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Continuum Representation for Simulating Discrete Events
of Battery Operation
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A mathematical approach for representing the discrete events in the cycling studies of lithium-ion batteries as a continuum event
has been proposed to generate charge/discharge curves for N number of battery cycles. Simulations of up to 5000 cycles have been
performed using this technique using the solid-phase diffusion model. A nonlinear electrochemical engineering model, which
describes the galvanostatic charge/open-circuit/discharge processes of a thin-film nickel electrode, has also been investigated to
test and validate the computational performance of the continuum representation technique. Finally, the tested technique is
implemented for an existing full-order pseudo-two-dimensional lithium-ion battery model that has several coupled and nonlinear
partial differential equations in multiple domains. The continuum representation, which is expressed as a function of a dependent
variable in time t, works efficiently for several cycles with very minimal model initialization efforts and computation cost.
However, it is not ideal for state detection.
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The mathematical simulation approaches that are currently fol-
lowed for the modeling of charge/discharge cycles of lithium-ion
batteries involve different computational schemes.1-10 The complex-
ity arises because of steep variations in the dependent variables
�concentrations and potentials� between charge and discharge pro-
cesses, difficulty in obtaining consistent initial values for the model
equations, solver failure after a certain number of cycles due to high
charge/discharge cutoff voltages, thermal effects, etc. We came up
with a shooting method in a spatial direction11 based on the steady-
state model equations that work well for providing consistent initial-
ization during a charge or discharge process. Wu and White12 de-
vised an initialization subroutine called differential algebraic
equation initialization subroutine �DAEIS� to overcome numerical
inconsistency and discussed in detail the initialization problems of
battery models. Consistent initial values of the dependent variables
for index-1 differential algebraic equation �DAE� systems can be
obtained using DAEIS. DAEIS is effective in handling a DAE sys-
tem with combined continuous processes and discrete events that are
frequently encountered in battery operations. Before the advance-
ment of computation capability, Tafel approximation of the electro-
kinetic expression and Ohm’s law in electrolyte were used to calcu-
late initial guesses for algebraic variables.13

In this work, the complete protocol that includes many discrete
events to constitute one cycle of lithium-ion battery was reformu-
lated as a single continuous process. Then, this continuous process
was repeatedly simulated up to the desired number of cycles. This
was achieved by carefully changing the model variables that directly
influence the cycling parameters, for example, changing the inde-
pendent variable �in time� or the dependent variable �in solid-phase
concentration at the surface of the intercalating particles� and ex-
pressing the same as an additional algebraic equation in terms of the
number of battery cycles. This approach was attempted to overcome
the difficulties mentioned during the conventional cycle studies, and
it was an efficient method for many situations. Adding an additional
nonlinear algebraic equation does not contribute to the significant
computation cost for the model simulation; rather, it helps in effec-
tively handling large cycle numbers and in generating the cycle data
for further analysis.

The proposed mathematical representation has been demon-
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strated for models with different degrees of complexity and in com-
parison with the results from those using the conventional
approach.1-4 First, a simple model that governs the solid-phase dif-
fusion was demonstrated to explain the approach. Then, the nonlin-
ear model that was used as an illustrative problem for the inconsis-
tent initialization problem12 was used to generate the cycle data with
this approach. Finally, the full-order physics-based pseudo-two-
dimensional model of the lithium-ion battery1-10 was studied for up
to 1000 cycles. For the purpose of cycling or parameter estimation
using the full-order physics-based lithium-ion battery model, we de-
vised an efficient reformulated model of the full-order model, and
the details of this reformulation and the related mathematical tech-
niques are partly discussed elsewhere.14-16 The combination of this
continuum representation and this efficient reformulated model
helps in the use of meaningful models of batteries for emerging
applications such as satellites, military, hybrid electric vehicles, etc.
The combination of the continuum representation and the reformu-
lated model is helpful in a way that solving the full-order physics-
based lithium-ion battery model with less computation cost was fa-
cilitated by the reformulated version of the full-order model that
does not require a large system of differential and algebraic equa-
tions to be solved for each parameter in a cycle, for example, charge
or discharge. Though the objective of this investigation is to devise
a continuum representation for generating cycle data using a full-
order physics-based lithium-ion battery model, two other simple
electrochemical models �mentioned above� are also discussed with
the intention to provide more details and insight into the proposed
continuum approach that can help readers to easily adopt the ap-
proach for other interesting cases.

