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Optimal charging profiles for mechanically
constrained lithium-ion batteries
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The cost and safety related issues of lithium-ion batteries require intelligent charging profiles that can

efficiently utilize the battery. This paper illustrates the application of dynamic optimization in obtaining

the optimal current profile for charging a lithium-ion battery using a single-particle model while

incorporating intercalation-induced stress generation. In this paper, we focus on the problem of

maximizing the charge stored in a given time while restricting the development of stresses inside the

particle. Conventional charging profiles for lithium-ion batteries (e.g., constant current followed by

constant voltage) were not derived by considering capacity fade mechanisms. These charging profiles

are not only inefficient in terms of lifetime usage of the batteries but are also slower since they do not

exploit the changing dynamics of the system. Dynamic optimization based approaches have been used

to derive optimal charging and discharging profiles with different objective functions. The progress

made in understanding the capacity fade mechanisms has paved the way for inclusion of that

knowledge in deriving optimal controls. While past efforts included thermal constraints, this paper for

the first time presents strategies for optimally charging batteries by guaranteeing minimal mechanical

damage to the electrode particles during intercalation. In addition, an executable form of the code has

been developed and provided. This code can be used to identify optimal charging profiles for any

material and design parameters.

1 Introduction

Lithium-ion chemistries are more attractive for many applica-
tions due to high cell voltage, high volumetric and gravimetric
energy density (100 Wh kg�1), high power density (300 W kg�1),
a good temperature range, a low memory effect, and a relatively
long battery life.1–3 Capacity fade, underutilization, and thermal
runaway are the main issues that need to be addressed in order
to use a lithium-ion battery efficiently and safely for a long time.

In order to address the above mentioned issues and utilize
the battery efficiently to avoid overdesigning, smarter battery
management systems are required that can exploit the
dynamics of the battery and derive better operational strategies.
In this direction, use of physically meaningful models in
deriving these strategies has become a recent trend. Recogniz-
ing the potential of reducing the weight and volume of these
batteries by 20–25% for vehicular applications, the Department

of Energy has recently initiated a $30 M program through
ARPA-E named Advanced Management and Protection of
Energy Storage Devices (AMPED).4 Several researchers have
made significant contributions in this area in the past. Methekar
et al.5 looked at the problem of energy maximization within a
given time with constraints on voltage and charging time using
Control Vector Parameterization (CVP). Klein et al.6 considered
the minimum-time charging problem while including con-
straints on temperature rise and side reactions. Rahimian
et al.7 calculated optimal charging current as a function of cycle
number during cycling for a lithium-ion battery under the effect
of capacity fade using a single-particle model (SPM). Hoke et al.8

used a lithium-ion battery lifetime model to reduce battery
degradation in a variable electricity cost environment using the
SPM. Suthar et al.9 used a reformulated pseudo 2-dimensional
thermal model10 to derive an open loop optimal charging
profile to restrict temperature rise in a battery. This paper
focuses on the problem of deriving optimal charging profiles
for lithium-ion batteries.

Intercalation induced stress generation in electrode parti-
cles is one of the main reasons for capacity fade, which affects
the capacity in two ways; fracture due to stress (electrical
isolation) that reduces the capacity and the effect of loss in
the connectivity of the particles.11 To the best of our knowledge,
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none of the optimal charging profiles reported in the literature
includes the intercalation-induced stresses in their derivation.
The progress made in understanding the capacity fade mechan-
isms12–17 has paved the way for inclusion of that knowledge in
deriving optimal controls. In this paper, we have incorporated
the particle-level stress–strain effect with a single-particle
model to derive an optimal charging profile that restricts the
peak stresses inside a particle. This paper illustrates that
almost the maximum possible amount of charge can be stored
within a given time (one hour), if the current profile is opti-
mally derived, with significantly lower stress being developed
within the particle. Section 2 reviews various stress models
reported in the literature for battery models. Section 3 provides
a brief description of the model used to perform the optimiza-
tion. Section 4 defines the optimal control problem. Section 5
discusses the details of the code provided online. Section 6
presents results and discussion, which are followed by conclu-
sions and future directions.

