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ABSTRACT | The current electric grid is an inefficient system

that wastes significant amounts of the electricity it produces

because there is a disconnect between the amount of energy

consumers require and the amount of energy produced from

generation sources. Power plants typically produce more

power than necessary to ensure adequate power quality. By

taking advantage of energy storage within the grid, many of

these inefficiencies can be removed. When using battery

energy storage systems (BESS) for grid storage, advanced

modeling is required to accurately monitor and control the

storage system. A battery management system (BMS) controls

how the storage system will be used and a BMS that utilizes

advanced physics-based models will offer for much more

robust operation of the storage system. The paper outlines the

current state of the art for modeling in BMS and the advanced

models required to fully utilize BMS for both lithium-ion bat-

teries and vanadium redox-flow batteries. In addition, system

architecture and how it can be useful in monitoring and control

is discussed. A pathway for advancing BMS to better utilize

BESS for grid-scale applications is outlined.
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I . INTRODUCTION

The electric grid must have the generation capacity to

meet the demands of electricity consumers. However,

electricity demand varies greatly both daily and seasonally,

and operating generators to match loads that have broad

peak-to-base spreads is a great challenge [1]. Electricity
providers must have enough installed power capacity to

match peak demand and must continuously operate

enough capacity to meet real-time demand. Meeting these

requirements typically means that capacity is operated at

20% over the estimated demand and only an average of

55% of the installed generation capacity is used over the

course of one year [2].

Many of these inefficiencies are caused by the pe-
rishable nature of energy within the electric grid. Due to

the lack of energy storage devices within the grid system,

energy must be immediately delivered to and used by the
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consumer [3]. The power capacity for energy storage
within the grid currently sits at 125 GW (the majority of

which is in the form of pumped hydro plants), which is

about 3% of global power capacity [4]. Additional energy

storage within the grid would allow many more plants to

run closer to full capacity and reduce energy losses during

electricity transmission. Energy storage is a key element in

diversifying energy sources and adding more renewable

energy sources into the energy market.
By utilizing energy storage, generation sources need

not be ramped up or down, but can instead be run at

optimal efficiency while energy storage accounts for varia-

tions in the demand. The applications that could benefit

from energy storage within the electric grid have a wide

range of requirements. In some isolated regions, seasonal

energy storage is required that needs megawatt-hour of

capacity stored for months at a time [5]. On the other end,
stabilization of the transmission and distribution networks

may store energy for only several minutes before releasing

it and can have energy capacities on the watt-hour scale

[6]. To work across all these time and energy scales, many

different forms of energy storage have been developed.

Due to the stressful demands on these energy storage sys-

tems, an effective management system is required to

maintain safe operation and optimal performance.
While many technologies have been developed for

large-scale energy storage purposes such as pumped hydro

and compressed air energy storage facilities as well as

flywheels, capacitors, and superconducting magnetic stor-

age, many are limited in their site dependence, capacity, or

response capabilities. Electrochemical energy storage

devices offer the flexibility in capacity, siting, and rapid

response required to meet application demands over a
much wider range of functions than many other types of

storage. There is a long history of integrating batteries into

grid applications, and while battery energy storage systems

(BESSs) currently account for only a small portion of

energy storage within the grid, they have seen great growth

recently due to their versatility, high energy density, and

efficiency [7]. More grid applications have become suitable

for BESSs as battery costs have decreased while perfor-
mance and life have continued to increase [8].

BESSs are able to react to grid demands nearly in-

stantaneously, but also have the capacity to function over

longer durations and have a wide range of storage and

power capacities. Due to its technological maturity, the

lead–acid chemistry has seen the most widespread use

among large-scale BESSs [9]. However, significant ad-

vancement in newer battery chemistries has allowed for a
wide range of battery options for new storage applications

and has increased the robustness and functionality of

batteries within the electric grid. In the last five years,

pilot scale BESS projects have been undertaken for many

new chemistries such as: sodium–sulfur; lithium (Li) ion

(including Li–titanate and Li–iron–phosphate); nickel–

cadmium; sodium–nickel chloride; sodium ion; Li–sulfur;

magnesium ion; metal–air; and several chemistries of flow
batteries, which store energy in their electrolyte and pump

the electrolyte through the cell to charge or discharge [10].

This work focuses on Li-ion and redox-flow batteries

(RFBs) as representative chemistries and the remainder of

the paper will discuss the architecture and modeling re-

quirements for BESSs utilizing these chemistries. Regard-

less of the chemistry, each BESS needs to be controlled

properly to ensure safe and efficient functioning while
meeting the requirements of different grid applications.

II . BATTERY MANAGEMENT SYSTEMS

BESSs require a battery management system (BMS) to

monitor and maintain safe, optimal operation of each bat-

tery pack and a system supervisory control (SSC) to

monitor the full system. Batteries are dynamic in nature,
constantly operating outside the equilibrium state during

cycling. In addition, the situation worsens for the case of

intercalation-based storage systems (e.g., Li chemistry)

which operate as a closed system with very few measurable

state variables, making it difficult to properly monitor the

states of the battery and maintain safe operation. Further-

more, even under normal operation the battery packs of a

BESS will degrade during cycling. This degradation can be
accelerated by extreme charging patterns, increased tem-

perature (both ambient and operating), overcharging, or

undercharging. A basic BMS controls battery packs only to

meet the power demand. However, smarter model-based

BMSs can reduce the causes of degradation and improve

the performance of the system. Predictive and adaptive

BMSs based on models are especially important for large

battery packs for applications such as electric vehicles and
grid integration [11]–[13]. While there are many possible

solutions to the intricate problem of BESS control, Fig. 1

describes a general BESS–BMS structure used for

implementation.

The BESS in Fig. 1 can be used for many different

objectives, such as:

• matching peak power demand;

• load following to increase generation utilization;
• improving grid stability, power quality, and

balancing (e.g., frequency control);

• reducing source intermittency.