Numerical Routines for Continuum Representation

Electrochemical engineering models for batteries are usually
solved using the finite difference method that typically represents a
system of DAEs with first-order differential equations in time and
known or fixed initial conditions. The algebraic equations come
from the finite difference form of the electronic and ionic conduc-
tion equations, charge balance, and boundary conditions with un-
known initial values. As a consequence, a dedicated numerical rou-
tine with consistent initial values must be adopted when solving
these stiff DAE systems. Recently, there are many numerical DAE
solvers, such as DASSL,17 DASPK,18 BzzDae,19 LIMEX,20

Jacobian,21 gPROMS,22 DAESOL,23 and SPRINT,24 introduced in
the literature. The real world simulations involve variables that are
physically bound. The routines that are able to deal with constraints
are DASPK, BzzDae, Jacobian, and gPROMS. Although, ready-
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made solvers are available with constraint handling options, the
studies on the cycling performance of batteries needs tweaking of
the solvers to achieve better efficiency and robustness. The con-
tinuum representation proposed is based on tweaking any DAE
solver using a proper combination of hyperbolic functions. Addi-
tional literature dealing with embedded analytical solutions and dis-
cretization methods, which might help researchers dealing with such
reformulation models, is given elsewhere.25,26

Solid-State Diffusion Model

To illustrate the working principle of continuum representation
and charge/discharge modeling, we start with a simple diffusion
model that governs the electrochemical behavior of the solid-phase
active materials in porous electrodes. The species transport in a
spherical electrode can be expressed in a dimensionless form as

� C

� �
=

1

X2

�

� �
�X2� C

� X
� �1�

with the boundary conditions

dC

dX
= 0 at X = 0 and for � � 0 �2�

dC

dX
= � at X = 1 and for � � 0 �3�

and initial condition

C = Cref at � = 0 and for 0 � X � 1 �4�

where � is the applied current density in dimensionless form. Here,
the electrochemical model is assumed to have a cycling protocol that
consists of charging at constant current, followed by rest, and dis-
charging at constant current. The charge/discharge cutoff potentials
are evaluated using the Nernst equation based on the surface con-
centration. The equilibrium potential was assumed to be equal to 4.2
V �similar to the voltage expected in the lithium-based battery ma-
terials�.

The three discrete processes above can be treated as one continu-
ous event using a combination of hyperbolic functions

f =
1 − tanh�k�� − 0.2��

2
−

1 − tanh�k��
2

�5�

A plot for this function �Eq. 5� against time, � is shown in Fig. 1a for
different values of the parameter k. Equation 5 maintains a fixed
value for f that ranges between the time interval of 0 and 0.2. The
parameter k is important if a dimensionless form of � is used, and it
varies between 0 and 1. However, for higher values of �, like in the
range of 100 s or above, k can take a value of 1. This is shown in
Fig. 1b. If it is desired to analyze the cycling performance of two or
three different parameters over one or N number of cycles, then it is
straightforward to follow from Eq. 5 that adding some additional
functions serves the purpose

F = �
i=1

N

f�i� �6�

Figure 1c shows the schematic of discrete processes that are com-
bined together as a function of the independent variable time, t. For
instance, a protocol with charging at a particular current for �
= 1000, followed by leaving it at open circuit until the potential
stabilizes �say, another 1000 units� and discharging at constant cur-
rent for 1000 units, can be represented in continuum form as given
below

� = �s2 − s1��c + �s3 − s2��oc − �s4 − s3��d �7a�

s1 =
1 − tanh���

2
�7b�
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s2 =
1 − tanh�� − 1000�

