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ABSTRACT:

Partial differential equations (PDEs) play an important role in describing many physical,

industrial, and biological processes. Their solutions could be considerably facilitated by using appropriate
coordinate transformations. There are many coordinate systems besides the well-known Cartesian, polar, and
spherical coordinates. In this article, we illustrate how to make such transformations using Maple. Such a use has
the advantage of easing the manipulation and derivation of analytical expressions. We illustrate this by
considering a number of engineering problems governed by PDEs in different coordinate systems such as
the bipolar, elliptic cylindrical, and prolate spheroidal. In our opinion, the use of Maple or similar computer
algebraic systems (e.g. Mathematica, Reduce, etc.) will help researchers and students use uncommon
transformations more frequently at the very least for situations where the transformations provide smarter and
easier solutions. ©2009 Wiley Periodicals, Inc. Comput Appl Eng Educ 19: 365—376, 2011; View this article online at

wileyonlinelibrary.com; DOI 10.1002/cae.20318
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INTRODUCTION

Partial differential equations (PDEs) are mathematical models
describing physical laws such as chemical processes, electrostatic
distributions, heat flow, and fluid motion. The solution to a number
of PDE:s is shaped by the boundaries of the geometry, and thus the
coordinate system selected is influenced by these boundaries. By
choosing a curvilinear coordinate system (&, &>, £3) such that the
boundary surface is one of the coordinate surfaces, it is possible to
express the solution of the PDE in terms of these new coordinates,
that is, &, &, &3. There are many coordinate systems besides the
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usual Cartesian, polar, and spherical coordinates. For example,
Figure 1 shows two identical pipes imbedded in a concrete slab. To
find the steady-state temperature, the most suitable coordinate
system is the bipolar coordinate system as will be demonstrated in
more details in Application of the Bipolar Coordinate System
Section. In addition, the separation of variables is a common method
for solving linear PDEs. The separation is different for different
coordinate systems. In other words, we find out in what coordinate
system an equation will be amenable to a separation of variables
solution. The properties of the solution can be related to the
characteristics of the equations and the geometry of the selected
coordinate system. It is possible to prove using the theory of analytic
functions of the complex variable that there are a number of two-
and three-dimensional separable coordinate systems. The coordinate
system is defined by relationships between the rectangular
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Figure 1 Two identical pipes imbedded in an infinite concrete slab.

coordinates (x, y, z) and the coordinates (£, &, &3). The new
coordinate axes are given by the equations &;(x, y, z) = constant,
&5(x, y, z) = constant, and &5(x, y, z) = constant.

For example, polar coordinates are useful for circular
boundaries or ones consisting of two lines meeting at an angle
(see Fig. 2). The families r=constant and ¢ = constant are,
respectively, the concentric circles and the radial lines as
illustrated in Figure 2. Coordinate systems more general than
the polar are the elliptic coordinates consisting of ellipses and
hyperbolas. These coordinates are suitable for elliptic boundaries
or ones consisting of hyperbolas as illustrated in Figure 3.
Parabolic cylindrical coordinates, shown in Figure 4, are two
orthogonal families of parabolas, with axes along the x-axis.
These coordinates are suitable, for example, for a boundary
consisting of the negative half of the x-axis. Generally speaking,
the separable coordinate systems for two dimensions consisted of
conic sections; that is, ellipses and hyperbolas or their degenerate
forms (lines, parabolas, circles).

For three dimensions, the separable coordinate systems are
quadratic surfaces or their degenerate forms. A common
coordinate system is the spherical coordinates. The coordinate
surfaces are spheres having centers at the origin, cones having
vertices at the origin, and planes through the z-axis. Robertson’s
condition, which relates scale factors and the properties of
Stdckel determinant, places a limit on the number of possible
coordinate systems. Table 1 lists a number of common coordinate
systems. These coordinate systems are: rectangular coordinates,
circular cylindrical coordinates, elliptic cylinder coordinates,
parabolic cylinder coordinates, spherical coordinates, bipolar
coordinates, conical coordinates, parabolic coordinates, prolate
spheroidal coordinates, oblate spheroidal coordinates, ellipsoidal
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Figure 2 Circular cylindrical coordinates. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 3 Elliptic cylindrical coordinates. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]

coordinates, bi-spherical coordinates, and toroidal coordinates.
The names are generally descriptive of the coordinate systems.
For example, the circular cylinder coordinates involve coordinate
surfaces, which are cylinder coaxial. Maple implements,
respectively, about 15 coordinate systems in two dimensions
and 31 in three dimensions.