2 Review of stress models

During intercalation of lithium into a graphite particle, sig-
nificant stress is developed inside the particle. In particular,
higher rates of charging yield higher stress. If the stress exceeds
the yield stress of a given material, the particle can break and
lose contact with the matrix resulting in reduced capacity of the
battery. Different models have been developed to quantify the
stress developed in a particle with varying degree of sophistica-
tions. These modeling efforts can be divided into two cate-
gories: strain splitting18–20 and stress splitting.11,14 The theory
of the strain splitting approach has been developed by
Timoshenko21 where thermal stresses have been modeled
using strain splitting, with these models being called thermal
analogy models. Here, the intercalation-induced stresses are
treated in a similar way to the temperature-induced stresses.
A very detailed and rigorous model that used stress splitting
was developed by Christensen et al.,11,14 which was shown to be
equivalent to the former approach (strain splitting) proposed by
Timoshenko.21 In both categories, different models can be
obtained depending upon the inclusion of pressure-induced
diffusion. The effect of pressure-induced diffusion (PID)
becomes prominent once the concentration profile starts to
develop. The inclusion of pressure-induced diffusion in the
model may not have a large effect on the concentration profiles,
but since the stress development depends upon the difference
in concentration at different points inside the particle, the
inclusion of PID does significantly affect the stress profiles.
During intercalation (charging/uptake of lithium by the gra-
phite electrode), PID acts in parallel to concentration gradient-
induced diffusion to make the concentration profile flatter,
which relaxes the particle.

In the first modeling category of strain splitting where
intercalation-induced stresses are treated analogous to
temperature-induced stresses (thermal analogy models), Zhang
et al.19 presented a model that incorporated pressure-induced

diffusion. In this model, the partial molar volume and diffusion
coefficient were assumed to be independent of the lithium
concentration. Additionally, hydrostatic stress was assumed to
be the same as the thermodynamic pressure to simplify the
pressure-induced diffusion term in the Stefan–Maxwell diffu-
sion equation. These aforementioned assumptions enable
decoupling of stress and concentration variables, resulting in
a single partial differential equation for concentration. Stress
profiles can then be calculated during post-processing from the
lithium concentration profile. This approach makes the model
very simple while capturing the basics of volume expansion in
the particle within a lithium-ion battery. In this model, if
pressure-induced diffusion is ignored then analytical results
can be obtained for constant-current charging.18 The same
model formulation was implemented in a pseudo-2D model of
a dual porous insertion electrode cell sandwich comprising
lithium cobalt oxide and carbon electrodes, where a moving
boundary formulation was used to address two phases involved
inside the lithium cobalt oxide electrode by Renganathan et al.20

In the second modeling category, the stress is divided into
two components: elastic and thermodynamic. A very detailed
and rigorous model has been developed by Christensen et al.14

to model volume expansion and contraction of a lithium
insertion compound that calculates stresses due to inter-
calation and de-intercalation of lithium. This model incorpo-
rates dependence of partial molar volume on the state of charge
(SOC) as well as an experimentally measured thermodynamic
factor that is again a function of the state of charge. Also, the
model includes a moving boundary with non-ideal binary
diffusion. Fig. 1 and 2 compare stress profiles predicted by
the different models available in the literature. The thermo-
dynamic factor is assumed to be 1 in the model developed by
Christensen et al.14 (that is, the open-circuit potential is purely
Nernstian).

Comparison of different stress values obtained from different
modeling approaches

For the current study, we have focused our attention on single
particle representation of the electrode.22 In this modeling

Fig. 1 Radial stresses during intercalation.
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approach, the behavior of the entire porous electrode is sim-
plified by replacing it with a solid spherical particle. The
current density that goes inside this particle is determined by
the total surface area of the electrode. The radius of this
hypothetical particle is representative of the particle size dis-
tribution of the electrode material. This representation of a
lithium-ion battery simulates the behavior of a real battery with
reasonable accuracy at lower rates of charge and discharge. For
the present case, we have not incorporated the state of charge
dependent diffusivity and thermodynamic factor. Including
these will make the following analysis material specific. More-
over, in order to handle such a large variation in diffusion
coefficient with SOC (2 orders of magnitude), different numer-
ical discretization schemes may be needed for efficient simula-
tion and optimization.23–25 Numerical simulation was done for
intercalation of lithium into a carbon electrode (charging) for
the parameter values presented in Table 1. Both radial and
tangential stresses developed in the particle reach maxima and
minima respectively and then stay at that value when no
pressure-induced diffusion is assumed in the first category of
models (see solid curves in Fig. 1 and 2). If pressure-induced

diffusion is included in the model, magnitudes of both stresses
decrease (dashed curves in Fig. 1 and 2).