2
�7c�

s3 =
1 − tanh�� − 2000�

2
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s4 =
1 − tanh�� − 3000�

2
�7e�

�oc = �dC

dX
�

X=1
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where �c is the dimensionless applied charging current, �oc is the
dimensionless open-circuit current �the value of which can be cal-
culated using Eq. 7f�, and �d is the dimensionless applied discharge
current. Figure 1d shows the behavior of Eq. 7 as a function of the
cycling period. It is clear from these figures that when the solver
solves for a cycling parameter �charging, discharging, or open cir-
cuit�, it is automatically directed to the next parameter specified in
the protocol. Sometimes a slight smoothness between the cycling
parameters is introduced by adjusting the parameter k. This smooth-
ness, as shown in Fig. 1a for k = 10, is important to overcome
inconsistencies in stiff model initialization problems at the transition
point in time. It is because the solver is given enough space in time
�or state� domain to detect the next parameter in the cycling protocol
at the transition point where the solver usually finds difficulty in
convergence or often times fails. Thus, the parameter k also solves
the inconsistencies in stiff model initialization problems at the tran-
sition point in time. Choosing such a value for k is one of the key
factors for the error-free and nonstop generation of cycling data
using the continuum representation approach. Usually, this short
time span between any two cycling parameters is where the model
undergoes steep variations in charge/open-circuit/discharge charac-
teristics that add to computational difficulties.

The results from the simulation of one complete cycle using the
continuum cycling approach �Eq. 5� are presented in Fig. 2. Figure
2a shows the applied current, and it is consistent with the defined
cycling protocol. Figure 2b shows the corresponding terminal
voltage–time curve, and Fig. 2c shows the surface concentration
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Figure 1. �Color online� Plot of the function �Eq. 1� �a� for various k values,
�b� for higher values of time, t, �c� for one cycle consisting of three param-
eters, and �d� for N number of cycles.
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dynamics during the cycling process. These current, potential, and
concentration curves are the results from cycle 1 of the solid-phase
diffusion model. It shows that during constant current charge, the
concentration of the active species inside the spherical particle in-
creases across the spherical particle radius. Next, the surface con-
centration is maintained constant during constant voltage charge un-
til the concentration achieves a uniform profile across the radial
direction that can be evidenced from the transient current profile
shown in Fig. 2b. This constant voltage step is handled by a fixed
surface concentration and allowed the current to vary in accordance
with the governing equations. The current as a function of time is
then calculated in the postprocess steps, which is an unknown pro-
file a priori during this cycle studies.

Equation 7 is used for the automated cycling of the model above
for up to 1000 cycles. The cycling profiles between 500 and 510
cycles are shown in Fig. 3, and a comparison of the computational
statistics for this simulation is given in Table I. Clearly, the use of an
additional equation takes care of the sustained solver efficiency and
provides data for N number of cycles. The computational cost could
be twice or more than the values shown in Table I if one needs to
stop the solver at each cycle or cycle parameter and to reinitiate the
solver. All the simulations in this demonstration are performed in
Visual Fortran and Maple environments using a PC with 2 GB RAM
and a 2.4 GHz Pentium IV processor.

Thin-Film Nickel Hydroxide Electrode

The second example considered for the validation of the con-
tinuum representation technique is the cycle-life modeling of the
galvanostatic charge, open-circuit, and discharge processes of a thin-
film nickel hydroxide electrode as given12

