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With renewable energy based electrical systems becoming more prevalent in homes across the globe, microgrids are becoming
widespread and could pave the way for future energy distribution. Accurate and economical sizing of stand-alone power system
components, including batteries, has been an active area of research, but current control methods do not make them economically
feasible. Typically, batteries are treated as a black box that does not account for their internal states in current microgrid simulation
and control algorithms. This might lead to under-utilization and over-stacking of batteries. In contrast, detailed physics-based battery
models, accounting for internal states, can save a significant amount of energy and cost, utilizing batteries with maximized life
and usability. It is important to identify how efficient physics-based models of batteries can be included and addressed in current
grid control strategies. In this paper, we present simple examples for microgrids and the direct simulation of the same including
physics-based battery models. A representative microgrid example, which integrates stand-alone PV arrays, a Maximum Power
Point Tracking (MPPT) controller, batteries, and power electronics, is illustrated. Implementation of the MPPT controller algorithm
and physics-based battery model along with other microgrid components as differential algebraic equations is presented. The results
of the proposed approach are compared with the conventional control strategies and improvements in performance and speed are
reported.
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Batteries have been integrated in microgrids to mitigate intermit-
tent characteristics of alternative energy sources such as solar, wind,
and wave, thereby enhancing grid operation and reliability."> They
are well suited for microgrid applications due to their versatility, high
energy density, and efficiency. The cost of batteries continues to de-
crease while their performance and life have continued to increase.*
However, lithium-ion batteries, which are the most widely used en-
ergy storage systems implemented in microgrids today, are still the
most expensive component, accounting for about 60% of the overall
Capital Expenditure (CapEx).’ Conservative operations in current mi-
crogrids cause high cost and low energy efficiency, underutilizing and
overstacking batteries. The current microgrid controls cannot utilize
batteries aggressively to achieve high penetration of renewables and
maximize life and usability of batteries in the meantime. They imple-
ment empirical/equivalent-circuit battery models, treating batteries as
just a black box, which does not account for its internal states, and
place batteries in a small portion of the entire microgrid, which means
current microgrids do not consider batteries principal components.®!°
For example, if the internal temperature of the battery is not modeled,
then the battery must be operated at very low rates to ensure that the
internal temperature does not reach high enough values that reduce
battery life and create unsafe operating conditions. Control systems
based on measured external temperatures and empirical/equivalent-
circuit models must be operating conservatively to avoid potential
hot spots in the internal temperature.® It is evident that a tremendous
amount of energy will be lost when batteries are conservatively oper-
ated. In contrast, detailed physics-based battery models, accounting
for internal states, can help save an enormous amount of energy, utiliz-
ing batteries with maximized life and usability. In typical microgrid
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controls, however, the computation time will significantly increase
when more detailed physics-based battery models are coupled to the
entire microgrid system.

There is significant literature in simulation and control of grid
and renewable grid components. This has been typically a field of
electrical engineering. For example, the method used to integrate the
models across different devices in the microgrid typically depends on
(1) the choice/convenience of users and (2) linear models and linear
control schemes, which have been used for robustness, ease of use for
the researchers, and scalability to a large number of devices and sys-
tems. Unfortunately, battery models are highly nonlinear in nature,
and linearization compromises the accuracy, leading to a narrower
range of use for applications.!! In this paper, we show that perhaps a
better way to integrate battery models is to write the microgrid equa-
tions in mathematical form and then identify an efficient way to solve
those models simultaneously with battery models. In this paper, we
first show that direct Differential Algebraic Equation (DAE) imple-
mentation and simulation of microgrids gives better results regarding
accuracy, simplicity, and speed, as illustrated for a simple microgrid.
Next, we present how efficient the direct DAE implementation of a
stand-alone PV microgrid system is, under dynamic irradiance (PV:
Photovoltaic). Finally, we have identified the gain in CPU time and
the energy use by directly solving physics-based battery models with
the DAE implementation in microgrid models.