This decrease is due to the fact that during intercalation PID
works in parallel to the Fickian diffusion and hence tries to
make the concentration profile flatter, which in turn relaxes the
particle. It is important to note that the peak stress occurs when
the concentration at the center of the particle starts to change
(that is, the concentration profile develops fully). Hence the
location of the peak will be mainly affected by the diffusion
coefficient and the radius of the particle. The model developed
by Christensen et al.14 also shows similar results but the
difference becomes prominent with time. In the case of PID,
the magnitude of both the stresses becomes extreme and then
decreases but in the end the stress profiles flattens out (marked
by circles in Fig. 1 and 2) due to the incorporation of variable
partial molar volume. In the case when PID is ignored, stress
values decrease slightly after attaining maxima (marked by
crosses in Fig. 1 and 2).

While the difference between the predicted stress values
becomes prominent with time, the initial development of stress
profiles is similar in all the cases. Also, the time at which peak
stress occurs does not vary too much between all the models. In
the following optimization study, we have used two variants of
the model developed by Zhang et al.19 to derive at the optimal
charging profile. The first variant includes pressure-induced
diffusion and the second version does not. In our opinion, this
captures both the worst case and the best case. In addition, the
moving boundary model involves index-2 Differential Algebraic
Equations (DAE) and is computationally challenging to use for
optimization. An efficient reformulation was recently published
by De et al.26

3 Model description

The detailed description and derivation of the model equa-
tions were given by Zhang et al.19 The final equations are
summarized here. The mole fraction is governed by a single

Fig. 2 Tangential stress during intercalation.

Table 1 Parameters and dimensionless groups used to generate simulation results

Parameter Symbol and dimensions Value

Radius of particle Rn 12.5 � 10�6 m
Stoichiometric maximum concentration Cmax

n 31 833 mol m�3 b

Total surface area of the anode Sn 0.7824 m2

Diffusion coefficient Dn 3.9 � 10�14 m2 sec�1 c

Faraday’s constant F 96 487 C mol�1

Young’s modulus En 15 � 109 Paa

Poison’s ratio nn 0.3a

Molecular weight Mwn 78.64 g mol�1 b

Density rn 2.1 g cc�1 a

Partial molar volume On 4.08154 � 10�6 m3 mol�1

Applied current iapp 1.656 A (1 C)
Time scaling t 3600 s

y ¼ 2

9

On
2En

RT 1� nnð Þ
3.201754 � 10�5 m3 mol�1

ŷ ¼ 2

9

On
2Enc

max
n

RT 1� nnð Þ
1.019214

a Values obtained from Christensen et al.17 b Values obtained from Renganathan et al.20 c Values obtained from Northrop et al.10
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partial differential equation that is decoupled from the stress
equations,

@

@t
xnðx; tÞ ¼

tDn

x2Rn
2

@

@x
xn

2Nðx; tÞ
� �

(1)

where xn(x, t) is the mole fraction of lithium in the LiC6

electrode, x is the dimensionless length, t is the dimensionless
time, and

Nðx; tÞ ¼ 1þ ŷxnðx; tÞ
� � @

@x
xnðx; tÞ

is the dimensionless flux. The description of parameters, their
values and units are given in Table 1. The boundary
conditions are

Nðx; tÞjx¼1¼ 1þ ŷxnðx; tÞ
� � @

@x
xnðx; tÞ

����
x¼1
¼ RnIapp

cnmaxDnFSn
(2)

@

@x
xnðx; tÞ

����
x¼0
¼ 0 (3)

with the initial condition of uniform mole fraction:

xn(x, 0) = 0.0078 (4)

