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Many researchers have worked to develop methods to analyze and characterize capacity fade in lithium-ion batteries. As a comple-
ment to approaches to mathematically model capacity fade that require detailed understanding of each mechanism, capacity fade
was accurately and efficiently predicted for future cycles using a discrete approach by extrapolating the change in effective trans-
port and kinetic parameters with cycle number (N) for a battery tested under controlled experimental conditions. The effective pa-
rameters and their uncertainties are estimated using a mathematical reformulation of a porous electrode model, whose
computational efficiency enables the integration of the proposed approach into an inexpensive microprocessor for estimating the
remaining lifetime of a battery based on past charge-discharge curves. The approach may also provide some guidance for design-
ers as to which battery components to focus on for redesign to reduce capacity fade.
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Electrochemical power sources appear in applications in automo-
biles, power storage, military, mobile applications, and space. Lith-
ium-ion chemistry has been identified as a preferred candidate for
high-power/high-energy secondary batteries. Significant progress
has been made in developing lithium-ion battery models that incor-
porate transport phenomena, electrochemical kinetics, and thermo-
dynamics.1–8 While these models have been used to produce reliable
predictions for a small number of cycles, their ability to predict the
reduction in capacity during cycling is limited. Different mecha-
nisms causing capacity fade include (i) capacity fade during forma-
tion cycles, (ii) overcharging, which results in a decrease in capacity
in both positive and negative electrodes and the electrolyte, (iii)
decomposition of the electrolyte during the reduction process, (iv)
self-discharge depending on the purity of materials used in manufac-
turing, and (v) formation of a passive film on the electrode that
grows in thickness as the cycle number increases.5,7 Figure 1 shows
the region in which each phenomenon occurs within a battery. Table
I lists some of the mechanisms causing capacity fade and the possi-
ble parameters that could be affected in a pseudo-2D porous-elec-
trode-based model of a lithium-ion battery.

In some recent work, Safari et al.9,10 assessed the possibility of
using a mechanical-fatigue life-prognostic method for the life pre-
diction of lithium-ion batteries. This method was successfully dem-
onstrated for predicting the capacity loss but is limited by the choice
between the time frame of the aging experiments and the life-predic-
tion accuracy. In addition, the method is an empirical tool, which
has its own limitations. Yoshida et al.11 fabricated a lithium-ion cell
with 5-Ah capacity, fitted experimental data on the thickness of the
SEI layer growth, and demonstrated that their empirical fit predicted
the life under certain conditions. Other recent efforts have devel-
oped more efficient simulation techniques for phenomenological
models of capacity fade.4,12 A complete phenomenological model
for capacity fade has not been forthcoming due to (i) incomplete
understanding of all of the capacity fade mechanisms, (ii) lack of
knowledge for the values of the model parameters in these mecha-
nisms, (iii) difficulties in obtaining these parameter values due to cu-
mulative non-separable effects of individual mechanisms occurring
simultaneously, and (iv) numerical inability and lack of efficient nu-
merical solvers to be able to solve the complex models efficiently

with proper state detections. Oftentimes in the quest for adding
detailed mechanisms, researchers have neglected important electro-
chemical/transport phenomena typically in porous electrode-based
battery models. For example, researchers have employed simpler
single-particle models or empirical fits that neglect important elec-
trochemical/transport phenomena to accommodate the increased
complexity of capacity fade mechanisms. Today very few phenome-
nological models include mechanisms for capacity fade in Li-
ion batteries8,12 and no models include all of the postulated
mechanisms.

This paper proposes an alternative approach to the estimation of
the life of a battery, which uses voltage-discharge curves measured
during initial cycles to predict voltage-discharge curves during later
cycles. A model reformulation4 is employed to efficiently extract
the effective kinetic and transport parameters from experimental
data, with uncertainties in parameters and model predictions quanti-
fied using established analysis techniques. The next sections
describe the lithium-ion battery model used in this study, the numer-
ical algorithms used to implement the discrete approach to capacity
fade prediction, the results and discussion, and the conclusions.

