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Abstract— In this paper, Second Derivative Method (SDM) 

of numerical discretization is applied to optimal control 

problems. Convergence rates for the error between the 

discretized solution of SDM and the corresponding analytical 

solution of optimal control problems are analyzed. Illustrative 

examples are included to demonstrate the applicability and 

benefits of SDM. The comparison of the convergence rates of 

SDM with implicit Runge-Kutta methods (third order, 2-stage 

RadauIIA and fourth order, 3-stage LobattoIIIA) is also 

presented. Using SDM, for optimal control problems with non-

stiff type of state equations, the fourth order convergence for 

states and second order convergence for controls is observed, 

while for certain stiff/oscillatory equations, it results in reduced 

order of convergence as observed in other approaches. 

Depending on the choice of optimization algorithms/platforms 

used, the proposed method is found to be comparable to other 

approaches and for certain cases, more efficient. 

I. INTRODUCTION 

Optimal control problems defined by ordinary differential 
equations arise in wide range of engineering applications. 
Numerical methods used to discretize optimal control 
problems are classified as indirect methods and direct 
methods. In the indirect methods, the calculus of variations 
[1] and Pontryagin’s minimum principle [2] are used to form 
the first order optimality conditions and then the resulting 
Hamiltonian boundary-value problem (HBVP) is solved to 
obtain an optimal solution. On the other hand, in the direct 
methods, the infinite dimensional optimal control problem is 
converted to the finite dimensional non-linear programming 
problem (NLP) by discretizing the governing state equations 
and objective functional [ 3]. Within direct methods, the three 
main methods are control vector parameterization, multiple 
shooting and simultaneous discritization [4,5].  

In the simultaneous approach, numerical discritization of 
state equations is combined with optimization; the method of 
discritization can include multistep or single step Runge-
Kutta methods [6]. To evaluate the efficiency of 
discretization methods used in numerical optimization, it is 
necessary to study the rate of convergence of the discretized 
solution to the continuous solution of the optimal control 
problems. As far as convergence rates are concerned, 
previously Budak [7] and Cullum [8] studied the convergence 
for the solution of a discrete approximation of unconstrained 
optimal control problems. In these papers, authors have 
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analyzed the rate of convergence using standard one-step and 
multi-step integration schemes. Using explicit Runge-Kutta 
schemes, William Hager [9] proved the second order 
convergence of controls for unconstrained optimal control 
problems using both one step and multi-step discritization 
methods. Dontchev [10] presented Euler discritization of 
optimal control problems; it was the first attempt to prove the 
convergence of constrained optimization. Numerical results 
given in [6, 19, 23] demonstrates that for the range of Runge-
Kutta discretization methods even for simple optimal control 
problems, the convergence rate of controls are often found to 
be lower than states and adjoint variables. Several other 
notable research contributions were made in the area of order 
of convergence of numerical discretization methods and their 
implications to optical control problems. The reader is urged 
to refer the related work of previous researchers [11-15] in 
this direction. It is important to note that multistep methods 
cannot provide more than third order of convergence for 
states irrespective of the method used [9]. This means that 
while backward difference formulas [16] are very good for 
the simulation of stiff ordinary differential equations (ODEs) 
and differential-algebraic equations (DAEs), they are not 
necessarily good for direct transcription of optimal control 
problems. As proved by Hager [9], multistep methods 
perform very poorly in particular, near the boundaries where 
the order of convergence can be reduced to one.  

Single step methods provide good convergence properties. 
In fact, an s-stage Gauss method will provide an order of 2s 
for optimal control problems for the state variables at the 
terminal nodes. However, Gauss RK is only A-stable not L-
stable and might fail for stiff problems. RadauIIA methods 
with s-stages can provide 2s-1 accuracy for the state 
variables at the terminal nodes, they can handle stiff 
problems as well. LobattoIIIA methods are A-stable and 
provide 2s-2 order of convergence at the terminal nodes.  

A-stability: As explained in [22], A k-step method is a A-

stable, if all its solution tend to zero as n , when the 

method is applied to any ODE of the form /dx dt qx ; 

where q  is a complex constant with negative real part and its  

stability domain  : ;| ( ) 1S z R z   covers the entire left half of 

plane. 

L-stability: A method is L-stable if it is A-stable and 

( ) 0z   as z   where   is the stability function of the 

method. 
It is important to note that the theory of 

Superconvergence gives 2s, 2s-1 and 2s-2 order of accuracy 
[17] at the terminal nodes for s-stage implicit RK methods 
defined by Gauss, RadauIIA and LobattoIIIA methods. This 
is a great advantage for these methods when implemented 
from simulation of stiff ODEs and DAEs point of view. 
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However, at the internal stage points (collocation points), the 
order of accuracy is only <=s and is similarly observed when 
applied to optimal control problems. The SDM method on 
the other hand avoids any internal collocation point, but 
needs the second derivative of the dependent variables.  