The pressure-induced diffusion effect can be ignored by setting
the value of ŷ to 0. Radial stress (sr(x, t)), tangential stresses
(st(x, t)), and hydrostatic stress (sh(x, t)) are given by

srðx; tÞ ¼
2OnEnc

max
n

3 1� nnð Þ

ð1
0

xnðx; tÞx2 dx�
1

x3

ðx
0

xnðx; tÞx2 dx
� �

(5)

stðx; tÞ ¼
OnEnc

max
n

3 1� nnð Þ

� 2

ð1
0

xnðx; tÞx2 dxþ
1

x3

ðx
0

xnðx; tÞx2 dx� xnðx; tÞ
� �

(6)

sh(x, t) = 1
3(sr(x, t) + 2st(x, t)) (7)

Radial stress at the surface of the particle is equal to the
external pressure, which is assumed to be zero. From eqn (5) it
is clear that maximum radial stress will occur at the center
while charging, so a bound on the stress at the center can
ensure the bounds hold at all the points in the particle. A
similar logic can be extended to eqn (6) so that stress at the
surface of the particle will be considered for bounds on the
tangential stress. From Fig. 1 and 2 it is clear that stress
development occurs at very short times, which poses a very
interesting challenge since most of the reformulation and
global polynomial approximations performed to make the
simulation faster are not accurate at very short times.24,27

Initially while the battery is at rest, the concentration profile
in the particle is flat. This kind of behavior is difficult to
capture with lower order polynomials. Hence in this work, no
solid-phase reformulation is performed to carry out the opti-
mization. The finite difference method is applied to discretize
the governing partial differential equation along the radius of

the particle x. A fourth-order accurate O(h4) finite difference
scheme was implemented at the internal node points with
second-order finite difference schemes at the boundaries.
Maximum percentage relative error for 40 and 60 node points
compared to 100 node points in spatial dimension was found to
be 1.4% and 0.6% at t = 0, this error goes to the order of 0.001
very fast (before the stress hits the maxima). 40 internal node
points were used to discretize in the spatial dimension. In the
finite difference form, the index i goes from 1 to N + 2:

@2

@x2
xnðx; tÞ ¼

1

12Dx2
�xni�2ðtÞ þ 16xni�1ðtÞ � 30xni ðtÞ
�

þ 16xniþ1ðtÞ � xniþ2ðtÞ
�

i ¼ 3 to N;

(8)

@

@x
xnðx; tÞ ¼

1

12Dx
xn

i�2
ðtÞ � 8xn

i�1
ðtÞ þ 8xn

iþ1
ðtÞ � xn

iþ2
ðtÞ

� �
;

i ¼ 3 to N;

(9)

Points adjacent to boundaries:

@2

@x2
xnðx; tÞ ¼

xni�1ðtÞ þ xniþ1ðtÞ � 2xni ðtÞ
Dx2

; i ¼ 2 and N þ 1;

(10)

@

@x
xnðx; tÞ ¼

1

2

xniþ1ðtÞ � xni�1ðtÞ
Dx

� �
; i ¼ 2 and N þ 1; (11)

The left boundary condition is approximated using a 3-point
forward difference for the derivative:

@

@x
xnðx; tÞ ¼

1

2

�3xn
i
ðtÞ þ 4xniþ1ðtÞ � xniþ2ðtÞ

Dx

� �
; i ¼ 1: (12)

The right boundary condition is approximated using a 3-point
backward difference for the derivative:

@

@x
xnðx; tÞ ¼

1

2

xn
i�2
ðtÞ � 4xn

i�1
ðtÞ þ 3xni ðtÞ

Dx

� �
; i ¼ N þ 2:

(13)

After discretization in x, the resultant set of equations was
discretized using the third-order Euler backward difference
formula (BDF) in time. A total of 100 node points in time were
used with a fixed final time of 1 hour. The complete discretization
resulted in a system of [(2 boundary conditions + 40 equations for
internal node points) + (1 equation for average mole fraction +
1 equation for radial stress at the center + 1 equation for
tangential stress at the surface)] � 100 (node points in time) =
4500 algebraic equations.