Lithium-Ion Battery Model and Simulation

Phenomenological battery models typically solve electrolyte
concentration, electrolyte potential, solid-state potential, and solid-
state concentration in the porous electrodes and electrolyte concen-
tration and electrolyte potential in the separator regions.1,2 These
models are represented by coupled nonlinear partial differential
equations in one, two, or three dimensions, are typically solved
numerically, and require a few seconds to minutes to simulate.
Simulation of lithium-ion battery models requires simultaneous
evaluation of concentration and potential fields, both in the solid
and electrolyte phases. The porous nature of the battery electrodes
leads to highly nonlinear and heterogeneous electrochemical reac-
tion kinetics. A pseudo-two-dimensional (P2D) model developed by
Doyle et al.6 is considered in this work. The governing equations in
the full physics-based P2D model for the five variables U1, U2, c,
cave

s , and jp that vary with x are given in Table II. Usually lithium-
ion battery models are numerically simulated by finite-difference
discretization of all the variables in the spatial coordinates. The dis-
cretization of the cathode, separator, and anode into 50 equally
spaced node points would result in 600 Differential Algebraic Equa-
tions (DAEs) to be solved in the finite difference model, which is
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impractical for real-time simulation. Parameter estimation and opti-
mization of lithium-ion battery, where the life and health of the bat-
tery is vital to the operation of the device, requires quick-solving
models that can give an accurate account of the battery variables. A
model reformulation4 of the P2D model6 was developed by exploit-
ing the mathematical structure of the DAEs while conserving mass,
charge, and current in each electrode and having much lower mem-
ory requirements and computational costs compared to standard fi-
nite-difference methods. The details on the reformulation of the
P2D model are provided elsewhere.4

The accuracy and simplicity of the reformulated model enables
an easy computation of parameter sensitivities and even numerical
jacobians are likely to be more accurate and stable compared to the
direct finite-difference method applied to the original P2D model.
These features of the model reformulation were utilized during the
parameter estimation described in Parameter estimation section to
extract effective kinetic and transport parameters from experimen-
tally measured voltage-discharge curves. The reformulated model
also enabled the application of the Markov Chain Monte Carlo
(MCMC) method, as described in Uncertainty quantification sec-
tion, to quantify the magnitude of uncertainties in the model
parameters.

Numerical Algorithms

This section describes the discrete approach to capacity fade pre-
diction and the parameter estimation and uncertainty quantification
methods used in the implementation of the discrete approach.

Discrete approach to capacity fade prediction.— This paper
reports a discrete parameterized approach to predict capacity fade in
Li-ion batteries. The variations in effective transport and kinetic pa-
rameters are tracked with discharge curves at different cycles as
described in Parameter estimation section. The estimated parameters
were the effective diffusion coefficient of lithium ion in the solution
phase (D1), effective diffusion coefficient of lithium in the solid
phase for the negative and positive electrodes (Dsn and Dsp), and

electrochemical reaction rate constants for the negative and positive
electrodes (kn and kp). Note that the effective diffusion coefficient
through porous media is a function of a species’ molecular diffusion
coefficient and the porosity, tortuosity, and constrictivity of the
media,13 which change as a battery ages, so that the effective diffu-
sion coefficient changes with cycle #. The electrochemical rate con-
stants are also effective, in that they are a function of the true elec-
trochemical rate constant and the surface area available for
electrochemical reaction, which will decrease as alloys are formed
on the electrode surface that block or hinder electrochemical reac-
tion. In an application to a U.S. Government battery, Results and
Discussion section demonstrates that power-law extrapolation of the
change in the effective transport and kinetic parameters predicted
the future voltage-discharge curves and the life of the battery.

Uncertainty quantification methods are applied to avoid over-
fitting of the model parameters to the experimental data. Uncer-
tainties in the effective model parameters are quantified as
described in Uncertainty quantification section, and used to reduce
the set of estimated model parameters to include only those pa-
rameters that can be estimated with sufficient accuracy from the
experimental data. Uncertainties in the model predictions are also
quantified, with the 95% predictive intervals for future cycles
compared with the experimental data in Results and Discussion
section.