Modeling and Simulation of PV Arrays & MPPT Controller

In this section, we compare one of the traditional Perturb and
Observe (P&O) algorithms to a DAE-based algorithm for Maximum
Power Point Tracking (MPPT) in a hypothetical microgrid architec-
ture, consisting of PV arrays and MPPT controllers, as shown in
Figure 1. We show that our depiction of MPPT algorithm as DAEs
can be easily and efficiently simulated using DAE solvers. We report
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}_ Practical PV cell —I-I Table II. Variables for PV systems.
—_
IW\/ 1 Symbol Variables Units
Rs — 1(1) PV arrays output current A
y P
Information
Ipy(t) PV currents A
MPPT
Ipy Cf) SZ‘ Iy § R, |4 controller V() PV arrays output voltage \Y%
G(t) Insolation W/m?
1 ot P(t) Power Output W
. Table III. Parameters for PV systems.
I—Theoretical PV cell —I— Series & parallel
resistance

Symbol  Parameter Values Units
Figure 1. Single-diode equivalent circuit-based model of a practical PV cell
and MPPT controller. Ry Series resistance 0.221 Q

a Diode constant 1.3 -

R, Parallel resistance 415.405 Q
that the DAE-based MPPT algorithm, which enables high accuracy, Ny Series-connected cells 54 -
simplicity, and low computation time, would facilitate maximized PV k Boltzmann constant 1.3806503 x 1072 J/K
power output and simultaneous simulation of microgrid system. All q Electron charge 1.60217646 x 1071 C
simulations in this paper were carried out on a workstation with dual K Current coefficient 0.0032 A/K
8-core 3.1 GHz Intel Xeon processors with 32 GB RAM using Maple T, Nominal temperature 298.15 K
software. G, Nominal irradiation 1000 W/m?

Isen Nominal short-circuit current  8.21 A

Mathematical modeling for PV arrays.—PV arrays generate Voen Nominal open-circuit voltage  32.9 v
. . . . Ky Voltage coefficient —-0.123 V/K
power by converting solar energy directly to electricity. Typically, .
. . R N . Ipy.p Light-generated current 8.214 A
simulation of equivalent circuit-based models featuring one to three . o
diodes has b h h dict the PV s at the nominal condition
iodes has been the common approach to predict the arrays T Temperature 208.15 K

performance.!? For mathematical modeling of PV arrays, a single-
diode equivalent circuit-based model is used (see Figure 1). This
model offers a good balance between simplicity and accuracy by ad-
justing parameters and modifying the saturation current function to
match the open-circuit voltage of the model with experimental data
from the solar arrays for a broad range of temperatures. The I-V char-
acteristics of the practical PV device, consisting of multiple cells in a
parallel-series combination, is given as:'?

V + R, V + R,1
VARD)\YERL

I=Ipv—10|:exp< R

a P

I is the PV arrays’ output current, /py is the PV current, [ is
the saturation current, and V; is the thermal voltage. These variables
are temperature-dependent, but simulation and control are conducted
under the assumption that temperature is a constant (see Table III). V
is the PV arrays’ output voltage, R, is the series resistance, R, is the
parallel resistance, and a is the diode ideality constant. Meanwhile, the
PV arrays’ output current and voltage and PV current in Equation 1
can be expressed as a function of time by substituting I = I(¢),
Ipy = Ipy(t),and V = V() as follows:

I(t) = Ipy(t) — I [exp <w> - 1]
V,a
V() + RI(1)

R, (2]

All additional equations, variables, and parameters are shown in
Table I, 11, and I, respectively.'

Table I. Equations for PV systems.