To our knowledge, the application of SDM for optimal 
control problems has not been reported in the literature. This 
paper studies the convergence rates of SDM [18] and its 
applicability for general optimal control problems. Numerical 
results demonstrate that, it is possible to achieve third or 
fourth order convergence for states and second order 
convergence for controls without post-computing an estimate 
of controls as suggested in [6] with lesser number of 
discretization variables compared to implicit Runge-Kutta 
methods. Though the improvement of sparse solvers and 
optimizers help to address large number of optimization 
variables, SDM methods reduce the number of discretized 
variables, thereby reducing the RAM requirement and 
providing improved computational efficiency when standard 
non-sparse solvers are used for optimization.  

II. DIRECT TRANSCRIPTION OF OPTIMAL CONTROL PROBLEM 

A. Optimal Control Problem 

Optimal control problems governed by differential state 
variables and control variables arise in wide range of 
applications. If there are no path constraints on the states or 
control variables, and if the initial and final times are fixed, a 
general continuous time optimal control problem in Mayer 
form is defined as 

                            
( )

min f
u t

y t                                      (1a) 

             
      0 0

. .

( ) , ,

s t

dy
t f y t u t y t y

dt
 

        (1b) 

where,
0: , yn

fy t t   are the state variables, 

0: , un

fu t t    are the control variables to be determined,  

: y yn n
  is a cost functional, : y yu

n nn
f  is 

vector form of given function, assumed to be continuously 

differentiable and 0
yn

y  is the given initial condition. Eq. 

(1a) represents the cost functional to be minimized and eq. 
(1b) represents the system dynamics and initial state 
conditions.   

Let * *( ( ), ( ))y t u t be the continuous-time solution of the 

optimal control problem (1a-1b) that satisfies the following 
set of necessary optimality conditions. 

                  
*

* * *

0 0( ) , ,
dy

t f y t u t y t y
dt

                (2a) 

            
*

* * * * *( ) , ,y f y f

d
t f y t u t t t y t

dt


        (2b) 

                      * * *0 ,uf y t u t t                             (2c) 

where, eq. (2b) is called an adjoint equation and eq. (2c) is 

called a gradient equation. 

B. Direct Transcription with Second Derivative Method 

As discussed before, with direct transcriptional approach, 
optimal control problems are typically first discretized using 
Euler, Trapezoidal or a range of Runge-Kutta methods on a 
uniform grid of N points covering the time interval  

0 , ft t t     and then the resulting NLP problem is optimized. 

Such direct transcription methods, especially the range of 
Runge-Kutta methods have received significant attention 
recently [19, 20, 23]. One reason for this is the fast 
convergence of the solutions of discretized optimal control 
problem to the solution of the underlying continuous time 
optimal control problem. Though IRK methods have proved 
to be more popular, the SDM gives an advantage over the 
number of discretized variables which will help to reduce 
RAM size and CPU time for non-sparse type of optimizers. 
For certain optimal control problems where system dynamics 
are described by stiff ODEs, IRK methods result in 
oscillations for the state variables at internal node points 
because of lower stage accuracy; in such cases SDM is 
competitive. 

To describe SDM method, the fourth order single step 
formula is given as: 

   
2

1 1 1 ; 1... 1
2 12

n n n n n n

h h
y y f f g g n N                 

(3) 

where,
nf and 1,nf  are the discrete approximations of states, 

ng and 1,ng  represent the analytical differentiation of f at 

grid points 
nt and

1nt 
respectively. Eq. (3) provides a fourth 

order accurate integration scheme. The scheme is A-stable 

and not L-stable in a region   of the z  plane with the 

stability function given by
2

2

(1 / 2 /12)
( )

(1 / 2 /12)

z z
z

z z


 


 
. The 

third order SDM formula [18] is written as 

   
2

1 1 12 ; 1... 1
3 6

n n n n n

h h
y y f f g n N                    (4) 

Eq. (4) is accurate to the third order and is both A-stable and 
L-stable. 

For the direct transcription of optimal control problem, we 
discretized the optimal control problem (1a-1b) using SDM 

over a finite horizon ,o ft t t  with a uniform grid of 1N    

intervals and initial conditions. Using SDM, the state 
equation (1b) is approximated by eq. (3); it will also involve 
the derivative of u , the control variable. This cannot be left as 

an additional optimization variable as it will lead to 
oscillations. For the SDM method, the differentiation of 
control vector u is approximated by its finite difference 

approximation i.e.  1( ) / ; / 1i i i f

du
up u u h h t N

dt
    

this leads to the following SDM discretization of (1a-1b).    

