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a b s t r a c t

In this paper, transport and kinetic parameters of lithium-ion batteries are estimated using a rigorous
porous electrode theory based model. The rigorous model used in this investigation is reformulated using
advanced mathematical techniques. Since batteries and other electrochemical devices are used in hybrid
environments, which include devices with time constants less than a second (like supercapacitor), we need
to develop parameter estimation codes with computation time less than a second or a few milliseconds.
In this investigation, the computation time for parameter estimation measures between 100 and 300 ms
since a reformulated battery model is devised especially for these purposes. Obtaining the numerical
solution for battery model equations is very difficult towards the end of discharge and is usually neglected
for parameter estimation purposes. However, in this paper the estimation takes into account the entire
discharge data ranging from an initial potential of 4.2 V to a cut-off potential of 2.5 V. It is found from
this investigation that the reformulated lithium-ion battery model is efficient and accurate in estimating
parameters.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Several investigators have analyzed various rigorous models for
lithium-ion batteries [1–12] based on the porous electrode theory
coupled with concentration solution theory and modified Ohm’s
law. There are some important advances in these models in recent
years like the thermal modeling of lithium-ion batteries [5] and
modeling capacity fade mechanism in lithium-ion batteries [8]. The
governing equations in these models include ten nonlinear, coupled
and multidimensional partial differential equations (in the spatial
directions x, r and t) that are needed to be solved simultaneously
in time along with some highly nonlinear algebraic expressions
for transport and kinetic parameters. Rigorous lithium-ion battery
models need any where from several seconds to minutes to sim-
ulate a discharge curve depending on the computer, solver, etc.
This computational difficulty in using rigorous battery models is
due to the large number of equations that result from finite dif-
ference reformulation of battery models. Table 1 shows the total
number of differential-algebraic equations (DAEs) needed for the
rigorous model and the computation time required when the model
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equations are solved for one charge or discharge curve and for one
complete cycle. All the simulations in this work are based on a
PC with 2.5 GHz processor and 2 GB RAM. Rigorous version of the
model is not ideal due to the requirement of sufficient computa-
tional resources. Whereas, the reformulated efficient model could
eventually in future run in a microprocessor to estimate parameters
in a few milliseconds.

Until recently [13], there were no significant efforts for esti-
mating parameters using the rigorous battery model because
of computational constraints. There are several mathematical
investigations for rapid solution of complicated model equations
[14–22]. A more detailed article that presents the complete mathe-
matical theory for an effective approach to simulate physics-based
lithium-ion battery models in real-time (milliseconds) is under
the process of publication [23]. Parameter estimation helps in
calculating capacity fade and life time of the battery. However,
empirical models or single particle model cannot help in estimating
accurate parameter values. The capacity fade or the state-of-health
information obtained using these parameters will not guarantee
successful prediction for applications like hybrid vehicles, satellites
or military applications. Also, it is to be noted that the batteries
and other electrochemical devices are now-a-days emerging as a
promising candidate for hybrid power systems. Since in a hybrid
environment, there are devices like the supercapacitor with time
constant less than a second, we also need to have a battery model
that can be simulated in few milliseconds. To this point, this inves-
tigation and our future efforts on lithium-ion battery models are
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Nomenclature

ai specific surface area of electrode i (i = p, n) (m2 m−3)
bruggi Bruggman coefficient of region i (i = p, s, n)
c electrolyte concentration (mol m−3)
c0 initial electrolyte concentration (mol m−3)
cs,i concentration of lithium ions in the intercalation

particle of electrode i (i = p, n) (mol m−3)
cs,i,0 initial concentration of lithium ions in the interca-

lation particle of electrode i (i = p, n) (mol m−3)
cs,i,max maximum concentration of lithium ions in the inter-

calation particle of electrode i (i = p, n) (mol m−3)
D electrolyte diffusion coefficient (m2 s−1)
Ds,i lithium ion diffusion coefficient in the intercalation

particle of electrode i (i = p, n) (m2 s−1)
F Faraday’s constant (C mol−1)
i1 solid-phase current density (A m−2)
i2 solution phase current density (A m−2)
is,0 exchange current density for the solvent reduction

reaction (A m−2)
I applied current density (A cm−2)
ji wall flux of Li+ on the intercalation particle of elec-

trode i (i = n, p) (mol m−2 s−1)
js solvent reduction current density (mol m−2 s−1)
ki intercalation/deintercalation reaction rate constant

of electrode i (i = p, n) (mol (mol m−3)−1.5)
li thickness of region i (i = p, s, n) (m)
Ms molar weight of the solvent reaction product