Parameter estimation.— The model parameter estimates were
obtained by the solution of a nonlinear optimization that minimizes
the sum-of-squared differences between the model outputs and their
experimentally measured values for each cycle i14–16

min
hi

Xni

j¼1

yiðtjÞ � ymodel;iðtj; hiÞ
� �2

[1]

where yiðtjÞ is the measured voltage at time tj for cycle i,
ymodel;iðtj; hiÞ is the voltage computed from the reformulated model
at time tj for cycle i for the vector of model parameters hi (the five
parameters being the effective solid-phase diffusion coefficient and

Figure 1. A schematic of some capacity
fade mechanisms postulated in a Li-ion
battery.

Table I. List of capacity fade mechanisms and possibly affected parameters in a pseudo-2D model.

Mechanism of capacity fade Possible affected parameters

Capacity fade during formation cycles xp0, xn0, ep, en, Dsp, Dsn, kp, kn

Overcharging that results in decrease in capacity in both positive and negative electrodes Dsp, Dsn, kp, kn

Decomposition of the electrolyte during the reduction process D1, kp, kn

Self-discharge depending on the purity ofmaterials used in manufacturing Dsp, Dsn, kp, kn

Formation of a passive film on the electrode that grows in thickness as the cycle number increases ks, Rfilm

Loss of active material during cycling xp0, xn0, ep, en, ef,p, ef,n
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reaction rate constant in each electrode and solution-phase diffusion
coefficient of the electrolyte), and ni is the number of time points in
cycle i. Solving the optimization [1] is known in the literature as
least-squares estimation.14–16 Many numerical algorithms are avail-
able for solving the nonlinear optimization [1], such as the steepest
descent, Gauss-Newton, and Marquardt methods.14 In this work, the
Gauss-Newton method14 was applied to estimate parameters using
the reformulated model. For the least-squares estimation, this Jaco-
bian-based method is an iterative process that reduces the sum-of-
squared differences between the model outputs and the experimental
data points until the error is no longer significantly reduced.

Uncertainty quantification.— Uncertainties in the model parame-
ter estimates were quantified by three methods: (i) estimation of
hyper-ellipsoidal 95% confidence regions by applying Chi-squared
statistics to a Taylor series expansion between the model parameters
and the model outputs,15,16 (ii) estimation of 95% confidence
regions by applying F-statistics to the parameter estimation objec-
tive function [1],15,16 and (iii) estimation of probability distributions
using the Markov Chain Monte Carlo (MCMC) method.17,18 The
first two methods, which are the most commonly applied in the liter-
ature, gave highly inaccurate confidence regions for this application,
whereas the MCMC method is a very accurate method for uncer-
tainty quantification for any application. The MCMC method
employs a Monte Carlo sampling method to numerically construct
the probability distribution for each model parameter and cycle i
from the posterior distribution for the parameter estimates obtained
using Bayes’ rule17,18

PrðhijYiÞ ¼
PrðYijhiÞ PrðhiÞ

PrðYiÞ
[2]

where Yi was the vector obtained by stacking the voltage measure-
ments yiðtjÞ, PrðhiÞ is the prior distribution of hi which was specified
as a uniform distribution with a width of 20% centered at the param-
eters estimated using the least-squares method [1], PrðYijhiÞ is the
likelihood of obtaining the data Yi given parameters hi, and PrðYiÞ is
a normalization constant so that the posterior distribution PrðhijYiÞ
integrates to unity. The term PrðYijhiÞ, which is known as the likeli-
hood function, for this application is

Yn i

j¼1

1ffiffiffiffiffiffi
2p
p

re
exp

ðyiðtjÞ � ymodel;iðtj; hiÞÞ2

2r2
e

 !
[3]

where re ¼ 0:01V was the standard deviation of the voltage mea-
surement noise. The probability distribution for each model parameter
is equal to integrals of the posterior distribution [2] over the other
model parameters. Unlike the conventional Monte Carlo method for
computing integrals,19 the samples in the MCMC method are corre-
lated; generating what is known as a Markov chain, whose probability
distribution approaches the probability distribution for each parame-
ter. More detailed descriptions are provided in the Refs. 17 and 18.