Let us illustrate one useful application of using these
coordinate systems. For example, if the boundary conditions
require the use of polar coordinates (shown in Fig. 1), the
equation Ach + kzgzz =0 (k1is a constant), for example, can be split
(making use of Tables 1—3) into two ordinary differential
equations, each for a single independent variable

Eodf s o g

—+-—+5(%k — =0, —% =0 1

g tE R ey =0, dra=0 ()
where ¢(r, ¢) =f(r)g(¢) and « is the separation constant (which
must be integer in the case of polar coordinates since ¢ is a
periodic coordinate). We will apply the method of separation of
variables to the PDEs in the examples.
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Figure 4 Parabolic coordinates. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]



Table 1 Definition of Common Coordinate Systems
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Circular cylindrical (polar) X=pcos¢, y=psing, z
coordinates (p, ¢, z)

Elliptic cylindrical
coordinates (u, ¢, z)

Parabolic cylindrical
coordinates (u, v, 7)

x= (l/2)(u2—v2), y=uv, z

x=dcoshucos ¢, y=dsinhusin ¢, z

. X sinh v sinu

Bipolar coordinates (u, v, z) x=a———, =a—
coshv — cosu coshv — cosu
Spherical coordinates (r, ¢, 0) x=rcos¢sinf, y=rsin¢gsing, z=rcost
: : Apw AP — @) —a?) A = D) —b?)

C 1 dinates (\, u, = AP At _ AW OT)\W o)

onical coordinates (A, p, v) X b y 2 P , b e

1

Parabolic coordinates (u, v, ¢) X = uvcose,y = uvsing, z = ~ (u*> — v*)

Prolate spheroidal
coordinates (u, v, ¢)

x = dsinhusinvcos ¢,

Oblate spheroidal
coordinates (u, v, ¢)

x =dcoshusinvcos ¢,

y = dsinhusinvsin ¢,

y = dcoshusinvsin ¢,

z=dcoshucosv

z=dsinhucosv

Ellipsoidal coordinates

x=¢@%ma@—am&—ﬁ>
@@ —p)

V=¢@%—mxﬁ—wx5—w)
: ® =) )

(15 &, &)

Z=¢@—@xg—ﬂ@awa

@ - @)@~ )

Paraboloidal coordinates (a® = b?)

(15 &, &)

. . . sin
Bispherical coordinates X =acos¢ N

cosh yt —cosn’

@, 1 @)
inh
Toroidal coordinates X = acos ¢hsn17y s
Cos — COS T
(1, 1, ) e

L feae e | fg-mg-me@-p
= S (b —a?) )

1
z:§(£§+£§+£§—a2—b2)

sin sinh
y=asing U , i
cosh 4 — cosn cosh y —cosn
. sinh sin
y=asino K z=a 1

cosh y — cosn’ cosh yt —cosn

So, the basic technique is to transform a given boundary
value problem in the xy plane (or x, y, z space) into a simpler one
in the plane &;&, (or £;£,&5 space) and then write the solution of
the original problem in terms of the solution obtained for the
simpler equation. This is explained in the next three sections. The
transformations will make the solution more tractable and
convenient to find.

Nowadays, high-performance computers coupled with
highly efficient user-friendly symbolic computation software
tools such as Maple, Mathematica, Matlab, Reduce [htt
p:www.maplesoft.com, http://www. wolfram.com, http://www.
mathworks.com, http://www. reduce-algebra.com] are very useful
in teaching mathematical methods involving tedious algebra and
manipulations. In this paper, the powerful software tool Maple
is used. Maple facilitates the manipulation and derivation of
analytical expressions, and can be used to perform tedious
algebra, complicated integrals, and differential equations [1—3].
A secondary objective of this paper is to expose the student
to different skills in using Maple to perform the algebra and work
with differential equations calculations and solutions in different
coordinate systems.

For the sake of readers not familiar with Maple, a brief
introduction will follow. Maple is a powerful symbolic computa-
tional tool used to perform analytical derivations and numerical
calculations. It is easy to use, and its commands are often
straightforward to know even for a first-time user. In this paper,

the student version of Maple is used. We recommend that the
student uses ““;”” and not ““:” at the end of a command statement
so that Maple prints the results. This helps in fixing mistakes in
the program since the results are printed after every command
statement. In addition, the user might have to manipulate the
resulting expressions from a Maple command to obtain the
equation in the simplest or desired form. All the mathematical
manipulations involved can be performed in the same program,
and Maple can be used to perform all the required steps from
setting up the equations to interpreting plots in the same sheet.
Please note that equations containing ““:="" are results printed by
Maple.

APPLICATION OF THE BIPOLAR
COORDINATE SYSTEM

There are a number of real applications for bipolar coordinates
such as pairs of ducts, pipes, transmission lines, and bubbles
[4—9]. We will illustrate the use of the bipolar orthogonal
coordinate system in this section by the following example. Two
identical circular pipes of identical radius R are imbedded in
an infinite concrete slab as shown in Figure 1. The uniform
temperature of both pipes is 7j. We want to solve the temperature
distribution in the concrete slab by solving the following
differential Laplace equation:



368 ELKAMEL, BELLAMINE, AND SUBRAMANIAN

Table 2 Scale Factors for Common Coordinate Systems

Circular cylindrical h=1hh=p h3=1
coordinates (p, ¢, z)

Elliptic cylindrical
coordinates (u, ¢, z)

Parabolic cylindrical
coordinates (u, v, z)

h = dvu? +12,

hy = hy,

hy =dy\/sinh®u +sin® ¢, hy =h;, hy =1

hy =1

Bipolar coordinates (7, 4, z) hy = L, hy = hy =1
cosh p4 — cosn
Spherical coordinate (r, 0, ¢) hi=1, h,=rsinb, h3=r
2,2 22