(g mol−1)
n negative electrode
p positive electrode
r radial coordinate (m)
R universal gas constant (J (mol−1 K−1))
Ri radius of the intercalation particle of electrode i

(i = p, n) (m)
RSEI initial SEI layer resistance at the negative electrode

(� m−2)
s separator
t+ Li+ transference number in the electrolyte
T absolute temperature (K)
Ui open circuit potential of electrode i (i = p, n) (V)
Us standard potential of the solvent reduction reaction

(V)
x spatial coordinate (m)

Greek symbols
˚1 solid-phase potential (V)
˚2 electrolyte phase potential (V)
ı thickness of the solvent reduction product film (m)
ı0 initial thickness of the solvent reduction product

film (m)
εi porosity of region i (i = p, s, n)
εf,i volume fraction of fillers of electrode i (i = p, n)
� ionic conductivity of the electrolyte (S m−1)
�eff,i effective ionic conductivity of the electrolyte in

region i (i = p, s, n) (S m−1)
�i dimensionless concentration of lithium ions in the

intercalation particle of electrode i (�i = cs,i/cs,i,max)
�s density of the solvent reduction product film

(g m−3)
�i electronic conductivity of the solid phase of elec-

trode i (i = p, n) (S m−1)
�eff,i effective electronic conductivity of the solid phase

of electrode i (i = p, n) (S m−1)

Table 1
Properties of the rigorous porous electrode model and the reformulated porous
electrode model

Computation details Rigorous model Reformulated model

Number of equations for
charge or discharge curve

4800 DAEs 49 DAEs

Computation time for charge
or discharge curve

1–2 min 15–45 ms

Estimated time for one
complete cycle

5–10 min 75–100 ms

focused on real-time simulation, parameter estimation, dynamic
optimization, and on-line control and monitoring of batteries that
can work with CPU time less than a second.

Santhanagopalan et al. [13] used the Levenberg-Marquardt
method to estimate parameters using rigorous lithium-ion battery
models. Two different models, the single particle model and the rig-
orous porous electrode model, were used to estimate parameters at
four different rates. Confidence intervals for the estimated param-
eters were reported, however, the computational time involved
in this investigation was not highlighted; perhaps because of the
necessity to do expensive, cumbersome and time-consuming simu-
lation while using the porous electrode model. The authors [19,20]
have studied the validity of estimating the solid-phase diffusion
coefficient of a lithium intercalation electrode from impedance
measurement by a modified electrochemical impedance spec-
troscopy method. This paper showed that single particle models
are not accurate and are hence not useful.

To overcome this drawback, we have devised a novel reformu-
lated lithium-ion battery model that can help in simulating battery
behavior in real-time (milliseconds) [21]. This novel reformulated
battery model has been used in this article for parameter estima-
tion. The model used in this investigation is based on the same
porous electrode model for the lithium-ion cell that is used in ref.
[13]. However, it is found that the computation time required for
the parameter estimation is only on the order of a few millisec-
onds in this investigation. Table 1 also shows the number of DAEs
required in solving the reformulated battery model and the com-
putation time associated with it while solving the model for one
charge or discharge curve and for one complete cycle. The refor-
mulated lithium-ion battery model is efficient and accurate for
parameter estimation. It is also important to note that with the use
of reformulated lithium-ion battery model the numerical Jacobian
calculation is good enough for accurate parameter estimation. Thus,
this investigation enables the possibility for real-time estimation of
parameters that can be useful in predicting the capacity fade and life
time of the lithium-ion batteries. It should be noted that the model
reformulation provides predictive models and are as good as origi-
nal model for a wide range of operating conditions. It is significantly
different from proper orthogonal decomposition approach which
is based on curve fitting eigen values and eigen vectors to produce
reduced order models from rigorous numerical simulation [24–26].

2. Reformulated lithium-ion battery model

The existing rigorous physics-based lithium-ion battery model
[5] has multiple partial differential equations in multiple domains.
The lithium-ion battery model involves two independent spatial
variables (radial direction, r and linear direction, x) and a time
variable, t. There are four dependent variables, namely electrolyte
concentration (c), electrolyte potential (˚2), solid-phase concen-
tration (cs) and solid-phase potential (˚1) for each of the two
porous electrodes. The two dependent variables for separator are
electrolyte concentration (c) and electrolyte potential (˚2). The
governing equations for all these variables are shown in Table 2
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Table 2
Governing equations for a lithium-ion cell based on the porous electrode theory