The BMS and SSC portion of Fig. 1 can help the BESS

provide these services with optimal performance by:

• minimizing temperature gradients across the system;

• protecting the cells from internal degradation and

capacity fade;
• providing optimal charging patterns;

• balancing cells throughout the stack.

While these systems work in tandem, unfortunately the

internal states of the cells are not accessible to the BMS

and SSC. The only battery states that can be measured are:

• voltage;

• current;

Lawder et al.: BESS and BMS for Grid-Scale Applications

2 Proceedings of the IEEE |



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

• temperature;

• electrolyte ion concentrations (in flow batteries

only).
And, the BMS and SSC can only control the BESS by

manipulating:

• current;
• electrolyte flow (in flow batteries only);

• ambient temperature (when cooling or heating is

available).

However, by utilizing physics-based models, the BMS can

accurately estimate many internal variables that allow it to

gain a thorough understanding of battery state of charge

(SOC) and state of health (SOH). More details about these

types of models will be outlined in Section IV.

A BESS will incorporate a BMS that is responsible for

managing the operations of the battery. The BMS’ rela-

tionship within the BESS system can be seen in Fig. 1. The

BMS is responsible for: safe operations (thermal manage-
ment, operating between safe current and voltage limits,

shutdown on detection of fault, etc.), state estimation

(SOC determination), parameter estimation (SOH deter-

mination), time remaining (tr) (depending on the applied

load profile), and other miscellaneous functions. In addi-

tion, for Li-ion and other closed-cell systems, the BMS

must also perform intercell charge balancing. For an RFB,

the BMS must control the electrolyte flow rate in accord-
ance with the power demand.

In large systems, many battery packs with individual

BMS will be combined to create a large capacity BESS.

The SSC of the BESS is the interface between the grid

and the BMS. The information about battery packs is

conveyed from the BMS to the SSC. When the grid

demands power to be supplied from the batteries, the SSC

chooses the optimal protocol for releasing charge while

accounting for both the current state of the batteries and

the grid’s demand request. This SSC protocol will call
power from individual packs in order to meet the final

power demand.

During certain periods, the required power profiles of

batteries will be more flexible and the BESS can have more

control over the charging pattern. For example, in a peak-

shaving application, the discharge power is heavily con-

strained but the charging power can be chosen based on

the needs of the BESS. Here the individual BMS can run
optimization routines to come up with the best charging

profiles. These charging profiles can be communicated to

the SSC which can control the power input from the grid.

When determining the performance of a storage system, in

addition to the BMS and the SSC, power electronics,

which connect these systems to each other, and the grid

must be taken into account. These power electronics allow

for the bidirectional flow of power to and from the grid
[14]. The way these individual pieces are structured

creating a hierarchical system architecture will influence

the efficiency and operation of the entire system and can

aid in control.

A. BMS Architecture
Detailed modeling is extremely useful for predicting

accurate SOC and SOH, but to implement the advanced

BMSs into a grid-scale application requires an advanced

architecture and mix of power electronics to connect the

battery and the BMS within the larger grid. In addition, the

algorithms implemented in the BMS have to be efficient to

handle the model’s nonlinearity, constraints, and objectives

in real time. BESSs using a tiered architecture comprising

Fig. 1. Schematic for the implementation of a battery pack and BMS into a BESS.
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monitoring and control at several interconnected levels can

be beneficial for implementing BMSs [15]. This architec-

ture allows for targeted monitoring as well as system-level

control through the use of the SSC.

A typical grid storage solution (GSS) comprises a direct
current (dc) system, a power conversion system (PCS), a

BMS, an SSC, and a grid connection. In the dc system,

individual cells are assembled into modules which in turn

are assembled into systems of sufficient capacity to support

the application requirements of the GSS. Cells are con-

nected in electrical series and parallel configurations to

power a high voltage bus, which interfaces with the PCS.

The PCS is a four-quadrant direct current/alternating cur-
rent (dc/ac) converter connecting the dc system to the grid

via a transformer. This architecture is shown in Fig. 2.

Physically, the system may consist of several indepen-

dent dc subsystem, PCS, and transformer combinations,

referred to as power blocks, as shown in Fig. 3. The power

blocks may be effectively identical or they may include

hybrid battery units of different sizes or types. The opera-

tion of individual power blocks is coordinated by a BMS
and the operation of the all the power blocks is coordinated

by the SSC, which manages the total system power and the

allotment of that power among the power blocks.

In its role as controller of the whole GSS, the BMS

must monitor the dc system, receive signals from external

controllers and meters, while the SSC calculates the re-

quired power responses, and sends power commands to

each power block. This control cycle is conceptually illus-
trated in Fig. 4. The monitoring action of the BMS is

performed by a hierarchical hardware structure [15]. In

this architecture, data processors are situated at multiple

levels of the dc system. At the lowest level, a processor is

assigned to monitor and balance individual cells in a single

battery module. A single GSS facility may include hun-

dreds of thousands of individual cells and hundreds of

intermediate modules. Another processor is assigned to
monitor and manage the data and activities of the lower

level processors, and so on. The top level processor of the

BMS communicates with the SSC which handles the

demands from both the intermediate monitoring proces-

sors and the external equipment, delegating battery re-

sources to perform the grid functions. By distributing

intelligence to lower level monitoring systems, only

essential information is regularly passed up to the main
site controller, reducing information traffic and compris-

ing a scalable system architecture. In addition to having

large standalone BESSs, it is also possible to distribute
energy storage in a nodal system with multiple devices

storing energy at the consumer level with supervisory

control still acting across the system [16].

An ideal BMS must have a precise knowledge of battery

states including SOC and SOH. It also requires exact

knowledge of the action required by the grid. Such an ideal

BMS would then process both the grid requirements re-

layed through the SSC and the battery capability to
generate the best commands for the battery. The GSS

action then affects the new sensor information which helps

create the next estimate of battery states.