Conical coordinates (A, y, V) hy=1, hy=2\ M, hy =\ M

W -y TN @) - w)
Parabolic coordinate (u, v, ¢) h =N 4pu? hy=h;, h3=M\
Prolate spheroidal hy = dv/sinh? u + sin® v, hy=hy;, h3=dsinhusiny

coordinates (u, v, ¢)

Oblate spheroidal hy = dV/sinh? u + sin® v,

coordinates (i, v, ¢)

hy = hy,

hs = dcoshusinv

Ellipsoidal coordinates

(& -8)(E - &)

(G- - &)

&1» &2, &)

"o wa% - )& - - )

b = \/<s% — @ - )@ -

(& -E - &)

he = ¢ G-A)E-p)(g-)

(G -8)E-8)
(& —a?) (& - b?)

Paraboloidal coordinates

(1> &2, &)

o [B-E -8
TVNE-a)E-»

(& -G - &)
(&G —a’) (G —b?)

a
[ —
2 (cosh pu — cosm)sinn’

asinh
h3 =
cosh 1 — cosn

Bispherical coordinates hy = a
s s ) (cosh y — cosn) sinh p1”
-~ asinn
"~ (cosh 1 — cos7) sin
} h
Toroidal coordinates hy = %, hy = hy,
(1. . 6) oSt eonT

>restart: with(student) :
>eq:=diff(T(x,y),x$2) +
diff(T(x,y),y$2)=0;

e (Lorten) o+ (Zerten) o

The boundary conditions of this problem dictate the use of
bipolar coordinates (see Fig. 5). According to Table 1, the
following equations define bipolar coordinates:

csinhvy csinu

(2)

X = —
coshv —cosu’ coshv — cosu

>eql:=x-c*sinh(v(x,y))/
(cosh(v(x,y))—-cos(u(x,y)));

B csinh(v(x,y))
cosh(v(x,y)) — cos(u(x,y))

eql :=x

>eq2:=y=c*sin(u(x,y))/
(cosh(v(x,y))—-cos(u(x,y)));

o csin(u(x,y))
eq2 =y = cosh(V(x»)’)) — cos(u()ﬁ )’))

We will show how tractable and convenient it is to solve the
Laplace equation in the bipolar coordinates, whereas in terms of
x, y, and z the temperature field expression is complex. So, the
bipolar coordinates are the “‘natural” coordinates for this type of
problem.

First of all, we show that the bipolar coordinate system is an
orthogonal coordinate system. This means that the two families
of the coordinate surfaces u(x, y) and v(x, y) are mutually
orthogonal. The lines of intersection of these surfaces constitute
two families of lines. At the point (u, v), we have unit vectors ¢!
and &> each, respectively, tangent to the coordinate line of the
bipolar coordinate system which goes through the point. Since the

coordinate system is orthogonal, &' and &> are mutually
perpendicular everywhere
1 0r1or
Sl 2
2=0 e 3
€ h' Ou h? Ov (3)

where 7 is a position vector and is given by

7 =x&' +yé (4)
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Table 3 Line and Volume Elements Along With Differential Operators in Curvilinear Orthogonal Coordinate System

Scale factors, £,

Line element, ds ds = \/h2(d¢,)’

Volume element, dV dV = hihyhsd€,dédEés

el @) - [ ()]

. 18 8¢~ Loy

Gradient, V) Vi = Iy 06, e+ hy 06, = +h3 & é

Divergence, V -A ng#ii hhhﬁ
vergence, " by 25 06 \" 0,

Curl, V x A

mn.p

Laplacian, Vzi/)

2 hihyhs O
v 1/} h hzhg Za€n|: h (9f

7]

VxA= I A A |, monp=1,2,3 or2,3,10r3,1,2
X h]h2h3z 61{36( p) — pr(nn)} m,n,p =1, or or 3,

hy and h, are scale factors for the bipolar coordinates u and v. We
will write about them later on Equation (2) becomes

(G R 163 B

Equation (1) is a conformal transformation to x, y from u, v
coordinates. u, u,, v,, and v, are computed using Maple as
follows:

>eq3:=diff(eql,x):
eqgd :=diff(eqg2,x):
vx :=solve(eqgd,diff(v(x,y),x)):
eq3l:=simplify(subs(diff(v(x,y),x)
=vx,eq3)):ux:=solve(eqg3l,diff
(u(x,y),x));

sin(u(x,y)) sinh(v(x,y))

ux .= —
Cc
15 T T T T T T T
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Figure 5 Bipolar coordinates. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

>vx:=simplify(subs(diff
(u(x,y),x)=ux,vx));
cos(u(x,y)) cosh(v(x,y)) —
c
>eqg5:=diff(eql,y):eq6:=diff