Governing equation Additional equation

1) = Ipy (1) — Io [exp( L R10) 1] v, = Mkt
_ VO+RI®

14
Rg-1(1) V(t)+Rs (1)
1 _ ’0‘<1‘4?/(T> )‘eXP(4V/74f )

n

1 Rs:1)
VO Iop = —DsentKi(T=T)
Rp exp( Vr)L.n*’f‘\/;(T*Tn))_l

P&O MPPT algorithm.—MPPT controllers can find Maximum
Power Points (MPPs), and help PV arrays to produce peak power
outputs. Various conventional MPPT algorithms such as P&O and
Incremental Conductance (ICond) have widely been implemented as
feedback algorithms. The P&O has been one of the most commonly
used MPPT algorithms to track MPPs.!* The P&O algorithm applies
iterative processes toward MPPs by adjusting the output voltage of
PV arrays with time and voltage step. The PV power at the present
instant is obtained by measuring the value of the PV voltage and
current, and the power at a future instant is compared to the present
power after increasing or decreasing the voltage step. In the case of
positive AP (difference in values between the future power and present
power), the algorithm operates PV systems toward the optimal point
by adding the voltage step. Otherwise, if AP is negative, the voltage
value of the optimal point is determined by subtracting the voltage
step. In the P&O algorithm, as the time step increases, simulation
time decreases, while accuracy decreases, and vice versa.'> Also, the
range of oscillation has a proportional relationship with the voltage
step.'® The flow chart of the P&O algorithm is presented in Figure 2.

Start

* Set V(0),V(K) Read V(t) Read V(t+k)

- Increase t by k =V(f).
Aenlil Get  P(t) = V(t)I(t) Get  P(t+k)

V(t+2k) = V(t+k)

Figure 2. The flow chart of P&O MPPT algorithm. A trade-off occurs between
the time/voltage step and accuracy. Therefore, it is important to determine the
appropriate time/voltage step to achieve the best performance under the given
environmental condition.
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Even though the P&O algorithm is not able to track true MPPs, loses

some amount of power due to oscillation around the MPP, and fails i AE System
to track true MPPs because of its slow response to rapidly changing G: Insolation I(t)=a(t, V, G, I)
environmental conditions, the algorithm is the most popular, thanks I(t)=h(t, V, G, I)
to its simplicity and low hardware cost.'®2°
DAE-based MPPT algorithm.—In this section we present a DAE- v
based implementation of MPPT algorithm. MPPs can be calculated One arbitrary
from the following formula®! ODE DAE System
dP(V) d(I(V)-V)
dav dv 31
in which P (V) is the PV arrays’ output power, /(V) is the PV arrays’ . =
output current, and V is the PV arrays’ output voltage. Note that both : In_'t'al'ze varlablles )
P(V)and I(V) are functions of the output voltage. We get Equation 4 - Simultaneous simulation
by arranging Equation 3 as follows:
di(V) (V) Figure 3. The flow chart of DAE-based MPPT algorithm. Proposed approach
v = - v 4] is 12 times faster than the P&O algorithm with higher accuracy (~1% more

power) under the dynamic irradiance condition.

Also, the PV arrays’ output current in Equation 1 can be expressed
as a function of voltage by substituting I = I(V) as follows:

Finally, substituting /(V) = I(z), V = V(¢) in Equation 7 gives
V+ RJ(V)) 1] V+RJI(V)

IV)=1Ipy — 1 [exp ( [5]

Via R, 0y o (1 _ Rgv-(gn) - exp (v(z);l;ﬂ(z)) - RJ\;({;I) .
By differentiating Equation 5 with respect to V, we get V() Via + R, 81
% I-(1+R,- %) - exp (W) ~ The DAE-based MPPT algorithm consists of two Algebraic Equa-
= — tions (AEs) in two variables (Equations 2 and 8; voltage and current
av Via as a function of time, respectively). The system’s response time will
1+ R, .4V significantly slow down in a real situation that involves dynamic en-
— [6] vironmental condition and long time-scale. For instance, one can use
R, nonlinear equations solvers in computational software programs such
By substituting Equation 4 into Equation 6, we get as MaPle,_Maplesirr_l, Matlab, anq Simulink. However, it would fail or
need significantly high computation time due to the solvers’ approach
Io-(1- Ry - 1<v>) - exp (V+R:1(V)> R in finding the S.Oll.ltion.ﬂ Here, we implement the DAE-based MPPT
) o v Via 1 v (7] algorithm consisting of AEs only. In this case, one arbitrary Ordinary
72 Via R, Differential Equation (ODE) (Equation 9), which does not affect any
processes of the entire microgrid system, can be added to convert the
1000 (1) 200](b)
—=—  50W/m®
~ 800 1604 —— 200w/m’
§ _ . aoowm':
= 600 2120 7 oowns
2 s —»—1000W/m?
= 400- 3 s0-
ﬁ Figure 4. Simple case study with different irra-
200+ 40 - diance values. (a) Solar irradiance at 800, 400,
1000, 50, 600, and 200 W/m? for 10 seconds,
0 . . < . . gy == - - : - \ respectively. (b) Solar power outputs over volt-
0 10 20 30 40 50 60 0 5 10 15 20 25 30 35 agefrom thesingle-diode equivalent circuit-based
Time (seconds) Voltage (V) model. (c) Voltage outputs (d) Current outputs,
27 8 from DAE-based (wine color and empty circle)
(C) —a—P&O ( d) —= P&O and P&O (Qark green.coyor anfi filled square)
o—o—r-l —o—DAE 74 —o— DAE MRPT algorithms. In this simulation, the P&O al-
26+ l | gorithm produces the same power as the proposed
61 DAE-based algorithm, but computation cost is
— 25+ ey 3 ~224 times higher.
s <
@ - -
g2 5°
3 534 hoee
> 3. o,
2. ol 14
T T T T T 0 T T T T i
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (seconds) Time (seconds)
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AE system into a DAE system as shown in Figure 3.