�V

W
y1� =

j1

F
�8�

j1 + j2 − iapp = 0 �9�

j1 = i01	2�1 − y1�exp�0.5F

RT
�y2 − �eq,1��

− 2y1 exp�−
0.5F

RT
�y2 − �eq,1��
 �10�

j2 = i02	exp� F

RT
�y2 − �eq,2�� − exp�−

F

RT
�y2 − �eq,2��


�11�

The dependent variables y1 and y2 are the mole fraction of NiOOH
and the potential difference at the solid/liquid interface, respectively.
The values of the model parameters are F = 96,487, R = 8.314, T
= 298.15, �eq,1 = 0.420, �eq,2 = 0.303, � = 3.4, W = 92.7, V = 1
� 10−5, i01 = 1 � 10−4, i02 = 1 � 10−10, and iapp = 1 � 10−5 �units
of parameters omitted for simplicity�. Previous work12 reported that
a consistent initialization is important for this DAE model even for
a single run of the simulation. It was also observed that the popular
DAE solvers such as DASSL and RADAU5 failed for one run of
simulation with initialization error messages. By incorporating an
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additional algebraic equation as discussed in this charge/discharge
modeling approach, the solver self-adjusted to nearly consistent ini-
tial values and continued to provide cycle data for up to 1000 cycles.
Figure 4 shows the continuous simulation of the discrete events. The
variations in both the concentration and potential as a function of
time are shown for the first 46 cycles. The computational statistics
associated with this simulation is also given in Table I. These results
are consistent with the results of the simulation shown for 30 cycles
in Fig. 2 elsewhere.12

Pseudo-Two-Dimensional Model of a Lithium-Ion Cell

The models for actual physical systems are usually more com-
plex than the above two cases. Hence, a full-order pseudo-two-
dimensional model for lithium-ion batteries, which is currently in
practice,1-10 was considered to test the validity of the proposed con-
tinuum representation approach. These models are the most promis-
ing candidates because they can predict both internal and external
behaviors �system level� with reasonable accuracy. These models are
based on the porous electrode theory coupled with transport phe-
nomena and electrochemical reaction engineering. They are repre-
sented by coupled nonlinear partial differential equations �PDEs� in
one to two dimensions and are typically solved numerically, requir-
ing a few minutes to hours to simulate. A summary of the model
equations for the behavior of lithium-ion batteries at various oper-
ating conditions for a wide range of chemistries is shown in Table II.
The electrochemical modeling of a typical secondary battery in-
volves three regions: the positive porous electrode, the separator,
and the negative porous electrode. The original model involves 10
PDEs �4 in each electrode and 2 in the separator�. If 100 node points
are used in the x-direction in each region and 20 node points are
used in the r-direction, the original model involves 2
� 100 �separator� + 3 � 100 �macroscale in each electrode�
+ 1 � 20 � 100 �microscale in each electrode� = 200 + 300
� 2 + 2000 � 2 = 4800 DAEs in time. This model accounts for
the diffusion and the reaction in the electrolyte phase in the anode/
separator/cathode, the diffusion �intercalation� in the solid phase in
the cathode and the anode, the ionic and electronic conductivities in
the corresponding phases in the porous electrodes �cathode and an-
ode�, nonlinear ionic conductivity, the nonlinear kinetics, etc. The
expressions and parameters used in the governing equations are
given in Tables II-IV. This full-order model available in the
literature1-10 was validated with the experimental charge/discharge
curves at various operating conditions. The protocol that is com-
monly used in cycling lithium-ion battery consists of charging the
battery at a constant current up to a cutoff potential, followed by
charging at a constant potential until the potential reaches a uniform
value across the intercalating particles, and finally, discharging the
battery at a constant current or potential. A better utilization of
lithium-ion batteries can be obtained by discharging at low rates
under galvanostatic conditions.

Figure 5 shows the charge/discharge behavior of the battery as a
function of N at the 1C rate of charge or discharge for up to 100
cycles. The potentials for charge and discharge are allowed to vary
between 4.2 and 3.05 V. This plot shows that the continuum repre-
sentation works well for the practical battery model. In practice, the

Time

Figure 2. �Color online� �a� Current dis-
tribution, �b� potential distribution, and �c�
concentration distributions from a cycle of
a solid-phase diffusion model.
(c)

Su
rf
ac
e
co
nc
en
tra
tio
n

CS license or copyright; see http://www.ecsdl.org/terms_use.jsp



(

(

A101Journal of The Electrochemical Society, 157 �1� A98-A104 �2010� A101
battery loses its capacity to hold and deliver the energy when the
number of cycles increases.27 This behavior can also be captured by
incorporating a linear dependency for the diffusive conductivity of
ionic species in the negative electrode. The capacity fade is mainly
due to the variations in the transport and kinetic parameters caused
by the reduced pore volume in the porous electrodes, which in turn
increases the internal resistances for ionic/mass transport. The com-
putational statistics for this full-order model are given in Table I.
The simulation time is not proportional to the cycle number because
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Table I. Computational statistics for the modeling of cycling behavio