                           
, ,
min
n n f

f
u y y

y                                   (5a) 
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. .

0; 1.... 1
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s t
h h

y y f f g g n N      (5b) 

The optimality conditions for control problem (5a-5b) are 
obtained by forming the Lagrangian function, where we 

assumed 
du

up
dt

  as a free variable.  
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           (6) 

The necessary conditions of optimality can be written as: 
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2

1 1 , , 0
2 12
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N y f f y f f

L y

h h
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2

1 , , 0
2 12fu N u f f u f f

h h
L f y u g y u          (7g) 

After the earlier attempts in the seventies, SDM methods 
lost out to IRK based on Gauss, Lobatto, and Radau type 
families for simulation of stiff ODEs and DAEs because of 

the need to find second derivatives. This manuscript suggests 
for direct transcription of optimal control problems; SDM 
methods can be competitive. To make our discussion more 
concrete, we have discussed some optimal control examples 
and the order of convergence obtained using SDM in the next 
section, and it is compared with fourth order 3-stage 
LobattoIIIA and third order 2-stage RadauIIA as implicit 
Runge-Kutta methods [6, 19, 20].  In this text, we refer 
Second Derivative Method as SDM, fourth order, 3-stage 
LobattoIIIA method as LobattoIIIA, fourth order, 3-stage 
LobattoIIIA with midpoint approximation for control 

 1 2 / 2Uint u u   as LobattoIIIA*, third order, 2-stage 

RadauIIA as RadauIIA and third order, 2-stage RadauIIA 
with midpoint approximation for control 

 1 22 / 3 1/ 3Uint u u  as RadauIIA*.     

III. NUMERICAL EXAMPLES AND RESULTS 

This section describes the order of convergence obtained 
using SDM on some of the typical optimal control examples 
illustrated in literature. The order of convergence obtained 
using SDM is compared with LobattoIIIA, RadauIIA, 
LobattoIIIA* and RadauIIA* implicit Runge-Kutta 
discretization methods.    

Problem 1- P1, The first problem considered is   

                  

 

           

 

2

min

; 0,5 ,

0 1.

f
u

y t

y t y t y t u t u t t

y



    



 

The analytical solution of state and control is given as    

  
 

 
 *

* *4
;

21 3 t

y t
y t u t

e
 


 

The value of optimal cost can be computed as -0.008963796. 

We solved this problem using direct transcription approach 

on uniform grids of N points with 1N  intervals. A discrete 

solution of P1 is obtained using 4th order SDM (eq. (3)), 

LobattoIIIA and RadauIIA discretization methods. The 

discrete solutions obtained using SDM with 11N  for state 

and control is compared with the analytical solution. Figure 

(1a-1b) shows the optimal solution *y  and *u of problem P1.  

Figure 1.  Graph of  y* and u* for P1 with N=11  

From figure 1, it is observed that, for problem P1 the 
discrete optimal solution obtained using SDM for state and 
controls is much closer to that of analytical solution, 

  
         (1a)     (1b) 
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LobattoIIIA and RadauIIA discritization methods also reveals 
the same nature and no oscillations are observed for internal 
collocation points.  

The error, in numerical analysis is generally measured in 

supremum (sup) norm which is computed as 
2log of the 

infinity norm error. As mentioned by the authors in [6, 22], 
even for simple linear control problems, the controls are often 
found to be less accurate than the states and objective 
functional. To observe and compare the order of convergence 
of discretization methods under study, the sup norm error for 

optimal discrete control is plotted versus  2log h with h 

being the step length, for the values of 

1/ 5,1/10,1/ 20,1/ 40..h  as shown in figure 2. The slope of 

the line in figure 2 is the convergence rate. The numerical 
results for sup norm error and maximum error for problem P1 
are given in Table I & II. 