Other advantages of the MCMC method are its explicit consider-
ation of constraints and arbitrary non-Gaussian distributions for

Table II. Governing equations for a lithium-ion battery (published as Table 1 of Ref. 4).

Region Eq. # Governing equations Boundary conditions

Positive electrode T1 ep
oc
ot ¼ Deff ;p

o2c
ox2 þ ap 1� tþð Þjp �Deff ;p

oc

ox

����
x¼0

¼ 0 &� Deff ;p
oc

ox

����
x¼lp ;�

¼ �Deff ;s
oc

ox

����
x¼lp ;þ

initial conditioncjt¼0¼ c0

T2 �reff ;p
oU1

ox � jeff ;p
oU2

ox þ
2jeff ;pRT

F 1� tþð Þ o ln c
ox ¼ I �jeff ;p

oU2

ox

����
x¼0

¼ 0 &� jeff ;p
oU2

ox

����
x¼lp ;�

¼ �jeff ;s
oU2

ox

����
x¼lp ;þ

T3 reff ;p
o2U1

ox2 ¼ apFjp oU1

ox

����
x¼0

¼ � I

reff ;p
& U1 ¼ 4:2

T4 d
dt cave

s þ 3
jp
Rp
¼ 0 &

Ds;p

Rp
csurf

s � cave
s

� �
¼ � jp

5
cave

s

��
t¼0
¼ cs;max;p

Separator T5 es
oc
ot ¼ Deff ;s

o2c
ox2 �Deff ;p

oc

ox

����
x¼lp ;�

¼ �Deff ;s
oc

ox

����
x¼lp ;þ

&� Deff ;s
oc

ox

����
x¼lpþls ;�

¼ �Deff ;n
oc

ox

�����
x¼lpþls ;þ

T6 I ¼ �jeff ;s
oU2

ox þ
2jeff ;sRT

F 1� tþð Þ o ln c
ox � jeff ;p

oU2

ox

����
x¼lp ;�

¼ �jeff ;s
oU2

ox

����
x¼lp ;þ

&� jeff ;s
oU2

ox

����
x¼lpþls ;�

¼ �jeff ;n
oU2

ox

����
x¼lpþls ;þ

Negative electrode T7 en
oc
ot ¼ Deff ;n

o2c
ox2 þ an 1� tþð Þjn � Deff ;s

oc

ox

����
x¼lpþls ;�

¼ �Deff ;n
oc

ox

����
x¼lpþls ;þ

&� Deff ;n
oc

ox

����
x¼lpþlsþln

¼ 0

initialconditioncjt¼0¼ c0

T8 �reff ;n
oU1

ox � jeff ;n
oU2

ox þ
2jeff ;nRT

F 1� tþð Þ o ln c
ox ¼ I � jeff ;s

oU2

ox

����
x¼lpþls ;�

¼ �jeff ;n
oU2

ox

����
x¼lpþls ;þ

&
oU2

ox

����
x¼lpþlsþln

¼ 0

T9 reff ;n
o2U1

ox2 ¼ anFjn �reff ;n
oU1

ox

����
x¼lpþls

¼ 0 &
oU1

ox

����
x¼lpþlsþln

¼ � I

reff ;n

T10 d
dt cave

s þ 3 jn
Rn
¼ 0 &

Ds;n

Rn
csurf

s � cave
s

� �
¼ � jn

5
cave

s

��
t¼0
¼ cs;max;n
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prior knowledge on the parameters, and that it exactly handles the
full nonlinearity in the model equations. For an accurate quantifica-
tion of the uncertainties, the MCMC method requires many simula-
tion runs, which was facilitated by use of the reformulated model.