4 Problem formulation

The maximization of charge transferred is equivalent to maxi-
mization of the average mole fraction (Q) in a limited time with
voltage, surface mole fraction, and stress constraints consid-
ered with a single-particle model. Numerous methods are
available for solving constrained dynamic optimization pro-
blems, including (i) variational calculus, (ii) Pontryagin’s
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maximum principle, (iii) control vector iteration, (iv) control
vector parameterization, and (v) simultaneous nonlinear pro-
gramming.28–30 Control vector parameterization (CVP) and
simultaneous nonlinear programming are commonly used
strategies that employ nonlinear programming (NLP) solvers.
This paper uses the simultaneous nonlinear programming
approach. The optimal control problem under consideration is:

max
iappðtÞ

Q ¼
ð1
0

i dt ¼
ð1
0

iappðtÞRn

cmax
n DnFSn

dt (14)

subject to: PDE model, BCs, and IC (1)–(6)
Constraints:

0 r iapp (t) r 2 C (15)

0 r xn (1, t) r 0.6 (16)

sr (x, t) r smax
r (17)

st (x, t) r smax
t (18)

where i is the dimensionless current, iapp is the applied current
(A), Q is the average mole fraction, smax

r and smax
t can take the

values of yield stress of the material, and xn(1, t) is the mole
fraction at the surface, which should not exceed the value of
0.6, as this value determines the voltage of the lithium-ion
battery.

The discretized form of this problem statement takes
the form

max
iappðkÞ

Q ¼
Xn
k¼1

iðkÞ
n

(19)

such that

Fk(z(k +1), z(k), y(k), iapp(k)) = 0 (20)

Gk(z(k), y(k), iapp(k)) = 0 (21)

initial conditions: z(k = 1) = z0

and bounds:

imin r iapp(k) r imax,

ymin r y(k) r ymax,

zmin r z(k) r zmax (22)

where Fk represents differential equation constraints (converted
to the algebraic form using BDF), Gk represents algebraic
equation constraints, N represents the number of discretization
points in time, z represents differential states, and y represents
algebraic states with an applied current of iapp. The differential
state constraints include physically meaningful bounds on the
solid-phase lithium. A bound was placed on the mole fraction
at any point in the particle as well as on the maximum radial
and the minimum tangential stresses at the center and the
surface respectively.

In simultaneous nonlinear programming,28–30 both the control
variables and state variables are discretized, which results in a large
set of nonlinear equations to be solved simultaneously for obtain-
ing the optimum profile. The resultant system had 4600 variables

(4500 states variables with 100 control variables) and hence
100 degrees of freedom. The nonlinear system of 4500 equa-
tions was solved using the nonlinear programming (NLP) solver
IPOPT31 with constraints on the control variables (2 C rate),
mole fraction (0.6), radial stress at the center, and tangential
stress at the surface.

5 Code dissemination

An executable code based on 40 internal node points in r with
first order backward difference in time with 100 node points is
hosted at the authors’ website.32 This code can be downloaded
and run in any WINDOWS based computer. The instructions
and supplementary files required are provided along with the
code. This code takes the parameters in Table 1 as input and
provides optimal charging profiles as the output. In particular,
the code creates the output of (1) charging profiles, (2) radial
stress at the center of the particle, (3) tangential stress at the
surface of the particle, (4) surface concentration and (5) average
concentration. While this paper presents results for graphite,
the same code can be used for any intercalation material
(silicon, germanium, lithium cobalt oxide, etc.) by just chan-
ging the parameters. In addition, the effect of changing radius,
diffusion coefficient, and mechanical properties for the same
material can also be visualized by simulating this code. This
code also provides an option to change the constraint on the
maximum stress allowed. The yield stress varies among differ-
ent materials. By changing the maximum stress allowed, one
can use this code to identify the compromise made in the
charge stored for a given material and design parameters.

It is important to note that the model does not address
volume expansion, thermodynamic effect, state of charge
dependent diffusivities, non-uniform current distribution in
porous electrodes. This code should be viewed as a first release,
and future versions will address the inclusion of more detailed
phenomena and optimal profiles based on the same.