Region Eq. no. Governing equations Boundary conditions

Cathode (1) εp
∂c
∂t

= Deff,p
∂2c
∂x2 + ap(1 − t+)jp initial condition c|t=0 = c0 −Deff,p

∂c
∂x

∣∣
x=0

= 0 & −Deff,p
∂c
∂x

∣∣
x=lp,−

= −Deff,s
∂c
∂x

∣∣
x=lp,+

(2) −�eff,p
∂˚1
∂x

− �eff,p
∂˚2
∂x

+ 2�eff,pRT

F (1 − t+) ∂ ln c
∂x

= I −�eff,p
∂˚2
∂x

∣∣
x=0

= 0 & − �eff,p
∂˚2
∂x

∣∣
x=lp,−

= −�eff,s
∂˚2
∂x

∣∣
x=lp,+

(3) �eff,p
∂2˚1
∂x2 = apFjp

∂˚1
∂x

∣∣
x=0

= − I
�eff,p

& −�eff,p
∂˚1
∂x

∣∣
x=lp

= 0

(4) ∂cs
∂t

= Ds,p

r2
∂
∂r

(
r2 ∂cs

∂r

)
initial condition cs|t=0 = 0.5cs,max,p

∂cs
∂r

∣∣
r=0

= 0 & jp = −Ds,p
∂cs
∂r

∣∣
r=Rp

Separator (5) εs
∂c
∂t

= Deff,s
∂2c
∂x2 −Deff,p

∂c
∂x

∣∣
x=lp,−

= − Deff,s
∂c
∂x

∣∣
x=lp,+

& − Deff,s
∂c
∂x

∣∣
x=lp+ls,−

= −Deff,n
∂c
∂x

∣∣∣
x=lp+ls,+

(6) I = −�eff,s
∂˚2
∂x

+ 2�eff,sRT
F (1 − t+) ∂ ln c

∂x
−�eff,p

∂˚2
∂x

∣∣
x=lp,−

= −�eff,s
∂˚2
∂x

∣∣
x=lp,+

& − �eff,s
∂˚2
∂x

∣∣
x=lp+ls,−

= −�eff,n
∂˚2
∂x

∣∣
x=lp+ls,+

Anode (7) εn
∂c
∂t

= Deff,n
∂2c
∂x2 + an(1 − t+)jn initial condition c|t=0 = c0 −Deff,s

∂c
∂x

∣∣
x=lp+ls,−

= −Deff,n
∂c
∂x

∣∣
x=lp+ls,+

& − Deff,n
∂c
∂x

∣∣
x=lp+ls+ln

= 0

(8) −�eff,n
∂˚1
∂x

− �eff,n
∂˚2
∂x

+ 2�eff,nRT
F (1 − t+) ∂ ln c

∂x
= I −�eff,s

∂˚2
∂x

∣∣
x=lp+ls,−

= −�eff,n
∂˚2
∂x

∣∣
x=lp+ls,+

& ˚2

∣∣
x=lp+ls+ln

= 0

(9) �eff,n
∂2˚1
∂x2 = anFjn −�eff,n

∂˚1
∂x

∣∣
x=lp+ls

= 0 & ∂˚1
∂x

∣∣
x=lp+ls+ln

= − I
�eff,n

(10) ∂cs
∂t

= Ds,n

r2
∂
∂r

(
r2 ∂cs

∂r

)
initial condition cs|t=0 = 0.85cs,max,n

∂cs
∂r

∣∣
r=0

= 0 & jn = −Ds,n
∂cs
∂r

∣∣
r=Rn

Table 3
Expressions used in the lithium-ion battery model given by Table 1

�eff,i = εbruggi
i

(4.1253 × 10−2 + 5.007 × 10−4c − 4.7212 × 10−7c2 + 1.5094 × 10−10c3 − 1.6018 × 10−14c4), i = p, s, n

�eff,i = �i(1 − εi − εf,i), i = p, n

Deff,i = Dεbruggi
i

, i = p, s, n

ai = 3
Ri

(1 − εi − εf,i), i = p, n

jp = 2kp(cs,max,p − cs,p|r=Rp )0.5cs,p|r=Rp
0.5c0.5 sin h

[
0.5F

RT
(˚1 − ˚2 − Up)

]

Up =
−4.656 + 88.669�2

p − 401.119�4
p + 342.909�6

p − 462.471�8
p + 433.434�10

p

−1.0 + 18.933�2
p − 79.532�4

p + 37.311�6
p − 73.083�8

p + 95.96�10
p

where : �p = cs,p

∣∣
r=Rp

/cs,p,max

jn = 2kn(cs,max,n − cs,n

∣∣
r=Rn

)
0.5

cs,n

∣∣
r=Rn

0.5
c0.5 sin h

[
0.5F

RT
(˚1 − ˚2 − Un + FRSEIjn)

]

Un = 0.7222 + 0.1387�n + 0.029�0.5
n − 0.0172

�n
+ 0.0019

�n
1.5

+ 0.2808 exp(0.90 − 15�n) − 0.7984 exp(0.4465�n − 0.4108)

where : �n = cs,n

∣∣
r=Rn

/cs,n,max

and the expressions used for the electrochemical reaction kinetics
and other transport properties can be found in Table 3. A review
on available simulation techniques for solving such a complicated
lithium-ion battery model was made earlier [9].