B. Monitoring the Stack
Regardless of the exterior architecture, during opera-

tion, the BMS reads data such as current, voltage, and

temperature (and concentration in the case of a flow cell)
from the battery as well as any applicable monitoring data

or commands from the SSC. The BMS then estimates

battery SOC and SOH, records system history, and makes

decisions about system commands which can affect the

performance and service life of the battery. A BMS can

improve the battery performance and prolong the battery

life only if it has access to reliable information about

battery states, especially SOC and SOH. If this information
is not available, the BMS must have internal algorithms

that accurately predict these states. These variables repre-

sent how much charge is left in a battery over a single cycle

(SOC) and how much battery capacity remains for the pre-

sent cycle compared to the original battery capacity (SOH).

Unfortunately, SOC cannot be reliably estimated by

tracking the flow of charge into and out of the battery

(Coulumb counting) because of the inaccuracies of current
meters; slow, variable losses inside the battery; and side

reactions occurring in the system. Estimation of SOC

based on current tracking must account for all the physical

realities of the battery and measurement system including

natural cell self-discharge and series string charge ba-

lancing among others.

Many BMSs use other ways to determine SOC in addition

to tracking the charge transferred in and out of their
terminals. Most commonly, open-circuit terminal voltage is

used as an indicator of SOC. As the battery’s SOC decreases,

the terminal voltage generally decreases, indicating how

much charge remains. This method is more accurate for

some chemistries than for others, but in all cases, complex

nonlinear models need to be created that relate the terminal

voltage and the SOC [17]. This approach is risky for any

chemistry as the battery degrades and loses capacity leading
to potential overcharging or overdischarging.

Some chemistries such as the Nanophosphate battery

by A123 Energy Solutions (Westborough, MA, USA) are

unusual in that they have a very flat voltage characteristic

across their SOC throughout cycling [18]–[20]. An

example open-circuit voltage curve versus cell SOC for

an A123 Nanophosphate battery is shown in Fig. 5. This

Fig. 2. Simplified illustration of GSS architecture, with a battery-based

dc system, a power conversion system (PCS), and a grid connection.
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flat voltage curve is a desirable trait as it enables nearly

constant power delivery throughout an entire discharge at

any SOC. However, it also makes estimation of SOC for
these chemistries much more difficult. This difficulty

makes advanced modeling especially valuable for state

estimation in these high-performance cells.

Another characteristic which is difficult to estimate in

any Li-ion cell is its SOH. The most common method to

track SOH is to measure a cell’s internal equivalent dc

Fig. 4. Conceptual illustration of BMS control cycle.

Fig. 5. Open-circuit terminal voltage for an A123 Nanophosphate

Li-ion cell across SOC during a discharge cycle at 23 �C. The cell was

allowed to relax for three hours between measurements. The very flat

voltage characteristic across much of the discharge range makes

voltage-based estimation of SOC difficult.

Fig. 3. Simplified illustration of GSS architecture, including several independent modules which all operate under BMS and SSC control.

Lawder et al.: BESS and BMS for Grid-Scale Applications
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resistance [17], [21], [22]. In general, this resistance rises

with capacity loss. However, some battery chemistries do

not exhibit trends in resistance that can reliably indicate

SOH. For example, the capacity loss versus energy

throughput of A123’s Nanophosphate Li-ion cells is not

well correlated with the rise of cell resistance, as shown in

Fig. 6. Alternatively, the BMS can determine the battery

SOH by doing a complete charge and discharge cycle under
controlled conditions and measuring the effective energy

capacity. This method will provide highly accurate estima-

tion of the SOH for any battery type. However, removing a

system from service to test for capacity reduces its overall

availability to perform its primary function on the grid.

When full charges and discharges are not allowed in the

normal course of operation, the need for detailed and

accurate models becomes more important for providing an
estimate of the existing capacity.

Improved estimation of battery states based on ad-

vanced cell modeling can lead to improved control deci-

sions which significantly impact runtime performance,

overall capacity, and service lifetime. Accurate SOC

estimation allows the cells to be maintained at their

preferred operating point without risk of drifting too close

to an empty or full state during operation. Reliable SOH
estimation helps identify particularly harmful operational

constraints imposed on the cells and can serve to support

preventative maintenance routines by providing advanced

notice when battery elements may be nearing the end of

their usable life [23].

III . BATTERIES FOR GRID STORAGE

While implementing energy storage within the grid has

many benefits, the cost of the storage unit itself must be

considered. The inclusion of a BESS will incur the addi-

tional cost associated with storage. The price of each

kilowatt-hour of energy that passes through storage before

being sent to the grid will increase. For example, assuming

a generation source that wants to utilize energy storage can

generate energy for 10 cent/kWh and chooses a Li-ion

battery that costs $400 per kilowatt-hour to couple to the

system. Even if the battery has a life of 4000 cycles

(roughly an 11 year operating life at daily cycling), over the

life of the battery each storage cycle will add an additional

10 cents to the price of energy, effectively making any energy

that goes through storage before being delivered cost twice as

much as the original power. To get a true economic impact

we would also need to assess the effective cost associated

with not storing any energy (essentially the dollar gained

from improved efficiency).

In the past, the high cost of energy storage has made it
more economical to build additional generation rather than

opt for energy storage, but with energy storage prices

continuing to fall while cycle life has increased (and

environmental concerns becoming more prevalent), ener-

gy storage has become more viable. New technologies have

also helped batteries become more feasible. RFBs differ

from conventional chemistries in their decoupled power

and energy systems, which allow for large energy capacity

Fig. 6. Equivalent dc resistance of A123 Nanophosphate Li-ion cells exposed to continuous deep discharge over various SOC ranges at a

1 C rate (full cell energy capacity in one hour). The energy throughput is the cumulative discharge plus charge energy over the indicated cycles.