 

Figure 2.  Maximum norm error in controls (u*)for P1 

TABLE I.  2log  OF INFINITY NORM ERROR IN  P1 

N *

Ny y  *

Nu u  

SDM 
Lobatto

IIIA 

Radau 

IIA 
SDM 

Lobatto

IIIA 

Radau

IIA 

6 11.8130 13.3537 9.0657 5.700 14.351 10.066 

11 15.9144 17.3600 11.9822 7.867 18.282 13.046 

21 19.9357 21.3447 14.9193 9.940 16.509 15.434 

41 23.9222 25.3343 17.8924 11.942 17.536 17.581 

81 27.9154 29.3214 20.9021 13.386 16.733 14.411 

Order 4 4 3 2 4 3 

TABLE II.  MAXIMUM ERROR IN OUTPUTS OF P1 

N *

Ny y  *

Nu u  

SDM 
Lobatto

IIIA 

Radau 

IIA 
SDM 

Lobatto

IIIA 

Radau 

IIA 

6 2.77e-4 9.55e-5 1.86e-3 1.92e-2 4.78e-5 9.32e-4 

11 1.61e-5 5.94e-6 2.47e-4 4.28e-3 3.13e-6 1.18e-4 

21 9.97e-7 3.75e-7 3.22e-5 1.01e-3 1.05e-5 2.25e-5 

41 6.29e-8 2.36e-8 4.10e-6 2.54e-4 5.26e-6 5.09e-6 

 

From numerical results, we observed for SDM 4th order 
convergence for states and 2nd order convergence for controls 
for LobattoIIIA  4th order convergence in states as well as in 
controls while, RadauIIA gives 3rd order convergence in state 
and controls. 

Problem 2- P2, This example is adapted from Anna 
Engelsone, et. al., [11]. 

               

   

       

 

1
2 2

0

5
min ( ) ( )

4

1
; 0,1 ,

2

0 1.

u
y t y t u t u t dt

y t y t u t t

y

 
  

 

  





 

The analytical solution of state and control is given as 

 
 

 
 

    

 
* *

tanh 1 0.5 cosh 1cosh 1
;

cosh 1 cosh 1

t tt
y t u t

   
    

The value of optimal cost is 0.7615941557. This example 

was chosen as most direct transcription approaches based on 

multistep methods exhibit order reduction and oscillations in 

the optimal solution. As explained in [9], IRK methods prove 

to be better compared to multistep methods (but still exhibit 

order reduction and oscillation for the control variable). We 

have attempted this problem using 4th order SDM (eq. (3)) 

and obtained the optimal solution by discretizing on uniform 

grids of N points with 1N  intervals. The discrete solution 

obtained with 11N  for state and control is compared with 

the analytical solution. Figure (3a-3b) shows the optimal 

solution of P2. From figure 3, it is observed that, the discrete 

optimal solution obtained using SDM for state and controls 

closely match with the analytical solution. The optimal 

solution obtained using LobattoIIIA and RadauIIA 

discritization methods also appear very similar. 

Figure 3.  Graph of  y* and u* for P2  

 

Figure 4.  Maximum norm error in controls (u*) for P2 

  
         (3a)     (3b) 
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The sup norm error for optimal discrete control is plotted 

versus  2log h   as shown in figure 4 and the numerical 

results for sup norm error and maximum error for P2 are 

tabulated in Table III & IV. 

TABLE III.  2log  OF INFINITY NORM ERROR IN P2 

N *

Ny y  *

Nu u  

SDM 
Lobatto

IIIA 

Radau 

IIA 
SDM 

Lobatto

IIIA 

Radau

IIA 

6 14.9523 17.6910 14.1420 8.0753 8.7187 7.8667 

11 18.6012 21.5501 17.1526 10.006 10.6698 9.7413 

21 20.4297 22.2099 20.2914 11.979 12.5704 11.680 

41 20.8025 22.4036 21.1629 13.651 14.3704 13.409 

81 21.0389 21.0949 20.1710 15.283 14.9897 14.413 

Order 4 4 3 2 2 2 

TABLE IV.  MAXIMUM ERROR IN OUTPUTS OF P2 

N *

Ny y  *

Nu u  

SDM 
Lobatto

IIIA 

Radau 

IIA 
SDM 

Lobatto

IIIA 

Radau 

IIA 

6 3.15e-5 4.72e-6 5.53e-5 3.70e-3 2.37e-3 4.28e-3 

11 2.51e-6 3.25e-7 6.86e-6 9.72e-4 6.13e-4 1.16e-3 

21 7.08e-7 2.06e-7 7.79e-7 2.38e-4 1.63e-4 3.04e-4 

41 5.46e-7 1.80e-7 4.25e-7 7.77e-5 4.70e-5 9.19e-5 

 

From numerical results of problem P2, we observed 4th  

order convergence for states and 2nd order convergence for 

controls with SDM and LobattoIIIA methods, while, 

RadauIIA gives 3rd order convergence in state and 2nd order 

convergence in controls. But, even though the order of 

convergence of controls is the same for all three methods, 

SDM gives an advantage over the other two discretization 

methods, as it uses a lesser number of optimization variables 

and all the variables are of same accuracy unlike IRK 

methods in which internal collocation/stage variables are less 

accurate. This example confirms the effectiveness and benefit 

of the SDM approach of numerical discretization over IRK 

methods for optimal control problems. 

