall flux. In addi-
tion, the approximate models developed were then used to predict
the discharge curves of a lithium-ion cell sandwich consisting of a
lithium foil, separator, and porous electrode. The approximate mod-
els developed save computation time by more than 80% without
compromising accuracy.

In this paper, the utility of the approximate models developed
was shown for one porous electrode only. The same concept can be
directly extended to predict the electrochemical behavior of lithium-
ion batteries with two porous intercalation electrodes. In addition,
similar approximate models have been found to be of use in predict-
ing the electrochemical behavior of PEM fuel cells and will be pub-
lished later.

Note that the approximate models developed �Eq. 15, 16, 29, 31,
and 32� are valid even if the solid-state diffusion coefficient is a
function of solid-state concentration. This will be discussed in a later
publication. The approximate models developed in this paper are
found to be useful in predicting the impedance response of Li-ion
batteries also and will be communicated later.
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List of Symbols

a�t�,b�t�,d�t� time-dependent constants in the polynomial approximations
c2 concentration of electrolyte �mol/m3�
c solid-phase concentration �mol/m3�

cs solid-phase concentration at the surface of the particle �mol/m3�
C dimensionless solid-phase concentration
r distance from the center of the particle �m�, microscale
t time �s�
x distance �m�, macroscale

D diffusion coefficient of the electrolyte �m2/s�
Ds diffusion coefficient of the electrolyte in the solid particles �m2/s�

a interfacial area �m−1�
jn pore wall flux of Li ions �mol/m2/s�
t+ transfer number

iapp current density �A/m2�
Lc,Ls length of the electrode �m�, length of the separator �m�

F Faraday’s law constant �96,487 C/mol�
n number of electrons transferred �n = 1 for the simulation�

csav average concentration in the solid particle

Greek

�p porosity of the electrode
�s porosity of the separator
�1 solid phase potential
�2 solution phase potential

 electrolyte conductivity �S/m�
	 ionic conductivity �S/m�
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