Number of cycles
Solid-phase particle model

�s�

10 0.89
100 28.86
1000 1988.22
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if we run the battery model for one cycle, much of the CPU time is
spent for the model initialization, and thus the final time taken for
cycle 1 is larger compared to that for cycle 10, where the hyperbolic
function accelerates the solver without getting struck or spending
more time for the initialization. The proposed continuum represen-
tation technique works for a porous electrode model because the
total current of the cell is constant, and the cell is operated under a
galvanostatic condition. However, the nonuniform current density

315 316 317

15 316 317

Figure 3. �Color online� �a� Current and
�b� potential distributions between 500
and 510 cycles for a solid-phase diffusion
model.

g various models at 10, 100, and 1000 cycles.

Thin-film electrode model
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Full-order Li-ion model
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distribution through the depth of the electrode is considered and
solved concomitantly with the solid-phase diffusion.

A comparison between the simulation of a single discharge curve
using the BAND�J� 1-4 approach and a similar approach using the
polynomial profile approximation for the solid-phase concentration
shows that the computation time needed is less for the former. They
are 2.5 s for the former and 6 s for the latter. Figure 6 compares the
results from the simulation of one cycle �consists of charge and
discharge processes� using both the continuum representation and
the BAND�J� approaches. It can be observed from this plot that the
cycling behavior predictions agree for both approaches. But the
computation time taken by the proposed approach is only 15 s,
whereas BAND�J� requires 45 s.28 Though the BAND�J� approach is
a linear equation solver that may be implemented for either the
discrete time or the continuum representations of the boundary con-
dition, comparisons are made between the BAND�J� approach and
the proposed continuum representation to indicate the need for pow-
erful nonlinear DAE solvers. Moreover, the BAND�J� approach is
considered as the state-of-the-art approach in the numerical simula-

Time, s

y 1
an
d
y 2

y1

y2

Figure 4. �Color online� Concentration and potential distributions from the
cycling of galvanostatic charge/open-circuit/discharge processes of a thin-
film electrode.

Table III. Expressions used in the lithium-ion battery model
given by Table II.
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tion of a battery that is available as open source. To summarize, the
continuum representation of discrete processes is three times more
efficient than the current approach for cycling studies with respect to
the computation speed.

Table IV. Parameters used for the simulation (LiCoO2 and LiC6 sys

Symbol Unit Po

	i S/m
�f,i

�i

Brugg
Ds,i m2/s
D m2/s
ki mol/�s m2�/�mol/m3�1+
a,i

cs,i,max mol/m3

cs,i0 mol/m3 0.
C0 mol/m3

Rp m
li m
RSEI � · m2

T+

F C/mol
R J/�mol K�
T K

3.0

3.2
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Figure 5. �Color online� Charge/discharge cycles of a pseudo-two-
dimensional lithium-ion battery model for 100 cycles.
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Dotted line: Continuum representation approach for discrete events
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Figure 6. �Color online� Comparison of the continuum representation ap-
proach with the current BAND�J� approach for cycle 1 of the pseudo-two-
dimensional lithium-ion battery model.
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State Detection

It can be observed from the battery modeling literature that the
prior mentioning of process time for cycling parameters such as
charge, discharge, or open circuit is not an option during battery
operations. This is because of the physical and chemical properties
that change inside the battery that result in battery degradation or
capacity fade. To have this continuum representation technique valid
for this situation, it requires a similar mathematical representation as
a function of the state variables such as the solid-phase surface
concentration of the active electrode materials against the indepen-
dent variable time. This would be a useful tool to predict the cycle
life of batteries.

The continuum representation as a function of the state variable
to detect state variation was attempted and was successful in the
solid-phase diffusion model. Figure 7 shows the current, potential,
and concentration distributions at various times for five cycles of
charge, open-circuit, and discharge for the solid-phase diffusion
model. However, advanced mathematical techniques are further
needed to implement the same for other two illustrative models dis-
cussed. The limitations are mainly because of �i� complexity in the
mathematical derivation of a constraint using state-detecting vari-
ables that can automate the cycling studies and �ii� DAE solver
failures while introducing a stiff constraint for state variables such
as the solid-phase surface concentration. This can be addressed by
carefully deriving an alternate constraint with less stiffness or non-
linearity. This also needs the evaluation of the consistent initial con-
ditions for all the algebraic components of the resulting DAE system
to avoid solver failures.