dy()
o 1 (9]
Results.—An example of a short time simulation with the P&O
and DAE-based MPPT algorithm is shown in Figure 4. This will
help analyze the DAE-based algorithm’s performance including its
accuracy, reliability, and computation time. The voltage and time step
in the P&O algorithm were adjusted (0.01 V and 0.001 s) to produce
high accuracy, thereby explicitly identifying the CPU time difference
between the P&O and DAE-based MPPT algorithms. Equations 2, 8,
and 9 were implemented for the DAE-based MPPT algorithm. At the
beginning of the simulation, when ¢ =0, the irradiance is assumed to be
400 W/m? and it is increased up to 800 W/m? within a very short time.
After that, the irradiance is kept at 800, 400, 1000, 50, 600, and 200
W/m? for 10 seconds each and decreased to 100 W/m? as illustrated
in Figure 4a. Even though the whole time scale is small (60 seconds),
rapidly changing irradiance from 50 to 1000 W/m? was tested for the
P&O and DAE-based MPPT algorithms’ reliability. Also, solar output
powers are plotted over voltage outputs at each irradiance level from
Equation 5 as shown in Figure 4b. In Figures 4c and 4d, voltage and
current output responses are presented by implementing the P&O and
DAE-based MPPT algorithms. All MPPs in Figure 4b were rounded
off to the 6™ decimal place, and all the values of MPPs from the DAE-
based MPPT algorithm at each irradiance level exactly matched to the
results from Equation 5 with low CPU time (~0.125 s). On the other
hand, the CPU time of the P&O algorithm was significantly slower
(27.971 s) than the DAE-based MPPT algorithm with lesser accuracy.
This case study clearly illustrates the DAE-based MPPT algorithm’s
high accuracy, reliability, and computational speed over the traditional
P&O MPPT algorithm.

Modeling of PV Arrays with MPPT Controller & Power
Electronics Components

In this section, we present a system with a bidirectional DC/DC
converter and bidirectional DC/AC inverter (DC: Direct Current, AC:
Alternative Current) that are added to the PV arrays, as shown in Figure
5. We compare combined PV systems’ performance between the P&O

E3029

DC Bus (Vpe) AC Bus

n
DC/DC
PV Arrays Convertor DC/AC
Invertor

Figure 5. System configuration of a stand-alone PV microgrid, consisting of
PV systems, a bidirectional DC/DC converter, a bidirectional DC/AC inverter.

and DAE-based MPPT algorithms with mathematical models of power
electronics in PV microgrids under the dynamic irradiance condition.
Raw irradiance data were chosen from NREL’s Measurement and
Instrumentation Data Center (MIDC) based on ten-minute resolution
data®