Nominal cell capacity is 64 Wh, meaning that 300 kWh is approximately 2400 full depth of discharge (100%–0%) cycles. Note that changes in

resistance are a poor indicator of cell remaining life. Rel. Cap.¼Relative Capacity; Rel. Imp.¼Relative Impedance; 100%–25% SOC represents 75%

depth of discharge.
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and reduced cost per kilowatt-hour compared to conven-
tional cells. Moreover, improvements in fundamental

understanding and quantitative predictive modeling ap-

proaches for improved cycle life will continue to make

redox-flow BESSs more viable. Cost concerns drive the

need for advanced modeling that can enhance battery

lifetimes and, therefore, decrease the cost per storage cycle.

As previously noted, many different battery chemistries

have been employed within BESSs. In general, most
intercalation-based rechargeable battery systems including

the Li-ion can be simulated using the same types of elec-

trochemical engineering models with proper system

parameters to account for the different chemistries and

modified solid phase diffusion. Most of the underlying

physics of the electrochemical systems remain the same,

allowing for cross-development of models among chemis-

tries. However, one battery system that has gained impetus
within the storage community recently has been the RFB

that uses exterior electrolyte pumped through the typical

cathode–separator–anode system. The redox-flow system

has significantly different dynamics than the conventional

battery and requires a separate modeling approach for

obtaining accurate SOC and SOH measurements. So, when

designing BMSs for these systems, different models must

be implemented according to the system. An example of
each type of electrochemical system (conventional and

redox flow) are outlined below along with the current

methods for BMSs and models currently being applied to

BMSs. Although this paper focuses on Li-ion and RFBs,

other chemistries including zinc–bromine might be com-

petitive for some applications [24].

A. Li-Ion Chemistry and Modeling
Li-ion batteries transport charge with Li-ions and em-

ploy Li storage compounds as the anode and cathode

materials. In most commercial Li-ion batteries, the anode is

a lithiated graphite or Li–titanate while the cathode can be

either a Li metal oxide (MO) or a Li metal phosphate. These

electrochemically active materials are typically mixed with

a binder to form slurries which coat a metal foil that serves

as a current collector. The metals chosen for the current

collector foils are typically copper for the anode and
aluminum for the cathode. The anode and cathode

electrodes are assembled on either side of a microporous

polymer separator in the presence of an electrolyte to form

a cell. During charging, Li-ions are intercalated into the

graphite layers and released from the cathode. The reaction

is reversed during discharge. The overall electrochemical

reaction for a cell with a graphite anode can be written as

MOy þ Liþ þ e�
Discharging��������! ��������

Charging
LiMOy; at the cathode

LiC6

Discharging��������! ��������
Charging

Liþ þ e� þ C6; at the anode:

The open-circuit voltage depends on the anode and
cathode materials involved, and typically ranges for the

cell from 3.2 to 4.3 V for a graphite-based anode [25]–[28].

A number of different Li-ion chemistries are available

and many have been commercialized since the early 1990s.

These include LiCoO (LCO), LiMnO (LMO), LiFePO

(LFP), LiNiMnCoO (NMC), and LiNiCoAlO (NCA). The

selection of active materials determines cell capacity, volt-

age limits, voltage profile, and efficiency, even though the
intercalation and deintercalation mechanisms may be

similar.

During normal operation, side reactions in Li-ion

batteries and electrical isolation of materials due to

intercalation/deintercalation-induced stresses reduce the

available capacity of the cell. This capacity reduction can be

exacerbated when operating under extreme conditions, so

one function of the BMS is to minimize the effect of
undesired side reactions. Reducing side reactions requires

knowledge of the internal states of the battery to predict

and prevent conditions leading to capacity fade. Unfortu-

nately, understanding the internal states is difficult due to

the limited number of variables in the battery that can be

measured online. Typically, only current, voltage, and pos-

sibly surface temperatures can be directly observed. From

these limited measurements, the BMS must determine in-
ternal states of the battery. The BMS will control the battery

to meet the operational demands, maintain safety, ensure

maximum life, and balance the individual cells in the stack.

In order to predict and control the behavior of Li-ion

batteries in any application, a proper model must be

chosen based on the specific operational requirements.

Mathematical models for Li-ion batteries vary widely in

terms of complexity, computational requirements, and re-
liability of their predictions. An ideal model would be

perfectly predictive of battery behavior for all operating

conditions and for the entire life of the battery and would

provide confident estimates of SOC and SOH. Varying

temperature and charging or discharging rates can have a

significant impact on output voltage and performance.

Ideally, a model would provide good prediction while

maintaining minimal computational cost so that it can be
solved very quickly with limited computing resources.

Unfortunately, there is often a tradeoff between accuracy

and computational cost that must be considered during

model development.

Empirical models are minimally detailed and provide

the highest computational efficiency for Li-ion battery

models. Empirical models use polynomial, exponential,

power law, logarithmic, and trigonometric function fits
with past experimental data to predict the future behavior

of Li-ion batteries. However, these models use parameters

that lack physical meaning. While these models are very

easy to develop from a mathematical standpoint, they are

not accurate outside the limited set of conditions from

which they were developed. Any change to system

parameters, for example, as a result of altered operating

Lawder et al.: BESS and BMS for Grid-Scale Applications
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conditions, will decrease the model accuracy. If the
response of the battery to aging or temperature changes

is not included in the model, these effects can be

substantial and unpredictable.

Slightly more accurate than empirical models are

equivalent-circuit models, which try to describe the

underlying system using a representation that usually

employs a combination of capacitors, resistors, voltage

sources, and lookup tables [29]. Capacity fade is often
represented by a capacitor with a linearly decreasing

capacity while temperature dependence can be modeled

by a resistor–capacitor combination [30]. Research is

being done to continuously update the circuit-based

parameters using current and voltage data to improve

accuracy [31]. As with empirical models, equivalent

circuit models do not account for the physical basis of

the system, rather using circuit elements that achieve
mathematical similarity to the physical system.