(eq2,y):uy:=solve(eqg5,diff
(u(x,y),v)):eq6l :=simplify
(subs (diff (u(x,y),y)=uy,eq6)):
vy :=solve(eqg6l,diff(v(x,y),y));

sin(u(x,y)) sinh(v(x,y))

vy (= —

uy :=simplify(subs(diff
(v(x,y),y)=vy,uy));

cos(u(x,y)) cosh(v(x,y)) — 1

uy =

The Cauchy—Riemann conditions are satisfied since:

simplify(ux-vy);simplify(uy+vx) ;

0
0

and thus we conclude that the bipolar coordinate system is
orthogonal.
Next, we obtain the scale factors /; (I=1, 2) given by

o
o

The scale factor A; can be interpreted as follows: a change du
in the bipolar coordinate system produces a displacement /; du
along the coordinate line. Now, we notice that the rate of
displacement along u due to a displacement along the x-axis is
h1(Ou/Ox) which is the same as the rate of change of x due to a
displacement /; du. The same argument goes for the scale factor
h,. The scales of the new coordinates and the change of scale
from point to point determine the important properties of the
coordinate system. The scale factors play a role in expressing the

hi = & =u and & =v (6)
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differential/integral operators, line, surface, and volume ele-
ments, and for the sake of completeness, they are shown in
Table 2 for common coordinate systems. After some algebraic
manipulations, we find that

>hlsquare:=factor (simplify
(1/(ux”(2) +uy*(2)))):h[1]:
=simplify(sqgrt(hlsquare),
sqgrt,symbolic) ;
c
cos(u(x.y)) — cosh(v(x,))

ox\? dy 2 ¢
b = (%) +(£) " coshv —cosu @

>h2square :=factor (simplify
(1/(vx"(2)+vy  (2)))):

h{2] :=simplify(sqrt
(h2square) ,sqrt,symbolic) ;

hl :=

So,

c
hy == —
? T —cosh(v(x, )) + cos(u(x,))
and so,
ox\* [oy\* c
ha = (5) + (E) ~ coshv —cosu ®)

Next, we need to obtain expressions for the parameter ¢ in
terms of R and L. The y-axis lies in the middle between the two
cylinders, while the x-axis crosses the centers of the cylinders.
After algebraic manipulations, the relationship between the
Cartesian and bipolar coordinates can be expressed as follows:

X+ (y —ccotu)® = ¢? csc?u 9)

(x — ccothv)? +y* = ? esc kv

(10)

This form of writing the relationship between the “old” set
of coordinates, that is, x, y and the “new” set of coordinates u, v
provides us a further insight since we can notice that Equations
(9) and (10) are circles. For an arbitrary v =1, from Equation
(10) we have a circle of radius ¢ csc hmg and center (c coth 7, 0).
Also, when v=—1), we have a circle of radius ccschrny and
center (—c coth g, 0). Now, when

ceschny =R

(11)

and,

(12)

L
ccothn, = §+R

L
= Rsinh |cosh™ ' ( 1 +—
c sin {cos ( +2R)}

The obvious next step is to transform the differential
equation from x, y to u, v coordinates. Using Maple, we can
simply use the Laplacian command. However, Laplace form does
not govern many differential equations, and so we will follow the
approach needed to map a differential equation from a set of
coordinates to another. So, first, we need to get the second
derivatives of u, v with respect to x, y

Then

(13)

>uxx :=diff (ux,x):uxx :=simplify
(subs(diff (u(x,y),x)=ux,
diff(v(x,y),X)=vxX,uxx)):
>vxx :=diff (vx,x):vxx :=simplify
(subs(diff (u(x,y),x)=ux,
diff(v(x,y),X) =vxX,VvXx)):
>uyy :=diff (uy,y):uyy:=simplify
(subs(diff (u(x,y),y)=uy,
diff(v(x,y),y)=vy,uyy)):
>vyy:=diff(vy,y):vyy:=simplify
(subs(diff (u(x,y),y)=uy,
diff(v(x,y),y)=vy,vyy)):

Then, we map the differential equation into the bipolar
coordinates:

>eql:=eval(subs(T(x,y)=TT
(u(x,y),v(x,y)),eq)):

eqg2 :=subs(diff(v(x,y),y$2) =
—diff(v(x,y),x$2),diff
(u(x,y),y$2) =-diff(u(x,y),x$2),
diff(v(x,y),y)=diff (u(x,y),x),
diff(v(x,y),x)=-diff
(u(x,y),y),eql):

eqg3 :=factor (expand(eqg2)):

eq4 :=D[2,2] (TT) (u(x,y),v(x,y))
+D[1,1](TT) (u(x,y) ,v(x,y)):

eg5 :=subs(u(x,y)=u,v(x,y)
=v,eq4) :Eq:=convert(eq5,diff);

Eq = (%W(u,v)) + (aa—;mu,v))

which can be rewritten as

o*T  O°T
o T =0 (14)

which shows that Laplace’s equation is invariant under a mapping
to bipolar coordinates. Now, if 7 changes with respect to z as well,
then the transformed PDE can be shown to be

1 (*T T\ T
— 5t —5 =0 15
h]hz ((91,42 * (91/2) * 622 ( )
but since the temperature does not change with respect to z,

that is, 07/0z=0, then Equation (14) is reduced to (13). The
transformed boundary conditions in the u, v coordinates are