These model equations are usually discretized using finite differ-
ences in the spatial coordinates resulting in 4800 DAEs. When 4800
DAEs are needed to solve for a simulation of the model equations,
the Jacobian for parameter estimation will add some thousands
more DAEs. Together, we will have several thousands of DAEs to
estimate one parameter. If we go for instead to predict more than
one parameter, then the number of equations to be solved will
keep increasing proportionally. Obviously, this situation is not ideal
for emerging applications like hybrid power systems, on-line con-
trol and monitoring of batteries and other electrochemical power
sources. It will take several hours or days to estimate parameters in
the model equations.

The authors have worked extensively in model reformulation
and have already published the details on the reformulation of
lithium-ion battery model [21,22]. This can enable a simulation
of porous model equations in 15–45 ms as against 90–120 s for a
similar simulation using rigorous porous model equations. This
is achieved by efficiently combining the advanced mathematical
approximation techniques with the actual physics of the electro-
chemical system under consideration. Now, the number of DAEs
needed for a simulation is only 29–49.

3. Parameter estimation

A list of fixed parameters for the model equations are given
in Table 4, and the following parameters are estimated (1) the
solid-phase diffusion coefficient in negative electrode, Ds,n (2) the
electrolyte diffusion coefficient, D (3) the electrochemical rate con-
stant in positive electrode, kp and (4) the electrochemical rate
constant in negative electrode, kn. The unknown parameters are
estimated using Gauss-Newton method from the synthetic experi-
mental data obtained using computer generated random numbers.
Here, the synthetic data is obtained by distributing 5% randomness
error to the actual model predicted discharge data by consider-
ing 102 data points. The expression used to generate experimental
values using Maple’s random number generator is,

Zexperimental = Zanalytical[0.95 + 0.01(Random number

between 0 and 10)].

The synthetic experimental data are then provided to the param-
eter estimation algorithm along with appropriate initial guesses.
The following steps are involved in the estimation of parameters:
(i) start with good initial guesses for parameters, k(0) (ii) compute
the state and sensitivity variables of the model at each data point
and set up the vector with experimental values Yexp, predicted
values Ypre and the Jacobian matrix J (iii) the correction fac-
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Table 4
Parameters used for the simulation (LiCoO2 and LiC6 system)

Symbol Unit Positive electrode Separator Negative electrode

�i S m−1 100 100
εf,i 0.025 0.0326
εi 0.385 0.724 0.485
Brugg 4
Ds,i m2 s−1 1.0×10−14 3.9 × 10−14

D m2 s−1 7.5 × 10−10

ki mol (s−1 m−2)[(mol m−3)1+�a,i]−1 2.334 × 10−11 5.0307 × 10−11

cs,i,max mol m−3 51,554 30,555
cs,i0 mol m−3 0.4955 × 51,554 0.8551 × 30,555
C0 mol m−3 1000
Rp m 2.0 × 10−6 2.0 × 10−6

li m 80 × 10−6 25 × 10−6 88 × 10−6

RSEI � m2 0.0
T+ 0.363
F C mol−1 96,487
R J (mol−1 K−1) 8.314
T K 298.15

tor is obtained by using the expression, 	k = (JTJ)−1JT(Yexp − Ypre)
(iv) using this, the updated parameter values can be obtained as
k(i+1) = k(i) + r	k(i), the predicted parameter for the next iteration
is k(i+1), r is the correction factor. Steps (ii) to (iv) are repeated
until a required accuracy is reached or the difference between the
parameter value of current iteration and previous iteration is zero.

In this paper, the 95% confidence interval is calculated for the
transport and kinetic parameters by using the following expression
[27,28]. 
p ± tN−n,˛/2(s/

√
N − n)

√
aii where 
p is the point estimate

for the parameter p, t is a value of Student’s t distribution with
(N − n) degrees of freedom and ˛ = 0.5, i.e., 95% confidence, N is the
total number of discharge data points and n is the number of fitting
parameters, aii is the ith element of the principal diagonal of (JTJ)−1,
and s is variance or deviation variable that can be calculated by s2 =∑N

j=1[(Vcell)j − (Vcell)
∗
j ]2 where (Vcell)j and (Vcell)

∗
j are the predicted

and experimental values of the discharge curve, respectively, at the
jth point at time t.