Most current BMS systems utilize either empirical or

equivalent circuit-based models because they offer fast

simulation of the system and are easy to understand and

implement [32]–[37]. In addition, these models can be

run on very basic (and cheap) microcontrollers and

require very few computational resources. However,

their lack of accuracy can lead to inefficient battery
operation.

B. Redox-Flow Chemistry and Modeling
The RFB is a technology targeting large-scale energy

storage, primarily due to its ambient operating tempera-

ture and flexible ratio between available energy and power

capability. The vanadium-redox battery was first developed

in the late 1980s and, unlike conventional batteries, stores

its electrolyte externally in tanks which store the energy

through ion concentration. The electrolyte is pumped

through the active cell to charge and discharge the battery.
The vanadium RFB uses different valence states of

vanadium sulfate dissolved in sulfuric acid (H2SO4) at

the anode and cathode blocks [25], [38]. The half cell

reaction at the anode is

V2þ Discharge��������! ��������
Charge

V3þ þ e�

and at the cathode, it is

V5þ þ e�
Discharge��������! ��������

Charge
V4þ:

The open-circuit voltage is: Eocv ¼ 1.2 V [39]. The sepa-

rator for the vanadium RFB is an ion-selective membrane

which impedes the cross mixing of the reactants but

enables the migration of protons to maintain system
charge neutrality. The vanadium RFB has very low rate of

internal discharge and parasitic losses, and the cycle life

can be more than 10 000 cycles [38].

Energy storage capability of the system is scaled with

increasing electrolyte tank size. However, volumetric

energy density of this type of flow battery is relatively

low due to limited solubility of vanadium ions. Hence, it

requires a sizeable footprint. However, many grid-
connected systems can tolerate a large physical battery

size, and it is expected that future research in materials

and chemistry will improve the energy density of these

systems. They are well suited to more energy-intensive

applications such as energy shifting and longer acting

reserve generation [8].

While RFB research has been active for several de-

cades, the route to commercialization of this technology
has been slow with only two chemistries (vanadium and

polysulfide–bromide) available in a large-scale commer-

cial format [40]. As such, BMS technology for flow

batteries has not been developed to allow for advanced

modeling.

As with Li-ion batteries, simplified non-physics-based

models, such as equivalent-circuit models or zeroth-

dimensional continuous stirred tank reactor (CSTR) ap-
proximation models, have been developed for RFBs.

Equivalent-circuit models have been employed in BMSs

for RFBs, but do a poor job of representing the actual

system [41]. Empirical models for RFBs have been re-

ported in literature. Li and Hikihara developed a transient

model for the all-vanadium RFB where the dynamics were

governed by chemical reactions, fluid flow, and an electri-

cal circuit representing the system [42]. Li et al. reported
development of an RFB model based on experimental

results [43]. The circuit representation of the system fails

to account for many of the internal states of the battery and

does not accurately reflect many mechanisms occurring

within the battery system, including: parasitic pumping

cost for circulating electrolyte; uneven utilization of the

membrane and felt electrode; cross contamination; corro-

sion of the felt electrode; side reactions (including hy-
drogen and oxygen evolution); and temperature gradients

in the stack. These mechanisms can cause a range of

problems during operation including capacity fade, cell

unbalancing, and safety problems such as thermal

runaway. These issues show the limitations of the

equivalent-circuit-based model and the need for more

detailed physics-based redox-flow models.

While additional model complexity is valuable for its
prediction accuracy, it also leads to increased computation

time (shown in Fig. 7 for Li-ion battery models and Fig. 8

for redox-flow models). An efficient utilization of these

models is required, allowing the models to be solved in real

time and, therefore, be useful to an operating BMS. Many

detailed models therefore require the use of model re-

duction, simplification, or reformulation techniques that
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retain the physics of the system while reducing the com-

putational cost.

IV. ADVANCED MODEL-BASED BMSs

Managing batteries in real time is paramount for ensuring

safety, cell life, and optimal performance. The function-

ality required (e.g., SOC and SOH estimation) will deter-

mine the amount of physics needed in the model. The

details of the physics involved, scale involved, time

constants, etc., will determine the numerical challenges

and opportunities for faster numerical algorithms and

control schemes for improved efficiency. Because grid-
connected battery systems are often large and costly, even

a small improvement in utilization can result in great

economic savings. As a result, the motivation for finding

the best possible model, algorithm, and control scheme

cannot be overstated. This means that while steady state is

normally assumed for flow development, transient flow

dynamics must be revisited if a system is to support the

Fig. 7. Model accuracy versus central processing unit (CPU) time for various methods for Li-ion battery simulation. The simulation types are

discussed in Section IV-A.

Fig. 8. Model accuracy versus CPU time for various methods for RFB simulation. These simulation types are discussed in Section IV-B.
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dynamic power demands of the grid. Advanced models that
can utilize efficient simulation techniques and allow the

system to react in real time are outlined below for Li-ion

batteries and RFBs.

A. Li-Ion Detailed Modeling
The electrochemical engineering field has long em-

ployed continuum models that incorporate chemical/

electrochemical kinetics and transport phenomena to
generate predictions more accurate and meaningful than

empirical models [28], [31].

The single-particle model (SPM) is a simple model that

represents each electrode as a single particle. The effects of

transport phenomena inside the solid phase of a Li-ion cell

are considered within the particle, but the concentration

and potential effects in the solution phase between the

particles are neglected [44]–[46]. This model can be
quickly simulated to estimate the SOC and remaining cycle

behavior, but is not valid for high rates, thick electrodes, or

other conditions where the electrolyte effects and varia-

tions across the electrodes are significant [44]. The SPM

has also been used to predict capacity fade due to growth of

the solid electrolyte interface (SEI) layer [47].