T=T atv=mn, T=T,atv=—n, (16)

At this point, we can use the method of separation of
variables covered in many undergraduate and graduate textbooks
[10,11] (so T(u, v) = X(u)Y(v)). The separation of variables splits
the PDE into two ODEs. We assume that the temperature 7(u, v)
is only dependent on v. So, in our particular case, the separation
constant is A,=0. So, we end up solving the following
differential equation with its Dirichlet boundary conditions:

d2

WY(V):O

>bcl:=subs(v=etalO0],Y(v))=T[1];
bcl :=Y(hy)=T:

>Eq:=diff (Y(v),v$2);



>bc2 :=subs(v=-etal[0], Y(v))=T[2];
bc2 ::Y(fh()):TZ

>sol:=dsolve(Eq,Y(v)):
eql :=subs(v=etal0O],
Y(etal[O])=T[1],s01l):
eq2 :=subs(v=-etal0],

3=l b= o1y 1y
eqgs>=4-Cl= T 2 =50 450

Y(—etal[0])=T[2],s0l):
eq3 :=solve({eql,eq2},
{_C1,_C2});

and thus:

T —T 1. 1
Ty 1y, 1,

Y —
v) 2ho 27273

which is equal to 7(u, v).
Generally, when we conduct the separation of variables, one
gets

>eqgs :=subs(TT(u,v)=X(u)*Y
(v) ,Eq) :eqgs :=expand(eqgs) :
egs :=eqgs/(X(u) *Y (v)):

eqs :=expand(eqgs) ;

2 2
a0 g
B =X W) Y(v)

we obtain two ODEs in X(#) and Y(v) and the first one is

>eqgsl:=diff (X(u),us2)
+lambda*2*X(u): bcl :=subs
(u=0,D(X) (u))=0:bc2:
=subs(u=Pi,D(X)(u))=0;

eqsl = (;’722 x (u)) A2 % (1)

bel := D(X)(0) =0
be2 :=D(X)(p) =0

The ODE in X(u) is a regular Sturm—Liouville boundary
value problem [10], with separation constant A,, =n (where n =1,
2, ...) with corresponding eigenfunctions X,,(u) = sin(nu). The
ODE in Y(v) is

>eqs2:=diff(Y(v),vs2)
—n"2*Y(v);

eqs2 = (% Y(v)) —n’Y(v)

>dsolve(eqgs2) ;
Y(v) = Clet™ 4 c2e™)

In order to satisfy the boundary conditions (Eq. 16), we
consider the following solution which is a linear combination of
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products, and for which the separation constant is not zero:

T, —T, T+ T
v+
21, 2

00

+ Z (cn€™ + dye ) sin(nu)

n=1

T(u,v) =

where ¢, and d,, are computed by Maple as follows:

>an:=(2/Pi)*int(T[1]*sin(n*u),
u=0...Pi):bn:=(2/Pi)*int(T[2]
*sin(n*u),u=0...Pi) : assume(n:
:integer) : assume(n,odd) :
eval(an):eval(bn): eqcl:=cn*exp
(n*eta[0]) +dn*exp(-n*eta[0]) =an:
eqgc2 := cn*exp(-n*etal[0]) +dn
*exp(n*eta [0]) =bn:solc:=solve
({eqgcl,eqc2},{cn,dn});

4(76(711+7]0)T2 _ Tle("“’o)
solc: = cn= - S
ﬂ'n(—(e<7”+'7u)) _;’_(e(n—nu) ))
dn — 4(_T]e(ﬂz+7]0) — Tyelrn) }

a m (7 (e(’”*’?o))er (e(””lo>)2)

where n denotes an odd number (i.e. n=2m—1,m=1,2...).

APPLICATION OF THE ELLIPTIC CYLINDRICAL
COORDINATE SYSTEM

Another type of an orthogonal curvilinear coordinates system is
the elliptic cylinder. The coordinate surfaces are elliptic cylinders
(u = constant) and hyperbolic cylinders (v = constant) in the two
coordinate systems. Many problems are amenable to this type of
coordinate systems such as coils, solar, and heat concentrators,
metallurgical junctions, material flaw shapes, shells, fluid flow
past an obstacle [12—17]. The transformations to the Cartesian
coordinates from the elliptic cylindrical coordinates is listed in
Table 1, and are

x = acosh(u)cos(v), y=asinh(u)sin(v)

where a is the length of the semi-major axis of the ellipse. For
example, if an elliptical hole (Fig. 6) is cut in a region as we will
see in this section as an example, then it is more tractable to solve
the Laplace equation in the elliptic cylindrical coordinates. We
take the center of the coordinate system to be that of the hole. The
scale factors are given by

>restart:with(student):
>x:=a*cosh(u)*cos(v):
y:=a*sinh(u)*sin(v) :h[u] :=sqrt
(diff(x,u) " 2+diff(y,u) " 2):h[u]
:=simplify(h[u]):h[u] :=subs
(cosh(u) "2=1+sinh(u) "2,
cos(v)*2=1-sin(v)*2,h[ul):
hlul] :=simplify(h[ul,sqrt,
symbolic) ;

Ry := ay/sin(v)* + sinh(u)’
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Likewise, we obtain £,

hy := ay/sin(v)* + sinh(u)?