 

Problem 3- P3, A control problem formulated from a stiff 

BVP is adapted from [21]. The second order problem is 

converted to a first order problem (by integration) with an 

arbitrary constant of integration, k. 

       

 

1

0

1 1

1

min ( )

. .

; 0,1

0 ( 100) & 0 1

u
u dt

s t

y t u t y t k t

u Pe y

  

 



 

The analytical solution for problem P3: 

 

               
 

 

( * )
*

1

*

1 1

( .)

Pe Pe t

Pe Pe

e e
y t

e e

u t Pe const

 
   



 

The value of optimal cost is Pe (Peclet number) over a 

time. The optimal solution of P3 for state and controls is 
obtained with 21N  using 4th order SDM, LobattoIIIA* and 

RadauIIA methods. For discrete controls, we observed the 
same nature and order of convergence for all three 
discritization methods but for optimal state, we witnessed 
oscillations at mesh points for LobattoIIIA* and sustained 
oscillations at internal collocation points with RadauIIA 
methods, whereas RadauIIA* did not converge. The optimal 

solution for state 
*

1y  is plotted versus time as shown in figure 

5. The sup norm error and order of convergence for optimal 
state is given in Table V. 

TABLE V.  2log  OF INFINITY NORM ERROR IN OPTIMAL 

DISCRETE STATE OF P3 

N *

Ny y  

SDM LobattoIIIA* RadauIIA 

11 1.7260 1.7262 0.0026 

21 3.3549 3.3550 0.5551 

41 5.9968 5.9968 3.0296 

81 9.5554 9.5556 6.0621 

161 13.6522 13.6520 9.4046 

Order 4 4 3 

 

 

Figure 5.  Graph of optimal state for test problem P3 for 

Pe=100, N=21 

It is important to note that if bounds of 0...1 (physically 
meaningful bound) were provided for this problem, only 
SDM method works and other methods fail because of the 
observed oscillations for internal stages. In addition, for 
complicated large scale DAE system, one might encounter 
‘square root’ or other terms which make the equation 
undefined outside a meaningful range for concentration or 
mole fraction. In these cases, SDM guarantees same order of 
accuracy for all the discretized state variables, and converges. 
For example, in P3 if there was an additional variable defined 

as     11 ,
dz

y t u t
dt

  then SDM will work and other 

methods may fail. 
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IV. CONCLUSION 

The aim of this work is to examine the performance of 

SDM for order of convergence applied to optimal control 

problems. From computational results, we have seen that for 

the optimal control problems that are easily solved SDM and 

LobattoIIIA give fourth order convergence for states and 

second order convergence for controls, whereas RadauIIA 

gives third order convergence in states and second order 

convergence in controls as expected. Though the order of 

convergence of controls is same for LobattoIIIA, SDM and 

RadauIIA methods, SDM gives an advantage over the 

number of discretized variables which will help to reduce 

RAM size and CPU time for non-sparse type of optimizers.  

In the case of models that are known to cause order 

reduction in typical IRK methods; with SDM, it is possible 

to achieve fourth or third order convergence in states and 

second order convergence in controls. For certain optimal 

control problems where system dynamics are described by 

stiff ODEs, IRK methods have state variables oscillate at 

internal node points because of lower stage accuracy; in such 

cases SDM is competitive. For stiff BVP type problems with 

terminal constraints requiring exhibiting boundary layers 

(requiring large number of nodes), LobattoIIIA and 

RadauIIA oscillate for state variables while SDM has no 

oscillations and gives fourth order convergence for states for 

the same number of node points.  

In particular, for regular non-sparse optimizers, SDM is 

more useful and efficient because of the lower number of 

optimization variables.  A Maple code is provided to take a 

general system of ODEs with bounds as input. The code 

calculates the second derivative and its non-sparse optimizer 

is then used to solve the optimal control problem. The code 

will be posted online at http://depts.washington.edu/maple/.  

Current work includes applying these methods for index-1 

and higher orders DAEs optimal control problems. For 

index-1 DAEs, without differentiating algebraic constraints, 

by using approximations as used for control variable in this 

paper, one can obtain second order accuracy for the 

algebraic variables. By adding derivatives of algebraic 

constraints as additional equations, and including time 

derivatives for algebraic variables as additional decision 

variables, one can obtain 4th order accuracy for algebraic 

variables. A more detailed analysis of this will be reported in 

future.   
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