The pseudo-2-D (P2-D) model is a more detailed

physics-based model that considers several physically
meaningful internal variables during simulation, including

the potentials within the solid phase and electrolyte along

with Li concentration in both solid and liquid phases [31].

Additionally, nonlinear Butler–Volmer kinetics are used to

model the Li reaction. Furthermore, the P2-D model pro-

vides a good starting point for adding additional physical

phenomena as understanding improves, including thermal

and degradation characteristics [45], [48]–[59]. The in-
clusion of many internal variables allows for improved

predictive capability, which has contributed to its popu-

larity among battery researchers, although at a greater

computational cost than simpler models.

More detailed models have been developed to accu-

rately describe all of the important phenomena that occur

during the operation of Li-ion batteries for future high

power/energy applications such as in electric/hybrid vehi-
cles. Thermal effects are important to predict safety and

life and thermal properties affect all internal character-

istics of the battery [60], [61]. The internal temperature of

the cell depends on the surroundings as well as on any heat

generation during battery operation and can have a great

impact on performance. Higher temperatures allow Li to

diffuse more easily, which reduces the internal resistance,

but also speeds up reactions and can lead to dangerous
thermal runaway, especially for Li oxide cells. High-

temperature operation can also lead to increased capacity

fade by speeding up side reactions.

Intercalation of Li generally causes an expansion of the

active material, such as graphite or manganese oxide,

while Li extraction typically leads to contraction (excep-

tions include LixCoO2) [62], [63]. As Li diffuses within the

particle, the expansion and contraction of the material will
not happen uniformly across the particle, causing stress to

be induced in the particle which may lead to fracturing and

loss of active material [64], [65]. Additionally, during

battery cycling, some particles are lost or agglomerate to

form larger sized particles, which results in performance

degradation. Various models have been developed to

examine the volume change and stress induced by Li-ion

intercalation for single particles [66]–[68]. A 2-D micro-
structure model was developed to extend the stress–strain

analysis from single particles and was eventually incorpo-

rated into the full P2-D model [63], [69].

In order to provide sufficient power for grid-scale ap-

plications, battery stacks are employed which have indi-

vidual cells stacked in parallel or series in a single unit.

This configuration allows smaller individual cells to be

used, which reduces the internal resistances and ensures
that Li-ions do not need to travel large distances, and

allows for high total voltages to be achieved. Although the

individual cells in a stack are coupled, cell mismatch may

occur where some cells are significantly more charged or

discharged than others. This can lead to potentially dan-

gerous conditions in which an individual cell or a group of

cells is fully charged while the pack as a whole is not. Thus,

a poorly designed BMS may continue charging of the stack
and overcharging of the individual cells, leading to per-

manent damage and possibly thermal runaway. A well-

designed BMS with tiered architecture will be able to

predict such mismatches and take steps to correct it.

The coupled nature of cells in a stack increases the

demand of a comprehensive model. The significant in-

crease in computational requirements to simulate a stack

model has slowed its development and most examples of
stack modeling reported in literature perform some ap-

proximation or decoupling to facilitate efficient simulation

[60], [70], [71]. Researchers have also published simplified

coupled thermal electrochemical models applied to a

single particle for stacks in parallel and series configura-

tions [72]. Fully coupled battery stack models for a limited

number of cells have been analyzed by using reformulation

techniques to improve the efficiency of simulation [73].

B. Redox-Flow Detailed Modeling
The RFB’s novel electrochemical storage approach uti-

lizing decoupled electrolyte requires a much different

approach for modeling than the more conventional Li-ion

battery. The major difference is the inclusion of electrolyte

flow within the system. While still maturing as a tech-

nology, efforts for accurately simulating the redox-flow
system have gained impetus in recent years with renewed

interest in large-scale energy storage. The advanced

models outlined below enable higher fidelity simulation

to be utilized by BMSs [74]. The many available chemis-

tries for redox-flow systems have led to researchers

focusing their models around different chemistries.

However, the models are applicable across different
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chemistries. While models have studied iron–chromium,
bromide–polysulfide, and zinc–bromide chemistries, the

majority of the modeling efforts have focused around the

all-vanadium redox-flow system [75]–[78].

Analytical-based models can be used to develop a

control-oriented dynamic unit cell model that employs

mass and charge balances [79]. Assumptions, such as uni-

form current during charge/discharge and constant velo-

city flow, allow for analytical solutions to be obtained for
specie concentrations. These types of models provide

accuracy similar to empirical models and do not offer

much help in designing experiments for new materials and

changing chemistries.

Isothermal models and 1-D flow models can add detail

to simulation of the system [80]–[82]. However, the 2-D,

electrochemical flow (2-DE) model provides an accuracy

useful for many different BMS tasks [79], [83]–[86]. The
2-DE transient model accounts for charge, mass, and mo-

mentum conservation throughout the system and applies

Darcy’s Law for describing flow through the porous media

[87]. Butler–Volmer kinetics can again be used for the flux

at the electrodes, accounting for the charge transfer. The

2-DE model accounts for many more internal states than

the previous analytical models. The 2-D nature of the flow

model is required to properly understand the changing
electrolyte concentration within the electrode and sepa-

rator region.

Some drawbacks of the 2-DE model include its lack of

thermal characteristics within the cell, specifically for the

side reaction of evolving hydrogen. High-temperature gra-

dients can dramatically affect the reaction rates and mate-

rial conductivities, especially for the membranes. Thermal

effects can be incorporated into the model by adding
equations for conductive and convective heat transport

[84]. These thermal effects can influence performance and

safety by altering the system over potentials or creating

local hotspots.