The effect of the parameter uncertainties on the accuracy of the
predictions of the lithium-ion battery model was also quantified.
Although the reformulated model was computationally efficient
enough for the standard Monte Carlo method to be applied to quan-
tify the accuracy of the model predictions, the computational cost
was further reduced by replacing the reformulated model with a poly-
nomial series expansion20,21 during the computation of the prediction
intervals. The application of this approach to electrochemical and
materials systems is described in great detail in the literature.22–25

Results and Discussion

The experimental data for the analysis were obtained for U.S.
Government BTE cells and chemistry.26,27 Five effective transport
and kinetic parameters were estimated by applying least-squares
estimation to the U.S. Government BTE cells experimental voltage-
discharge data. The standard finite-difference model and the refor-
mulated model gave the same voltage-discharge curves at cycle 0
(see Fig. 2). Using the model parameters at cycle 0 as an initial
guess, Fig. 2 compares the experimental voltage-discharge curve at
cycle 25 with the reformulated model output obtained using five
model parameters fit by least-squares estimation to that experimen-
tal data set. Similar parameter estimations and fits were obtained for
later cycle numbers (50 and 100n where n¼ 1. . .10).

The expected monotonic reduction in capacity with cycle # is
shown in the voltage-discharge curves obtained by fitting the five
model parameters to experimental data (see Fig. 3a). The mecha-
nisms of capacity fade and its overall reduction in battery perform-
ance (see Fig. 1) suggest that all five effective model parameters
should decrease monotonically with cycle #. The effective negative-
electrode solid-phase diffusion coefficient and reaction rate constant
(Dsn and kn) decrease monotonically with cycle #, whereas the other

three parameters did not follow any particular trend (see Fig. 3a).
This suggested that the voltage-discharge curves may not contain
sufficient information to accurately estimate the effective values of
D1, Dsp, and kp, and that the change in the voltage-discharge curves
with cycle # could be captured by estimation of only the effective
solid-phase diffusion coefficient Dsn and reaction rate constant kn

for the negative electrode. The voltage-discharge curves could be fit
using just the two model parameters Dsn and kn, which had to signif-
icantly change their values to be able to fit the voltage-discharge
curves at higher cycle number (see Fig. 3b).

An initially surprising observation was that, when only two model
parameters were fit, the effective reaction rate constant kn was not
monotonically decreasing with cycle # between cycle 0 and cycle 25
(see Fig. 3b). This observation motivated a more detailed analysis by
application of sensitivity analysis and the MCMC method. The volt-
age-discharge curves were very sensitive to the value of the effective
solid-phase diffusion coefficient Dsn but weakly sensitive to devia-
tions in the model parameters D1, Dsp, kp, and kn from their nominal
values, resulting in large uncertainties in their values when fit to

Figure 2. (Color online) Comparison of voltage-discharge curves from the
battery models with the experimental data, with five model parameters
obtained from least-squares estimation applied to the experimental data for
cycle 25. The voltage-discharge curve for cycle 0, which was the same for the
finite-difference model and reformulated model, was used as the initial guess.

Figure 3. (Color online) Voltage-discharge curves for the U.S. Government
BTE cells with model parameters obtained from least-squares estimation
applied to the experimental data for (a) five parameters, (b) two parameters.
The voltage-discharge curves for the models fall on top of the experimental
data so only one set of curves are plotted. The curves shift towards the left
monotonically as the cycle # increases.

Table III. Estimated uncertainty ranges for the four least-sensitive battery model parameters.

Cycle # Dsp kn D1 kp

1 [�60%,þ 20%] [�60%,þ 20%] [�60%,þ 20%] [�10%,þ 10%]

100 [�60%,þ 20%] [�60%,þ 20%] [�20%,þ 60%] [�10%,þ 10%]

200 [�60%,þ 30%] [�60%,þ 20%] [�20%,þ 40%] [�10%,þ 10%]

300 [�30%,þ 60%] [�20%,þ 60%] [�30%,þ 60%] [�10%,þ 10%]

500 [�60%,þ 60%] [�20%,þ 20%] [�60%,þ 60%] [�10%,þ 10%]

600 [�60%,þ 30%] [�20%,þ 20%] [�60%,þ 10%] [�10%,þ 10%]