Conclusion

In this study, a continuum representation of the discrete events in
the charge/discharge cycle of a battery has been proposed. It has
been established that initialization is not required between the dis-
crete events of a given cycle or between any two cycles. The pro-
posed method is based on the generally followed protocol for a
particular battery chemistry and can be altered for other widely used
protocols to utilize it in different battery systems. This technique
works well for most of the possible battery models if the duration
for each discrete event in a cycle is fixed, though it is not the prac-
tical case. However, the method has advantages, such as the com-
plete automation of cycling data to predict the cycle behavior and
the lesser computational cost when compared to existing conven-
tional methods.

This approach is more useful if the above limitation is overcome
by expressing the additional equations as functions of the state vari-
ables, such as the state-of-charge, which is a key state detecting
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variable. This shifts from one process to the other at a specified
cutoff potential without additional information on the predefined
duration for each cycling parameter. Future work will involve the
implementation of a mathematical expression for a full-order model
as a function of state variables and thus will enable the cycling of
battery models in milliseconds or lesser time.
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List of Symbols

ai specific surface area of electrode i �i = p, n�, m2/m3

Bruggi Bruggeman coefficient of region i �i = p, s, n�
c electrolyte concentration, mol/m3

c0 initial electrolyte concentration, mol/m3

cs,i concentration of lithium ions in the intercalation particle of elec-
trode i �i = p, n�, mol/m3

cs,i,0 initial concentration of lithium ions in the intercalation particle of
electrode i �i = p, n�, mol/m3

cs,i,max maximum concentration of lithium ions in the intercalation par-
ticle of electrode i �i = p, n�, mol/m3

D electrolyte diffusion coefficient, m2/s
Ds,i lithium ion diffusion coefficient in the intercalation particle of

electrode i �i = p, n�, m2/s
F Faraday’s constant, C/mol
i1 solid-phase current density, A/m2

i2 solution phase current density, A/m2

I applied current density, A/cm2

ji wall flux of Li+ on the intercalation particle of electrode i �i
= n, p�, mol/m2 s

ki intercalation/deintercalation reaction rate constant of electrode i
�i = p, n�, mol/�mol/m3�1.5

li thickness of region i �i = p, s, n�, m
n negative electrode
p positive electrode
r radial coordinate, m
R universal gas constant, J/�mol K�
Ri radius of the intercalation particle of electrode i �i = p, n�, m

RSEI initial solid electrolyte interface layer resistance at the negative
electrode, � m2

s separator
t+ Li+ transference number in the electrolyte
T absolute temperature, K

Ui open-circuit potential of electrode i �i = p, n�, V
x spatial coordinate, m

Greek

� porosity of region i �i = p, s, n�

a) (b)

C
el
lV
ol
ta
ge

Time, s

δ

Time, s
i
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�f,i volume fraction of the fillers of electrode i �i = p, n�
�i dimensionless concentration of lithium ions in the intercalation

particle of electrode i ��i = cs,i/cs,i,max�
� ionic conductivity of the electrolyte, S/m

�eff,i effective ionic conductivity of the electrolyte in region i �i
= p, s, n�, S/m

	i electronic conductivity of the solid phase of electrode i �i
= p, n�, S/m

	eff,i effective electronic conductivity of the solid phase of electrode i
�i = p, n�, S/m


1 solid-phase potential, V

2 electrolyte phase potential, V
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Figure 7. �Color online� �a� Current dis-
tribution, �b� potential distribution, and �c�
concentration distribution for a solid-
phase diffusion model simulated as a
function of the state variable. The arrow
mark in �c� represents the increasing time
steps. The cycling protocol is similar to
that in Fig. 2 and thus has three segments
in each plot indicating the constant current
charge, the constant potential charge, and
the constant current discharge.
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