While the 2-DE model represents the flow system well,

additional side reactions must be considered in order to

simulate the battery with high fidelity. The evolution of

oxygen at the cathode and hydrogen at the anode are the
primary side reactions of the system. Inclusion of these

side reactions enables the study of gas bubble formations,

which can alter electrolyte flow patterns and reduce the

overall performance because the reaction consumes a por-

tion of the applied current [77], [78], [86]. Additionally,

species crossover at the membranes can cause capacity

fade and decrease performance, and these effects can be

incorporated in the model [88].
Going beyond 2-D flows, 3-D coupled species/charge/

fluid transport models studying pore scale felt electrodes

can be employed to obtain a better understanding of the

flow on the pore level [89], [90]. The Lattice Boltzmann

method can be utilized for the flow across the pore space.

For greater understanding of the surface phenomena, in-

cluding electrode degradation, kinetic Monte Carlo

methods can be employed. These models can be coupled
to the continuum scale models to establish very accurate

and powerful multiscale models for RFBs. But simulation

of these models will be computationally expensive and may

not be feasible for real-time control in grid-scale energy

storage. However, mathematical reformulation methods

can be applied to these systems to reduce the computa-

tional cost and make them more feasible for real-time BMS

simulation as shown in Section IV-C for Li-ion P2-D
model.

C. Reformulating the Battery Models
The wide range of transport and kinetic phenomena

that occur in Li-ion batteries can be difficult to model and

often necessitate the development of simulation strategies

to solve the P2-D model in a reasonable time with limited

computational resources. Several reformulation tech-
niques have been used to reduce the computational cost

of Li-ion battery simulation, as the direct application of

finite difference is computationally expensive. In order to

reduce the computational cost of calculating the concen-

tration profiles in the solid particles, the parabolic profile

approximation has been developed for low rates [91], while

the mixed finite difference approach is valid for higher

rates [92]. Order reduction approaches such as proper
orthogonal decomposition (POD) and quasi-linearization

of the model have been used to reduce the number of

equations needed to be solved, though at the cost of re-

duced accuracy [93], [94]. Orthogonal collocation has

been used to compare individual electrode performance to

experimental data or to simulate full Li-ion cells with

thermal effects [73], [95]. Attempts to decouple the equa-

tions so that all dependent variables are not solved simul-
taneously can be found in the literature, especially for

simulation of thermal models in multicell stacks [60],

[96], [97]. The method of solving the model can also have

significant impact on model performance and work on the

subject can also be found in the literature, for example,

using Newton–Kylov methods [98] or multigrid strategies.

Using efficient simulation schemes combined with model

reformulation techniques allows physics-based models to
be used for Li-ion batteries in optimization and control and

gives better insight on the internal state variables than

circuit-based models.

As for Li-ion battery models, the computational burden

to solve the detailed 2-D RFB models can be huge. The

detailed models required to accurately predict the SOC,

capacity fade (cross contamination of species), side reac-

tions (evolution of hydrogen and oxygen for some specific
chemistry), electrode utilization efficiency, and tempera-

ture distribution create large systems of equations. For the

efficient simulation of such sophisticated models in real

time for control purposes, it is necessary to perform model

reduction, simplification, or reformulation. While the

model reduction and simplification ignore some of the

physics, reformulation can be used to capture the dynamics
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accurately while reducing the computational cost signifi-
cantly. Although coordinate transformation and spectral

methods can be used for the RFB as with the Li-ion battery,

since the RFB only has intercalation occurring in the liquid

phase, equations for solid phase intercalation do not have to

be included, which simplifies the model. However, the

presence of a transient flow field necessitates the use of

specialized spectral and collocation techniques to capture

the moving front accurately.

D. Optimal Model-Based Protocols for
Battery-Solar Hybrids

The reformulation approach outlined above allows for

more detailed physics-based models to be used when sim-

ulating battery cycling and allows for simulations and

optimizations to be run in real time, updating the model

with changes in system dynamics. For energy storage at
grid scale, optimization schemes can be used to produce

charging patterns for microgrids or solar tied energy stor-

age systems among other possibilities. An example demon-

strating the advantages of a model-based optimization

approach is discussed by showing a battery charging pro-

tocol optimized for a solar power input.

Starting with a reformulated porous electrode P2-D

model explained in Section IV-A, we included equations to
model the internal temperature changes during charging

and the growth of the SEI layer caused from side reactions

at the anode [45], [60], [99]. The passive SEI layer growth

causes capacity fade by increasing diffusion resistance and

removing Li from the system, and can therefore be used to

determine battery cycle life based on the remaining capa-

city [47], [100]. While SEI growth has been shown to cause

fade within Li-ion batteries, many mechanisms which can
vary for different chemistries can cause fade to occur.

If the only objective is storing the maximum amount of

charge for the system with no time limits or additional

constraints, an optimization of the models for batteries

leads to a constant-current–constant-voltage (CCCV)

charging pattern [101]. However, in order to guarantee

long cycle life, the battery should limit the amount of SEI

growth during each cycle. By adding a new constraint for
the optimization model which sets a maximum allowable

SEI layer, the charging pattern will deviate from the typical

CCCV charging in order to obtain the greatest amount of

charge while ensuring that the SEI layer does not grow

significantly. Additionally, constant current charging is not

possible when using solar power due to the non-steady-

state power from the solar cells.