1000 [�20%,þ 60%] [�10%,þ 60%] [�20%,þ 60%] [�5%,þ 5%]
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experimental voltage-discharge curves (see Table III). The nominal
estimate of the effective solid-phase diffusion coefficient Dsn monot-
onically decreases with increased cycle number (see Fig. 3b), with
the nominal estimates being highly accurate according to the proba-
bility density function (pdf) computed by the MCMC method (see
Fig. 4). The pdfs for Dsn at different cycle numbers have minimal
overlap, providing very high confidence that the monotonic reduction
of the effective solid-phase diffusion coefficient with increase cycle
number is statistically significant. That the voltage-discharge curves
were much sensitive to a negative-electrode parameter (Dsn) suggests
that mechanisms for capacity fade in the negative electrode, rather
than the electrolyte or positive electrode, were the most important for
this battery under these operating conditions. The pdfs of the other
model parameters are sufficiently broad (see Table III) that an
observed increase in a model parameter from one cycle to the next,
as seen in Fig. 3b, may not be statistically significant.

The overall trend in the variation of model parameters is more
reliably assessed by plotting nominal estimates over many cycles. A
discrete approach was adopted for the prediction of capacity fade by

tracking the change in effective transport and kinetic parameters
with cycle number (N). Figure 5 shows the variation with cycle
number of the effective diffusion coefficient Dsn and electrochemi-
cal reaction rate constant kn for the negative electrode. Power laws
are commonly used to fit the decay of a property,28 which motivated
the estimation of the model parameters and computation of the volt-
age-discharge curve at cycle 600 by extrapolation of power-law fits
for the variations in each model parameter as a function of cycle
number for 25, 50, 100, and 200. The mathematical model produces
accurate predictions of the voltage-discharge curve at cycles 500
and 600 (see Figs. 5 and 6).

The model parameters Dsn and kn fit to the experimental data for
cycles 50, 100, 200, 300, 400, and 500 were used to predict the
remaining battery life based on voltage-discharge curves measured in
past cycles. To characterize the degradation in the model parameters,
a power law was fit to the estimated parameter values from cycles
25–500 similar to what was done for least-squares estimation. Implic-
itly assuming that the changes in the parameter values are the result
of the same mechanism in later cycles, the parameter values for the
subsequent cycles were predicted using the power-law expressions.
The voltage-discharge curve predicted by this model was in very

Figure 4. (Color online) Probability density function (pdf) for the effective
solid-phase diffusion coefficient Dsn at the negative electrode as a function
of cycle number determined by the MCMC method.

Figure 6. (Color online) Comparison of the experimental voltage-discharge
curve with the model prediction with estimated parameters for cycle 500.
Each red dot is a data point, the blue line is the model prediction, and the
95% predictive intervals were computed based on the parametric uncertain-
ties quantified by pdfs of the model parameters.

Figure 5. (Color online) Variations in the
effective solid-phase diffusion coefficient
Dsn and electrochemical reaction rate con-
stant kn at the negative electrode. The
inset plot compares the experimental data
at cycle 600 with model prediction in
which model parameters were extrapo-
lated from power-law fits to model param-
eters estimated only up to cycle 200.
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good agreement with the experimental data at cycle 1000 (see Fig. 7),
indicating that the model was able to predict capacity fade.

Conclusions

The effective solid-phase diffusion coefficients and electrochem-
ical reaction rate constants in positive and negative electrodes and
the effective electrolyte diffusion coefficient were estimated and
tracked as a function of cycle #. The mathematical analysis indi-
cated that (i) nearly all of the variation in voltage-discharge curves
could be explained by changes in only the two model parameters
associated with transport and electrochemical kinetics in the nega-
tive electrode (Fig. 3b), and (ii) the monotonic reduction in the esti-
mated effective solid-phase diffusion coefficient in the negative
electrode due to capacity fade was due to actual changes in the
model parameter rather than uncertainties in the parameter estima-
tion resulting from limited parameter identifiability and limited data
(Fig. 4). After characterizing uncertainties in the parameters (Table
III), the effects of the parameter uncertainties on the voltage-dis-
charge curve were quantified (Fig. 6). Small prediction intervals, as
well as comparisons of model predictions with experimental data
(Figs. 5–7), provided confidence in the ability of the model to pre-
dict capacity fade. Tracking cycle-dependent variations in the effec-
tive values for transport and electrochemical kinetics is valid only
for a particular protocol of galvanostatic charge and discharge, and
is not appropriate for use in the design of lithium-ion batteries with
reduced capacity fade.