6 Results and discussion
Case 1: charging for one hour

The yield stress for LiC6 is 30 MPa; however, a slightly more
relaxed bound on the stress (37.5 MPa) was placed with maxi-
mum allowable current of 2 C (3.312 A in this case). Below are
the results from the optimization study.

The charging profile starts at the maximum allowable C rate.
Very soon the tangential stress hits its upper bound, and from
that point onwards, the charging current starts to decrease
(see Fig. 3). In the case of regular diffusion (with no PID), the
current takes a value around 1 C which ensures proper bounds
on the stress. In the case of PID, the value of the current ramps
up slowly until the surface mole fraction reaches the value of
0.6 (see Fig. 3). This behavior is observed since pressure-
induced diffusion helps the particle relax during intercalation
and optimized charging profile utilizes this phenomenon to
enable an aggressive storage policy. In both the cases, as soon
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as the surface mole fraction reaches the value of 0.6 (the upper
bound of mole fraction at the surface of the particle), the
current starts decreasing to make sure this bound is not
violated. This part is similar to constant voltage charging.

In the case of pressure-induced diffusion during intercala-
tion, the optimized current profile takes advantage of the
relaxation of the profiles inside the particle and can enable
more charge to be stored. Fig. 4 shows that the average
concentration stored in the particle at the end of charging is
more when PID is taken into account in the optimization.

Fig. 5 shows profiles for the tangential stresses. From Fig. 5 it
is clear that tangential stress hits its maximum sooner than the
radial stress. Hence it will act first as an active constraint. It can
be noted that the maximum tangential stress is negative (com-
pressive stress) at the surface of the particle. Fig. 6 shows the
radial stress profiles at the center (which in the case of charging
is the maximum radial stress). The notch in the current profile in
Fig. 3 after which it starts to ramp up is attributed to the radial
stress bounds becoming active at that time (see Fig. 6).

Table 2 shows the computational matrix for both cases, with
the objective function being the average mole fraction that has

the maximum value of 0.6. Since the problem without PID is a
linear problem, the time taken to solve that is lesser compared
to the case with PID.

Case 2: charging for one hour with varying bounds on the
maximum stress

The optimum profile for an unconstrained charge maximiza-
tion problem mimics the traditionally used constant current
followed by constant voltage (CC–CV), (though the value of
constant current is optimized and not 1 C). The addition of
stress-based constraints will limit the charge stored in a given
period of time compared to the CC–CV. The rate of increase of

Fig. 3 Optimal charging profile.

Fig. 4 Average mole fraction with PID and without PID.

Fig. 5 Negative minimum tangential stress (at the particle surface).

Fig. 6 Maximum radial stress (at center).

Table 2 Computational matrix

Without
PID

With
PID

Final time (tf) 1 h 1 h
Objective value (average mole fraction) 5.65782 0.59833
Total CPU sec in IPOPT (w/o function
evaluations)

8.560 11.698

Total CPU sec in NLP function evaluations 0.021 0.083
IPOPT tolerance 1 � 10�7 1 � 10�7
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SOC decreases in the later part of the CC–CV profile (while
maintaining constant voltage) and that is when the optimized
profile can compensate for the charge not stored due to the
constraints. In this study, we have enforced the constraints on
the radial and tangential stresses while optimizing for charge
stored in a given time. Depending on the value of the permitted
peak stress the optimal charging profile changes. As the stress
constraints are relaxed, the SOC stored gets closer to the SOC
stored during the CC–CV protocol. To obtain a Pareto efficiency
curve between peak stress and SOC stored, the peak stress
allowed was varied from 22.5 MPa to 85 MPa.

Fig. 7 shows the Pareto efficiency profile, which indicates
that an optimum charging profile can significantly reduce the
stress generation with very little or no compromise on the
amount of charge stored. For the case in which pressure-
induced diffusion is incorporated, the compromise in SOC
stored is even smaller. Since the model that we have considered
represents the most conservative (without PID) and most
aggressive (with PID) cases, all of the Pareto efficiency curves
derived by using different models should lie between the two
Pareto efficiency curves obtained. Table 3 shows values of the

objective function (average mole fraction at the end of one
hour) with corresponding values of bounds on the stress in
both cases. From the table, it is clear that if we strictly follow
the 30 MPa stress limit (which is the yield stress for a carbon-
based electrode), the optimized profile can only give up to 0.456
average mole fraction (0.573 for the PID model).