4. Results and discussion

The parameters were estimated for the following three different
cases: (1) the solid-phase diffusion coefficient alone—estimation of
one parameter; (2) the solid-phase diffusion coefficient and elec-
trolyte diffusion coefficient—estimation of two parameters; (3) the
solid-phase diffusion coefficient, electrochemical rate constant at
the positive electrode and electrochemical rate constant at the neg-
ative electrode—estimation of three parameters.

4.1. One parameter

Parameter estimation was carried out to compare the compu-
tation statistics for the rigorous model and efficient reformulated
model. The parameter estimated was the solid-phase diffusion
coefficient in the cathode; its true value is 1 × 10−15. Table 5
shows that the rigorous model has 10 PDEs or 4800 DAEs and
takes 1–2 min to complete a single iteration. It took 4 iterations
to converge (using a very good initial guess) and the total time for
estimating one parameter is 5–10 min using an efficient solver/good
initialization. The reformulated model has 49 DAE/IDEs and takes
only 60 ms to estimate a parameter in FORTRAN environment. The
manual time taken between running the codes at different updated
parameter values is ignored here for the purpose of stable esti-
mation algorithm. The synthetic data (for 1C discharge) used are
shown in Fig. 1 in comparison with simulated model data and the
initial guess.

4.2. Two parameters

The computational run time was determined for estimating two
parameters in the model equations. Fig. 2 represents the discharge
curves for the synthetic experimental data, the discharge curve
based on the initial guesses and the converged discharge data.
Table 5 shows the computation time taken for the estimation of
two parameters.

4.3. Three parameters

The computational run time was determined for estimating
three parameters in the model equations. Fig. 3 represents the dis-

Table 5
Estimation of solid-phase diffusion coefficient, electrolyte diffusion coefficient and
electrochemical reaction rate constants in the positive and negative electrodes

Number of parameters Runtime for each iteration Number of
iterations

One parameter estimation 80 s (rigorous model) 4
15 ms (reformulated model)

Two parameters estimation 32 ms (reformulated model) 5
Three parameters estimation 35 ms (reformulated model) 2

Comparison of computational time taken by the rigorous porous electrode model
and the reformulated porous electrode model.

Fig. 1. Estimation of solid-phase diffusion coefficient alone. Comparison of synthetic
experimental data, model predicted discharge data based on the initial guess and
model converged discharge data.
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Fig. 2. Estimation of solid-phase diffusion coefficient and electrolyte diffusion coef-
ficient. Comparison of synthetic experimental data, model predicted discharge data
based on the initial guess and model converged discharge data.

Fig. 3. Estimation of solid-phase diffusion coefficient and electrochemical rate
constants in the positive and the negative electrodes. Comparison of synthetic exper-
imental data, model predicted discharge data based on the initial guess and model
converged discharge data.

Table 6
Confidence intervals for the point estimation of transport and kinetic parameters of
the lithium-ion battery

Parameter Value 95% confidence intervals

Ds,p (m2 s−1) 1.086 e−14 ±0.307 e−14

kp (mol (s m−2)(mol m−3)−1.5) 2.360 e−11 ±0.386 e−11

kn (mol (s m−2)(mol m−3)−1.5) 5.023 e−11 ± 0.019 e−11

charge curves for the synthetic experimental data, the discharge
curve based on the initial guesses and the converged discharge data.
Table 5 shows the computation time taken for the estimation of
three parameters.

The above three cases show that the reformulated lithium-ion
battery model is very powerful and computationally efficient for
parameter estimation. Table 6 shows the confidence interval for
the transport and kinetic parameters that are estimated using this
efficient reformulated lithium-ion battery model.

5. Conclusions

This investigation reports a real-time parameter estimation
using a reformulated lithium-ion battery model. The computational
benefits involved in this approach are several times better than
the current state-of-the-art. These results indicate that the rigor-
ous optimization for optimal operating conditions of lithium-ion
battery model can now be evaluated using this reformulated model
[29–31]. It is to be noted in this work that the estimation of param-
eters using lithium-ion battery models are performed only for up to
2C rate of discharge. Further reformulation of the rigorous battery
model is required to enable estimation of parameters at high rates
of discharge. Work in this regard is currently in progress. Future
work will also involve optimization of lithium-ion battery model
and other aspects related to the control of electrochemical devices.
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