The proposed approach is appropriate for estimating the lifetime
of a lithium-ion battery from past measured voltage-discharge
curves. This study considers a battery operating for a consistent set
of conditions; it would be useful to assess whether the approach is
useful for time-varying discharge conditions (within an allowable
window of operations). The proposed approach is computationally
efficient enough that it could be integrated into an inexpensive
microprocessor for estimating the remaining battery lifetime, based
on minimum requirements on the voltage-discharge curve for the
battery to be useful in its application. The proposed approach can
also provide guidance as to which battery components are likely the
primary causes for capacity fade for a battery operating within a
specified window of operating conditions. For example, in this study
the voltage-discharge curves were sensitive to the negative-elec-
trode parameters which suggested that the capacity fade mecha-
nisms in the negative electrode have a more pronounced effect on
the voltage-discharge curves. A designer working to improve the
battery designed for this operating condition would focus on modifi-
cation of the negative-electrode parameters (e.g., geometries, poros-
ity) to reduce the capacity fade.
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List of Symbols

ai specific surface area of electrode i (i ¼ p, n), m2/m3

bruggi Bruggman coefficient of region i (i¼ p, s, n)

c electrolyte concentration, mol/m3

c0 initial electrolyte concentration, mol/m3

cs,i concentration of lithium ions in the intercalation particle of electrode i

(i¼ p, n), mol/m3

cs,i,0 initial concentration of lithium ions in the intercalation particle of elec-

trode i (i¼ p, n), mol/m3

cs,max,I maximum concentration of lithium ions in the intercalation particle of

electrode i (i¼ p, n), mol/m3

Di electrolyte diffusion coefficient, m2/s

Ds,i lithium ion diffusion coefficient in the intercalation particle of electrode

i (i¼ p, n), m2/s

F Faraday’s constant, C/mol

I applied current density, A/cm2

i1 solid-phase current density, A/m2

i2 solution-phase current density, A/m2

i0,s exchange current density for the solvent reduction reaction, A/m2

js solvent reduction current density, mol/m2s

ji wall flux of Liþ on the intercalation particle of electrode i (i¼ n, p),

mol/m2s

ki intercalation/deintercalation reaction rate constant of electrode i (i¼ p,

n), mol/(mol/m3)1,5

li thickness of region i (i¼ p, s, n), m

Ms molecular weight of the solvent reaction product, g/mol

n negative electrode

N cycle number (dimensionless)

p positive electrode

r radial coordinate, m

R universal gas constant, J/(mol�K)

Rfilm Initial SEI layer resistance at the negative electrode, X�m2

Ri radius of the intercalation particle of electrode i (i¼ p, n), m

s Separator

tþ Li þ transference number in the electrolyte

T absolute temperature, K

Ui open-circuit potential of electrode i (i¼ p, n), V

Us standard potential of the solvent reduction reaction, V

X spatial coordinate, m

xi0 initial state of charge at the electrode

d thickness of the solvent reduction product film, m

d0 initial thickness of the solvent reduction product film, m

ei porosity of region i (i¼ p, s, n)

ef,i volume fraction of fillers of electrode i (i¼ p, n)

gi overpotential driving a reaction, V

gs overpotential driving the side reaction, V

j ionic conductivity of the electrolyte, S/m

jeff,i effective ionic conductivity of the electrolyte in region i (i¼ p, s, n), S/m

A1 solid-phase potential, V

A2 electrolyte-phase potential, V

qs density of the solvent reduction product film, g/m3

ri electronic conductivity of the solid phase of electrode i (i¼ p, n), S/m

reff,i effective electronic conductivity of the solid phase of electrode i (i¼ p,

n), S/m

hi dimensionless concentration of lithium ions in the intercalation particle

of electrode i (hi¼ cs,i/cs,max,i)
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