Power electronics components.—A bidirectional DC/DC con-
verter is used for PV systems, stepping up/down voltages from its
input to output. It regulates output voltages and maintains a constant
voltage across DC bus from varying voltages of PV systems under the
assumption that there are no energy losses. Here, the voltage value
(Va.) across the DC bus was fixed at 100 V, which was accomplished
by increasing or decreasing the duty cycle, which is performed by
using Pulse Width Modulation (PWM) of the square-wave pulses to
the switches of the DC/DC converter.>* The equations implemented
for the bidirectional DC/DC converter are:>

Lic,pv(@) = (1 = Dpy(®)) - Ipy ous (1) [10]

. 1
1 — Dpy(t)
L., pyv(t) is the DC bus current, Vpy ., (¢) is the output voltage,

Ipv.ou(t) is the output current, and Dpy(¢) is the duty ratio of the
DC/DC converter, from PV systems. A bidirectional DC/AC inverter,

Vae Vv, ou(t) (11]

1200 250
(@) (b) SeeR
«~1000- 200 S
e _
2 800-
s = 150
S 2
E 600 £
©
§ 400 2 100+ Figure 6. Comparison of voltage, current and
- c power outputs between P&O and DAE-based
‘—o‘ 200 50 MPPT algorithm. (voltage step = 0.1 V, time step
7] = 15 seconds) (a) Solar irradiance in LA in April
04 0 e 10th, 2010. (b) Power outputs (c) Current outputs
6 8 10 12 14 16 18 20 L e 3 10 12 14 1o S 20 (d) Voltage outputs, from the proposed DAE (wine
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25+ Ml small differences accumulate over time resulting
6- in significant energy and cost savings. In (c) and
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< 44 g, 151 to the P&O algorithm.
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Table IV. Calibration of P&O algorithm by adjusting voltage and time step.

Time step (s)

Voltage step (V) CPU time (s) & Power (kW) 1 5 10 15 20
0.05 CPU time 168.965 26.863 12.855 8.502 6.006
Power 1308.834 1308.540 1305.880 1297.877 1287.782
0.1 CPU time 171.133 27.955 13.011 8.767 6.208
Power 1308.792 1308.682 1308.441 1307.965 1305.725
0.5 CPU time 171.632 27.753 14.196 9.094 6.272
Power 1306.564 1306.424 1306.249 1306.073 1305.810
0.1 CPU time 173.566 27.285 13.276 8.487 6.302
Power 1301.177 1300.970 1300.711 1300.452 1300.124

which changes DC to AC or AC to DC, is implemented, since most
standard appliances run on AC on the consumer side. Here, the con-
version efficiency (1) is fixed as 0.85.

Pout,PV(t) =n- Pin.PV(t) [12]

P, pv(t) is the output power from the DC/AC inverter, and
Py, py(t)(= Vye - Lye, py (1)) is the input power from the DC/DC con-
verter connected to PV systems.

Results.—The MPPT simulation for PV arrays was conducted for
a single day in LA, in April 2010 as shown in Figure 6. PV arrays
were scaled up to kilowatt-scale systems. Figure 6a shows that the
sun rises at 6 AM, and solar irradiance rises and falls until 7 PM. Un-
der the rapidly changing environmental conditions, voltage and time
step in the P&O algorithm need to be calibrated to produce the best
performance as shown in Table IV. When the voltage step is 0.1 V,
the maximum power output is generated, and computation time de-
creases with a small decrease in power as the time step increases. In
other words, when the time step is increasing from 5 to 20 seconds,
power outputs are the maximum in the voltage step of 0.1 V. Also,
the time step of 15 seconds has a good balance between computa-
tion time and power outputs. Accordingly, the time and voltage step
are fixed as 15 seconds and 0.1 V, respectively. For the DAE-based
MPPT algorithm, Equations 2, 8, 9, 10, 11, and 12 were implemented.
The DAE-based MPPT simulation’s total CPU time is 0.702 seconds,
which is 12 times faster than the P&O algorithm with more power
(P&O: 1307.96 kWh, DAE: 1308.89 kWh), as shown in Figure 6b.
Also, while the P&O produces oscillations around MPPs (see Figures
6¢ and 6d), the DAE-based MPPT algorithm precisely follows MPPs.
It is evident that the amount of energy loss will increase as the PV
systems’ scale increases.