Relaxing this constraint to 40 MPa gives much better results
(more that 99% of the maximum possible SOC for PID and
more than 96.6% for without PID). If the constraints on the
radial and tangential stress are relaxed then the gain in the
objective function is marginal whereas the stress values grow
significantly.

In this paper, the same constraints on both stresses are
used. The bounds on radial and tangential stress need not be
the same in general. In addition, limits on the two stresses may
not be the same for practical applications. The maximum radial
stress at the center of the particle is tensile and the minimum
tangential stress at the surface is compressive while charging. If
any external compressive stresses are present at the surface of
the particle (stress during packing of material), the radial stress
profile will shift lower by the same amount.

Fig. 8 shows the average mole fraction at the end of charging
with different values of maximum allowable stress. The arrow
indicates the direction of the relaxed bounds. Conventionally used
experimental charging profiles can be viewed as an optimal profile
for the problem with unbounded values for the stress limits,
which roughly corresponds to the topmost curve in which the
average concentration reaches closest to 0.6 in one hour.

The optimal profile with constraints performed in this
simulation suggests that, for more than 99% of the SOC in
one hour, the 6th and 12th curves from the bottom in the case
of PID and without PID, respectively, are well suited. These
curves correspond to 35 MPa (with PID) and 50 MPa (without
PID) peak stress development in both cases.

Fig. 9 represents the optimized charging profiles for both
cases. As the bounds are relaxed, the optimized charging
current takes the shape of constant current followed by a
constant voltage profile (CC–CV) for both models. The opti-
mized charging profile for the model with PID shows an
interesting trend where the current values drop from the 2 C
rate and then again reaches the 2 C rate. As explained earlier,
the positive slope of the charging current is proportional to the
pressure-induced diffusion effect. Fig. 11 shows the minimum
tangential and maximum radial stress profiles for both cases.
The dynamics of the minimum tangential stress and maximum
radial stress will determine the active stress constraints with
time. When PID is included, the tangential stress hits its
extremum before the radial stress but the extremum attained
by the radial stress has a higher magnitude than for the
tangential stress (see Fig. 10). When PID is not modeled, the
tangential and radial stresses reach the same maximum mag-
nitude but the tangential stress reaches the extremum faster.

In the case of PID, it is clear from Fig. 10 that tangential
stress acts as an active constraint initially (until the dimension-
less time goes to about 0.15, perfectly flat tangential stress
values are observed in Fig. 11) and later the radial stress

Table 3 Bounds on stress and values of objective function

Sr. no. Bounds on stress Without PID With PID

1 22.5 0.344316 0.409451
2 25.0 0.381707 0.462722
3 27.5 0.419097 0.517975
4 30.0 0.456486 0.573022
5 32.5 0.493878 0.590486
6 35.0 0.530926 0.595931
7 37.5 0.565492 0.598041
8 40.0 0.580106 0.598962
9 42.5 0.587358 0.599406
10 45.0 0.591480 0.599635
11 47.5 0.593965 0.599763
12 50.0 0.595556 0.599839
13 52.5 0.596630 0.599886
14 55.0 0.597362 0.599916
15 60.0 0.598267 0.599947
16 70.0 0.599061 0.599965
17 80.0 0.599310 0.599964
18 85.0 0.599388 0.599964

Fig. 7 Pareto efficiency of optimized charging current.
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governs the maximum possible value of the current (the flat
portion of the stress in Fig. 12 after the dimensionless time of
about 0.15). In the case without PID, the tangential stress acts
as an active constraint for the entire time of charging (Fig. 11).

From the above analysis, it is clear that pressure-
induced diffusion helps relax the particle during intercalation.
This effect can be exploited to achieve higher SOC during a
fixed time.

Fig. 8 SOC stored vs. time (arrows indicate relaxed stress constraints).

Fig. 9 Optimal charging profile (arrows indicate relaxed stress constraints).