The Laplace equation in elliptic cylindrical coordinates,
assuming a =1, is

>with(linalg):
>eql:=1laplacian(phi(u,v),
[u,v],coords=elliptic):
eql :=numer (eql) ;

eql := (5‘%@5(14, v)) + (ai;(b(u, v))

Using separation of variables, we have ¢(u, v)= ¢;(u,

V)$a(u, v):

>eq2 :=subs(phi(u,v)=phi[1l]
(u)*phif[2](v),eql) : eq3:=
expand(eqg2) :eqd :=eq3*
(1/(phif[1] (u)*phif2](v))):
eqd :=expand(eqd) ;

? 0
e 2¢1( ) 02 2¢2(")
eqd = U v
by (u) b5 (v)

We end up with two differential equations for ¢;(u, v) and

(;52(14, V)'

eq4l :=diff (phil[1] (u),us$2)
—p"2*phil1] (u);

catt = (o 0n0)) ~Pont)

eq42 :=diff (phi[2](v),v$2)
+p-2*phi[2] (v);

2
cat2 = (3 0a0)) = PP0s(0)

The two boundary conditions labeled bcl and bc2 are such
that:

llEo

Vil BN
N O e T

/

Hole of elliptic shape

Figure 6 The shape of the elliptic hole which is illuminated with the
field Ey.

bcl:=subs(u=infinity,
phi(u,v))=phi[0] +E
[0]*sinh(u)*sin(Vv) ;

bel = ¢(o0,v) = ¢ + Ep sinh(u) sin(v)

bc2 :=subs(u=ul0],
D[ 1] (phi) (u,v))=0;

be2 .= D, (@)(M(), V) =0

Assuming that ¢(u, v) =Ag+ A, sinhusinv+ A coshsinv,
then enforcing the first boundary condition and since sin-
hu = coshu for large u, we have

eg5 :=phi(u,v)=_A0+_Al*
sinh(u)*sin(v) +_A2*cosh
(u)*sin(v) : egb :=subs
(u=infinity,_AO=phi[O0],
eg5):eq7 :=phi[0] +E[0]*
sinh(u)*sin(v) =phi[0] +
(_A1+_A2)*sinh(u)*sin(v);

eq7 : = ¢y + Epsinh(u) sin(v) = ¢,
+ (LAl + _A2) sinh(u) sin(v)

We assume that Ay = E, which is equal to the potential at
y =0 as shown in Figure 3. The second boundary condition gives

phi(u,v) :=_A0+_Al*sinh
(u)*sin(v) +_A2*cosh(u) *sin(v) :
eg8 :=diff (phi(u,v),u):

eqg8 :=subs(u=ul0],eq8)=0;

eq8 : = _Al cosh(u) sin(v)
+ _A2sinh(ug) sin(v) =0

So, now we can solve for the constants A; and A»:

eq9:=solve({eq7, eqg8},
{_Al,_A2});

Ey sinh(up)

s = 1= 7
eq {A cosh(ug) — sinh(ug)

B cosh(u)Ep
"~ cosh(ug) — sinh(uo)}

Substituting A; and A in the potential ¢(u, v), one obtains

eqlO :=subs(_AO0=phi[0],eqg5):
eqll :=subs(eg9,eql0) ;

E, sinh(u0) sinh(u) sin(v)
11:= ¢y —
e %0 cosh(u0) — sinh(u0)
cosh(u0)Ey cosh(u) sin(v)
cosh(u0) — sinh(u0)

The electrostatic field E is the gradient of the potential, and
thus is given by

E(u,v) :=-grad(rhs(eqll),
[u,v],coords=elliptic);



__ Ey sinh(u0) cosh(u) sin(v)
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cosh(u0) E sinh(u) sin(v)

cosh(u0) — sinh(x0)

cosh(«0) — sinh(u0)

E(u,v):=—

__Ey sinh(u0) sinh(u) cos(v)

sinh(u)* + sin(v)?

cosh(u0) Ey cosh(u) cos(v)

cosh(u0) — sinh(u0)

cosh(u0) — sinh(u0)

1
1

sinh(u)? 4 sin(v)?

A field plot is shown Figure 7 reflecting the elliptic
cylindrical coordinate system.