Modeling of PV Arrays with MPPT Controller, Battery & Power
Electronics Components

Batteries and power electronics components connected to the bat-
teries are added to the system explained in Modeling of PV arrays with

models for batteries is straightforward. The mathematical structure of
the DAE-based MPPT helps easily add battery and power electronic
models in the microgrid architecture (see Equations 2 and 8). For
example, even the reformulated P2D model, one of the highly non-
linearized DAE battery systems, which includes several important
internal variables simulated at a reasonable computation time,’® can
be simply incorporated into the DAE-based MPPT algorithm, power
electronics, and PV arrays mathematical models. Instead of adding
one arbitrary equation (Equation 9), the combination of reformulated
P2D battery, power electronics, PV arrays, and the DAE-based MPPT
mathematical models, which includes several ODEs and AEs, be-
comes a system of DAEs as shown in Figure 8. The DAE solvers
in the computational software allow the entire microgrid system to
be simulated simultaneously with high accuracy and low computa-
tion time under rapidly changing environmental conditions.?>*! As
more detailed physics-based battery models are involved in the entire
microgrid, the DAE-based MPPT algorithm will be better suited for
simultaneous simulations under real environmental conditions.

Reformulated P2D battery model.—An ideal battery model would
provide good prediction while maintaining minimal computational
cost. The porous electrode P2D model, which is one of electrochem-
ical engineering models, includes several significant internal vari-
ables and has a predictive capability for battery simulations.’>** The
P2D model is one of the most accurate and experimentally validated
physics-based battery models that allows for modeling of critical in-
ternal states used in the literature. The simulations are conducted on
a mathematically reformulated P2D model that enables entire micro-
grid simulations to be solved in a reasonable time.?®3* High accuracy
and short computation time of the reformulated P2D model are well
suited for grid applications.** The reformulated model discretizes de-
pendent variables as a series of trial functions, rather than a finite
difference approach, using coordinate transformation and orthogo-
nal collocation.”® Also, the Solid Electrolyte Interphase (SEI) layer

MPPT controller & power electronics components section, as shown DG Bus Voc) G
in Figure 7,>* representing a typical microgrid with generation and ”
storage. In this section, we show the performance of the reformulated P -
Pseudo-2-Dimensional (P2D) battery model®® with the DAE-based 1? ==
MPPT algorithm in this PV-Battery microgrid. All simulations were
conducted under the same environmental conditions as in the previous PV Arrays CBI::VIeDr(t:OI' — AC
section. A single-step solution approach has been applied in this large N Darmanid
simulation, which allows for DAEs in microgrid controls to be solved
without a priori knowledge of exact initial conditions for algebraic DC/AC
variables.?’ —_ Invertor
Battery Iy

Conventional and proposed control algorithms.—Implementa- -

tion of highly non-linearized DAEs in detailed battery models with C(?r?\jeDr(t:or

MPPT feedback algorithms such as P&O and ICond causes a signif-
icant time-delay as the controls consume computation time at every
time step.?*-3" However, once the DAE-based MPPT algorithm is effi-
ciently simulated as illustrated in the earlier sections, adding efficient

Figure 7. System configuration of a stand-alone PV-Battery microgrid, con-
sisting of PV systems, bidirectional DC/DC converters, a bidirectional DC/AC
inverter, and batteries.
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AE System
I(t)=g(t, V, G, I)
I(t)=h(t, V, G, I)

G: Insolation

Electrochemical
Engineering
Battery model

- DC/DC Converter
- DC/IAC Inverter
- Demand

Simultaneous modeling,
simulation, and control

Figure 8. Simultaneous modeling, simulation, and control of microgrids, in-
cluding DAE-based MPPT algorithm and electrochemical engineering battery
model. Implementation of physics-based battery models incorporating current
microgrid controls consumes considerable computation time. This is perhaps
one of the reasons why empirical battery models are commonly used in grid
communities. The proposed direct DAE implementation approach enables
real-time simulation of physics-based models in microgrids.