Fig. 10 Maximum radial and negative of minimum tangential stress in both cases with a constant charging current of 1 C.
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Most of the existing charging profiles (e.g. CC–CV) depend
completely on the experimentally measurable variables (e.g. voltage)
which make their implementation simple. The optimal charging
profiles derived from dynamic optimization schemes depend on
the internal states and other model parameters. Hence implemen-
tation of these charging protocols requires state estimation algo-
rithms to be used for predicting these internal states. Future work
includes developing semi-empirical laws based on observed states
to mimic optimal profiles obtained through offline optimization or
developing model predictive control schemes.33–35

7 Conclusion and future directions

The stress–strain effect (mechanical fracture) is a dominant
mechanism in capacity fade, in particular for new high capacity
materials like germanium and silicon. The need to have safe
and smarter use of batteries requires us to incorporate capacity
fade mechanisms so that appropriate charging strategies can
be devised that can reduce capacity fade. Various models
developed to quantify the effect of capacity fade due to mechan-
ical stress–strain effects were reviewed. Two models were

chosen that represent the extremes of the stress effect in this
particular case. The most conservative (with PID) and most
aggressive stress profiles (without PID) lead to different char-
ging protocols and different Pareto efficiency curves. Since the
chosen models represent the extremes of the available stress
models, the Pareto efficiency curve derived by other models
should lie between them. The optimal charging profile was
derived for varying the limit of the peak allowable stress
generated in the particle. It was found that the optimal char-
ging profiles in both cases were able to reduce the stress
developed significantly with very little compromise on the
charge stored. The compromise on the charge stored was lesser
in the case when PID was modeled. The CPU time reported in
this study also suggests that real-time control schemes can be
developed that utilize sensors for pressure and strain measure-
ment to arrive at improved charging schemes.

The results reported in this paper are based on a single
particle model for mechanical-electrochemical behavior without
volume expansion. The codes provided herewith solve the spe-
cific model discussed. However, the method of deriving optimal
profiles based on robust optimization approaches that can
handle nonlinear state and path constraints can be used to

Fig. 11 Negative maximum tangential stress (arrows indicates relaxed stress constraints).

Fig. 12 Maximum radial stress (arrow indicates relaxed stress constraints).
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satisfy any relevant objective (e.g. minimizing capacity fade,
efficient utilization of electrode) given a physically meaningful
model that can quantify those effects.

For example, possible extensions of the proposed approach
include

1. SOC dependent diffusion coefficient: Use of diffusion
coefficient varying with SOC has been reported in the literature36

which suggests around 2 orders of magnitude change with
change in SOC. The model addressed here solves nonlinear
spherical diffusion and hence can adapt to this change very
easily. When the diffusion coefficient exhibits strong depen-
dency on SOC, an additional number of node points or more
efficient algorithms for spatial discretization may be needed.23

2. Volume expansion: to address significant volume expan-
sion, SPM should be modified to accommodate moving bound-
aries. Such systems after spatial discretization result in an
index-2 DAE system. Special numerical schemes are being
studied to simulate these models efficiently.26

3. Porous electrode: SPM needs to be integrated with a
pseudo 2D model in order to model the porous electrode and
obtain the non-uniform current distribution and reaction
rate.37 This will then enable us to accommodate other capacity
fade mechanisms (e.g. side reaction).

4. The changing properties (degradation) of the battery
material with time make the electrode more vulnerable to
mechanical failure. Use of degradation as an internal state
which can be propagated in time will help improve the accuracy
in predicting the health of a battery.

Inclusion of different physical mechanisms to get close to
real systems requires more advances in modeling, simulation
and optimization. Many researchers are pursuing dynamic
optimization frameworks to derive smart operating proto-
cols.5–9 Continued research in fundamental understanding of
underlying physics (e.g. fracture, capacity fade, hot spot for-
mation), with parallel efforts in efficient simulation and refor-
mulation of these detailed models will help define and solve a
more realistic optimization problem to guide the way for model
based designs for the next generation of energy storage
devices.38 Note that providing a robust software framework
that can work for detailed nonlinear models is very difficult.
This paper should be viewed as a first step towards the same.
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