APPLICATION OF THE PROLATE
SPHEROIDAL COORDINATES

In three dimensions, as shown in Table 1, there are a number of
three-dimensional coordinates. In here, we will give as an
example the case of the prolate spheroidal coordinates system
illustrated in Figure 8. This type of coordinates system has been
used extensively in many fields. For example, raindrops, dust
grains in plasma, molten regions in laser welding, ground rod
connection, conducting electrodes, ventricle, diatomic molecules,
hydrogen molecular ions, and biological cells [11,18—24]
are modeled as prolate spheroidal objects. As an example, the
shape of a football ball is a prolate spheroid. The transformation
to the Cartesian coordinates from the prolate spheroidal
coordinates is listed in Table 1. We will repeat here for the sake
of clarity:

x = d sinh(u) sin(v) cos(¢),

y = dsinh(u) sin(v) sin(¢), z = dcosh(u) cos(w)

where d is the focal length for the prolate spheroidal system.
However, we need to be aware that there are other equivalent

[

Figure 7 Field plot of E(u, v/Ey) which reflects the elliptic coordinate
system.

transformations. When £ = cosh(u), = cos v, then one gets

x=d\/(€ — 1)(1 —1P)cos(9),
y=d\/(& = 1)(1 —1P)sin(9),

where 1 <£<oo, —1<n<1,0<¢<2m.

To compute the volume and surface area in the prolate
spheroidal coordinate system, the Jacobian matrix associated
with the coordinate transformation must be calculated. The
Jacobian matrix elements are the partial derivatives of the
transformation from prolate spherical to Cartesian coordinates.
So, the infinitesimal change in volume is the determinant of the
Jacobian matrix:

z=dén

restart:with(student):
with(linalg) :with (PDEtools) :
T:=[d*sinh(u)*sin(v)
*cos(phi),d*sinh(u)*sin(v)
*sin(phi) ,d*cosh(u)
*cos(v)]:J:=jacobian

(T, [u,v,phi]):dV:=simplify
(det(J))*d(u)*d(v)*d(phi);

dV : = d® sin(v) sinh(u)(cosh(x)*
— cos(v)?) d(u) d(v) d(¢)

Similarly, for the computation of surfaces, we need to
compute the two-dimensional Jacobian matrix in the desired
direction.

f=cos(x [12)
n=1 7=cos ([ 6)
n=cos(xf4)
n=cos(x[3)
n=cos(5x/12)
=0
| " > ¥
the surface = &, —
n=—cos( 5x/12)
n==cos(x[3)
n=-1 n=—cos(7 [4)
n=-cos(x/6)
n=-cos(x [12)

Figure 8 Prolate spherical coordinates. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]



374 ELKAMEL, BELLAMINE, AND SUBRAMANIAN

In this section, we want to obtain an expression for the
equilibrium temperature distribution of a metal spheroid. Let us
suppose that because of an internal heating system within the
spheroid (£ =¢;), its surface temperature is

U =10+ 30cos’p

The prolate spheroid made of metal is immersed in a large
container filled with insulating powder. The ambient temperature
is 20°C. So, basically, we need to solve for the Laplace equation
in prolate spheroidal coordinates:

eqgl:=1laplacian(psi(xi,
eta,phi), [xi,eta,phil],
coords=prolatespheroidal(a)):
eq2 :=expand(eql) :

 coth(&) (FV(€,1.0))
'7a2(sinh(§)z + sin(n)z)
L&, 9)
a?(sinh(€)* + sin(n)?)
cot(n) <5%] V(& m, ¢))
a2 (sinh(€)? + sin(n)?)
ZV(En, ¢)
+
a(sinh(&)” + sin(y)*) sin(y)” sinh(¢)*

eq2

%\L’(& 7, 9)
a2 (sinh(€)? + sin(n)?)

The system of prolate spheroidal coordinate is separable. So
writing the dependent variable \W(&, ), ¢) as the product of three
functions E(&)H(n)P(¢) will split the Laplacian equation in three
ordinary differential equations:

eqg3 :=subs(psi(xi,eta,
phi) =Xi(xi)*Eta(eta)
*Phi(phi),eq2):

eqgqd :=eq3*(1/(Xi(x1i)
*Eta(eta)*Phi(phi))):
eqgd :=expand(eqgd) :eqgd :
=expand(a“2*eqg4) ;

The three differential equations are:

2
odel := (8%2(1)(@)) +¢*D(¢) =0

a2 = ([fn—ZHm)) +cott) (1)

+ (p(p T+ qu(;)2> H(n) = 0

2

eqd3 = (% =(©)) + com(e) (5 =(6))

(p(erl)Jr.q2

smh(§)2> =) =0

q and p are the introduced separation variables. The differential
equations in H(n) and Z(§) are transformed using the following

change of variables:

A(€) := cosh(¢)

u(n) := cos(n)

Then, we will get the following differential equations:

eg430 :=changevar (Xi(xi) =
f(lambda(xi)),eq43):eq431:
=numer (simplify (subs(lambda
(xi) =cosh(xi),eq430))):eq432:
=subs(cosh(xi)=1ambda,eq431):
eq432 :=convert(eq432,diff):
eg432a:=collect(eqg432,diff (f
(lambda) , lambdas$2) ) :eq432b:
=collect(eqg432,diff (f(lambda),
lambda) ) :eqg432c:=collect
(eq432,f(lambda)):a:=factor
(1+lambda“4-2*lambda"2):b:
=factor (2*lambda”3-2*lambda) :
fac:=1-lambda"2:al:=simplify
(a/fac):bl:=simplify(b/fac):c:
=simplify((p"2*lambda"2-p"2+p
*lambda“2-p-q*2)/fac):cl:
=collect(c,p”2):0de3 :=al*diff
(f(lambda) ,lambdas$2) +bl*diff
(f (lambda) ,lambda) +cl*f (lambda) ;

ode3 == (1 — xz)(aa—;f(%))

2

-1

—2k<%f(7»)) + (p(p-l— 1)+ )f(%)

and the same Maple technique is used for the equation in H(n),

ode2 := (1 — ) (aa—:zg(u)> —2u (a%g(u))
o+ 1+ 25 et

So, we need to solve the differential equations labeled above
by odel, ode2, and ode3. We rename, respectively, fand g to Z(§)
and H(n).