Applying this approach to an example of a system that
combines solar power with battery storage, we can see the

effect that optimization can have on a system’s perfor-

mance and life. Our sample system will be used to help

satiate peak demand for a microgrid system by providing as

much power as possible between the hours of 4 p.m. and

8 p.m. The solar insolation for the system is approximated

by half sine curve over a 12-h period which begins at 6 a.m.

and lasts until 6 p.m. (Assuming full charging of the
battery, the system will be able to meet a power demand

141.3% of the peak solar output over the 4-h demand

period.) Under basic charging conditions, when power is

not demanded from the system, but there is solar

insolation, the solar power will go directly to charging

the battery. Since some of the solar insolation will occur

during the time of demand, this portion of the power will

go directly to the microgrid instead of battery charging.
The portion of the day for which the battery can be charged

will be between 6 a.m. and 4 p.m. and the battery will be

sized so that it can capture 80% of the power supplied

during that time. This percentage was chosen because

many days there will not be perfect solar insolation, which

can cause underutilization of the battery. Any power

generated once the battery is fully charged will be supplied

to the grid at a standard rate.
A standard charging protocol (labeled ‘‘standard

charging’’ in Fig. 9) would charge the battery with power

when available. However, using optimization to constrain

the passive SEI growth (and, therefore, capacity fade) to

the same level as seen in the basic charging, the maximum

amount of charge would be stored using the protocol

labeled ‘‘max stored charge’’ in Fig. 9. The model-based

optimal charging protocol increases the amount of charge
stored by 0.5%, and experiences the same amount of

capacity fade. To further improve life, we can restrict the

total amount of capacity fade which occurs in a single

cycle. With the solar insolation pattern, we can limit the

SEI layer growth to 90% of the base conditions without

losing much stored charge. The ‘‘reduced fade’’ line in

Fig. 9 shows the charging pattern with this capacity fade

bound in place, which only reduces the charge stored by
0.42%. This small decrease in capacity means we can add

Fig. 9. Different charging patterns for a battery powered from solar

cells with different optimization objectives. The solid line shows

standard charging and has no optimization constraints; the dashed

line attempts to maximize charge stored; and the dashed–dotted

line limits capacity fade to 90% of the base case while trying to

optimally store charge. The solar insolation and demand for the system

are shown as well.
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many additional cycles to the battery life without sacri-

ficing performance in the short term. This graceful fade

regime will continue until just after 10% fade reduction in

this case, after which the stored charge begins to decrease

significantly and further SEI layer growth reduction is

prohibitive (see Fig. 11). When comparing the three cases,
Fig. 10 shows the normalized growth of the SEI layer for

each charging pattern and Fig. 11 shows the total energy

gained over battery lifetime as well as the energy unuti-

lized per cycle due to the SEI layer growth constraint.

Restricting the capacity fade in this example will in-

crease the cycle life by 11.1%. Although each cycle will

store slightly less charge, the cumulative amount of stor-

able energy will increase by 9.6% over the lifetime of the
battery. The amount of savings will vary depending on the

shape and structure of the available charge (e.g., solar

insolation) within grid systems, but using adaptive optimal

charging protocols gathered from model-based simulation

that limit degradation effects can lead to significant im-
provement of energy storage systems over the lifetime of

the battery.

The results given here only represent a simple case.

Since insolation and demand can change on a daily basis,

these types of systems will require continuous real-time

optimization based on fast physics-based models. These

curves are presented as evidence that modeling and simu-

lation capability for batteries have advanced to a state
where one can make real-time predictions and optimize

charging protocols [74].1 The objectives and constraints

placed on the battery system can be altered for many dif-

ferent situations, and system sizes can be altered to study

the effectiveness of system parameters for various sites. The

real-time simulation and optimization was enabled by the

advancement in model reformulation and efficient sim-

ulation of battery models [73], [91], [92], [102].

V. CONCLUSION AND FUTURE WORK

While batteries continue to take on a more important role

as energy storage devices in the electric grid, their internal

states remain difficult to quantify. As batteries degrade, it

becomes more difficult to estimate the SOC and the SOH

through traditional methods and more detailed physics-

based modeling is required to make accurate estimates.

Battery models for Li-ion systems are well developed, but

many higher accuracy models produce heavy computa-
tional loads and require long simulation times that are not

suitable for control and implementation into real-time

BMSs. Although empirical equivalent-circuit models and

lookup tables are currently used for SOC and SOH esti-

mation due to their speed and robustness, they lack the

desired accuracy for aggressive cycling patterns that are

required by many grid-scale applications. A porous elec-

trode P2-D model will deliver a much greater accuracy and
when reformulated for fast simulation will also be fast

enough to be useful in real-time BMSs.

Modeling for RFBs is in its infancy when compared to

other battery systems. RFBs require a different modeling

approach from conventional battery systems because the

electrolyte is decoupled from the rest of the system. A more

thorough understanding and modeling of the redox-flow

system will be beneficial to the ultimate utilization of the
systems, which offer great promise for gird-scale systems.

When creating BMSs for large grid systems, many

battery packs and individual BMSs must be combined in

order to reach the desired capacities. The architecture of

these battery systems into a larger BESS with SSC is

required for efficient operation of energy storage.

Additional models that account for multiple stacks are

required to perform optimal control of the individual
stacks. By implementing these predictive models throughFig. 11. As SEI layer growth (capacity fade) is restricted per cycle, the

solid line shows the amount of charge underutilized per cycle, while

the dotted line shows the percentage of total energy gained over the

entire life of the battery due to increased cycle life.

Fig. 10. SEI layer growth normalized to the SOC during the charging

cycle for all three charging cases.

1The codes shown from the example here are available upon request
from V. R. Subramanian and will be posted at www.maple.eece.wustl.edu.
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the BMSs and the BESSs, these energy storage devices
can be much more aggressively operated while maintain-

ing safe and efficient conditions.

An example of use for physics-based model charging

was shown for the case of batteries charged with solar

power and provides an example of the efficiency gains

made possible through simulation and optimization within

the electric grid. Going forward, additional development to

increase the robustness of reformulated and numerical
models is required, in particular, for multiphase and tran-

sient flows in redox systems. In addition, model validation

and testing for the full range of operational interest must

be performed. The architecture and design of these large-

scale BESSs must also be optimized in order to facilitate

fast computation and system response, allowing BMSs and

SSC to be useful across the system. h
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