is modeled by considering irreversible side reactions. During charg-
ing operations, some of the cyclable lithium ions are removed by
reactions between the lithium ions and electrolyte, and the reactions
create a passivation layer around the anode, which is described by
Butler-Volmer kinetics (see Table VI).’>* Equations, variables, and
parameters related to the reformulated P2D model are arranged in
Tables V-VIII26-32.33.35.36

Simulation of battery operation.—Batteries are charged through
the power from the PV arrays converted by the DC/AC inverter and
discharged based on users’ demands on the microgrid. The solar en-
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Table VI. Additional equations for Li-ion P2D model.
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ergy converted by the DC/AC inverter will be provided directly to
users on the microgrid for any demand below the level of the solar
power, and batteries will be charged with any power available above
the level of demand. In contrast, when the converted solar power de-
creases below the desired level of demand, batteries will be discharged
to provide the stored energy to the users. The bidirectional DC/DC
converter is connected to batteries in the same manner as the PV sys-
tems’ configuration. Also, the role of power electronics connected to

Table V. Governing equations for Li-ion P2D model.
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Table VII. List of variables for Li-ion P2D model.

Symbol Variables Units
c Electrolyte concentration mol/m?
cf Solid phase concentration mol/m3
[off Solid phase potential A%
[oF) Liquid phase potential v
cssurf Solid phase concentration at surface mol/m?
c5ave Average solid phase concentration mol/m>
1 Applied current density Alm?
U; Open circuit potential at positive (i = p) and A%
negative (i = n)
Ji Pore wall flux at positive (i = p) and mol/m?/s
negative (i = n)
Keffi Liquid phase conductivity at positive S/m
(i = p), separator (i = s), and negative
(i =n)
D.yy.i Effective diffusion coefficient conductivity m%/s
at positive (i = p), separator (i = s), and
negative (i = n)
Oeff,i Effective solid phase conductivity at positive S/m
(i = p) and negative (i = n)
0; State of charge at positive (i = p) and -
negative (i = n)
JSEI Flux associated with SEI layer growth mol/m?2/s
Col Concentration of solvent at anode surface mol/m3
Crit Concentration of electrolyte at anode surface mol/m3
3 SEI layer thickness m

batteries, the voltage value across the DC bus, and the bidirectional
DC/AC inverter’s conversion efficiency are assumed to be the same as
the PV systems were described in the previous section. The DC/DC
converter’s equations are:>

Ia’c,battery(t) = (1 — Dbattery(t)) . Ibattery, uut(t) [13]
1

Vie = mvbuttery,out(t) [14]

Pin,battery(t) = Idc,batter)'(t) ! VdC [15]
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Lac, barrery(t) is the DC bus current, Vjaery,ou (1) is the output volt-
age, Lpastery, out (t) is the output current, and Dy, (1) is the duty ratio
of the DC/DC converter, from batteries. For the bidirectional DC/AC
inverter, the amount of DC/AC inverter’s output power (P, parery(t))
supplied by batteries’ power (P, parrery(t)) can be calculated based
on the relation between the input and output power in Equation 12 as
shown below:

Poul,ballery(t) =n- Pin‘ballcry(l) [16]

Pout pariery(t) is the output power from the DC/AC inverter, and
Py pasrery(t) is the input power from the DC/DC converter connected to
batteries. Batteries are operated to make up the difference between the
demand (Pyemana(t)) and the PV arrays’ power (P, pv(t)) converted
by the DC/AC inverter.

Pout,batt('ry(t) = Pout,PV(t) - Pdemand(t)
By substituting Equations 12 and 16 into Equation 17, we get
Pdemand(l)

[17]

Pin,battery(t) = Pin,PV(t) - [18]