Phi:=rhs(dsolve(odel,
Phi(phi)));alias(P=LegendreP,
Q=LegendreQ) : f :=rhs(dsolve
(ode3,f(lambda)));g:=rhs
(dsolve(ode2,g(mu))):
Xi:=subs(lambda=cosh(xi),f)
:Eta:=subs(mu=cos(eta),qg);

@ := _Clsin(g¢) + _C2cos(gep)
E:=_C1Q(p,q,cosh(&)) + _C2P(p,q,cosh(¢))
H:= _C1P(p,q,cos(n)) + -C2Q(p, q,cos(n))

where _C1 and _C2 are constants. We notice that both Z(¢) and
H(n) solutions are functions of associated Legendre functions of
the first and second kind.

The solution (&, 1, ¢) has axial symmetry about the z-axis
and so it is independent of ¢ and is given by W(&, 7,
¢)=E(&)H(n). Let the boundary conditions be W(&, &,
n)=M(n)=10+30cos?n, and hence p=cosy ranges only



between —1 and 1. The associated Legendre functions of
the second kind Q,(cosn) are unbounded for p=1, and so the
solution W(¢, 1) depends only on the associated Legendre
functions of the first kind illustrated in Figure 9 and has the form
P,(cosn)P,(cosh &), in other words:

N:=infinity;Psi(xi) :=sum(’A[i]
*P(1i,mu)*(P(i,cosh(mu))/
P(i,cosh(xi0)))’,’i’=0...N);

 =A; P(i,p) P(i, cosh(£))
¥E)= ; P(i,cosh(£0))

Enforcing the boundary condition that (&, &y, 1) =M(n),
one obtains

Psi(xi) :=sum(’A[i]*P
(i,mu)*(P(i,cosh(xi)) /P
(i,cosh(xi0)))’,"i’=0...N):
M(mu) :=subs(xi=x1i0,Psi(x1i));

MG = > AP
=0

But, when we truncate N to 5,

M(p) : = Ao+ Aipn+AP(2, 1) + A3P(3, )

and so to compute A,, we will have to perform the following
computation:

an=(n3) [ 11 M()P, (1) du

> for ifromOtol0OdoA[i] =evalf
((140.5)*int ((10+30*mu"2)
*P(i,mu),mu=-1...1)); od;

\ 15—

-

0.5

-1.5-

Figure 9 Legendre polynomials of the first kind Py(x)...Ps(x).
[Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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Figure 10 Temperature ¥(n) for £ = 2.

Ap =20.0,A; = 0,4, = 20.00000000
+0.1,A3 =0+0.1, Ay =—-0450x 107"
+0.1,As =0+0.1

Then, substituting the coefficients A, into the solution W(¢,
1), one gets

soll:=subs(A[0]=20,A[2]
=20,A[1]1=0,A[3]1=0,A[5]
=0,A[4]=0,mu=cos(eta),
Psi(xi));

20P(2,cos(n))P(2,cosh(€))

11 =20
50 + P(2, cosh(€0))

whose solution (&, n) is illustrated in Figure 10 for £ =2.

CONCLUSION

In this paper, examples of solving problems in coordinate systems
other than the most famous Cartesian, polar, and spherical
coordinates are given. In this article, we gave examples in the
two-dimensional bipolar and elliptic cylindrical coordinates, and
the three-dimensional prolate spheroidal coordinates. Maple
proved to be very useful tool to perform the required trans-
formations from one coordinate system to another, to simplify
expressions, to manipulate the mathematical expressions, and to
plot the solutions. The techniques used in this paper apply to other
coordinate systems such as the parabolic cylindrical coordinates,
conical coordinates, parabolic coordinates, oblate spheroidal
coordinates, ellipsoidal coordinates, bispherical coordinates, and
toroidal coordinates. The boundaries involved in solving the PDE
provide us with the clue of the coordinate system to be used.
Transforming the PDE to one of these coordinates makes the
solution more tractable. For example, we saw that for the case of
boundaries consisting of two circles, the most appropriate
coordinate system to use is the bipolar coordinates. The
aforementioned coordinates are the most commonly used because
they are separable coordinates. In other words, the method of
separation of variables can be used to solve the PDE. However,
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one needs to be aware that there are other coordinate systems such
as the hyperbolodoidal, the exponential, and the three-dimen-
sional bipolar coordinates, which are not considered as separable
coordinates, and they are currently the focus of our endeavors.
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