Results.—The reformulated P2D model for single cath-
ode/separator/anode cell sandwich was scaled up to a kilowatt-scale
systems corresponding to the power level of PV systems and de-
mands (assuming no loss in performance). A 1500 kWh sized battery
with 10% initial state of charge (SOC) was used in the simulation to
illustrate the efficiency of the P2D model along with the fast compu-
tation time in proposed microgrid controls. Cost and energy savings
by implementing the proposed control strategy including the elec-
trochemical engineering model and DAE-based MPPT algorithm is
also presented. The demand starts at 12 PM and continues until 7
PM at a constant value (120 kW), as shown in Figure 9a. The total
demand is 840 kWh. The power obtained from solar arrays, using the
P&O and DAE-based MPPT algorithm, are 1307.96 kWh and 1308.89
kWh, respectively. The battery will be discharged when the demand
is greater than the power supplied from solar arrays, and vice versa
(see Figure 9b). In other words, when batteries’ current is below zero,
which means demand is greater than solar array’s power, batteries
are discharged. In Figures 9c and 9d, the reformulated P2D model
predicts voltage and SOC accurately with reasonable CPU time. The

Table VIII. Parameters for Li-ion P2D model.

Symbol Parameter Positive Electrode Separator Negative Electrode Units
oi Solid phase conductivity 100 100 S/m

Efi Filler fraction 0.025 0.0326 -

& Porosity 0.385 0.724 0.485 -

Brugg Bruggman Coefficient 4 4 4 -

D Electrolyte diffusivity 7.5 x 10710 7.5 x 10710 7.5 x 10710 m?/s

D} Solid Phase Diffusivity 1.0 x 10714 3.9 x 1071 m?/s

ki Reaction Rate constant 2.334 x 10°1 5.031 x 10~ 1 m23/(mol® s)
€ max Maximum solid phase concentration 51554 30555 mol/m?
o Initial solid phase concentration 25751 26128 mol/m>
co Initial electrolyte concentration 1000 1000 1000 mol/m>
Ry Particle Radius 2.0 x 1076 2.0 x 1076 m

a; Particle Surface Area to Volume 885000 723600 m?/m®

I; Region thickness 80 x 1076 25 x 107° 88 x 107 m

[ Transference number 0.364 -

F Faraday’s Constant 96487 C/mol

R Gas Constant 8.314 J/(mol - K)
T Temperature 298.15 K

p Density 2500 1100 2500 kg/m?
kser Rate constant for SEI reaction 1.5 x 1076 A/m?

a Transfer coefficient 0.5 0.5 -

User Open circuit potential for SEI layer 0.4 v

KSEI Conductivity of SEI layer 1 S/m

PSEI Density of SEI layer 2.1 x 103 kg/m?
MsEgr Molecular weight of SEI layer 0.026 kg/mol
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Figure 9. Performance of reformulated P2D battery model under dynamic irradiation condition. (a) Solar power outputs from DAE-based MPPT (wine color and
empty circle) and demand (blue color and filled triangle). (b) Current outputs (c) Voltage outputs (d) SOC. The proposed approach enables aggressive control of

batteries for microgrids as internal variables are predicted accurately in real-time.

proposed control scheme’s running time is only 19.157 seconds for a
single day simulation. As we mentioned before, lithium-ion batteries
are the most expensive single component accounting for about 60%
of overall CapEx among the whole microgrid components.’ Total
costs of microgrids currently range between 583 and 1166 $/kWh.’
Accordingly, total costs of the lithium-ion batteries in CapEXx is be-
tween 350 and 700 $/kWh. For example, if we can reduce the bat-
tery size by 50%, total cost of the battery system will decrease to

x10™

SEIl layer growth (um)

6 8 10 12 14 16 18
PM PM
Time (hours)

Figure 10. SEI layer growth predicted by the P2D battery model. The pro-
posed approach enables real-time prediction of capacity degradation in a par-
ticular cycle. Fast simulation of degradation of batteries over multiple cycles
will be useful for improving the life of the batteries for microgrid applications.

175-350 $/kWh with significant reduction in total cost for large-scale
microgrids.

Simple empirical/equivalent-circuit or black-box battery models
will not be able to capture the essential dynamics of battery perfor-
mance accurately and will provide poor estimates of cell size and
costs. The proposed approach is fundamentally different from the
existing microgrid control architecture. Instead of treating cells as a
black box, critical internal states will be addressed with high accu-
racy and capable of being simulated in real-time. For example, SEI
layer growth from the reformulated P2D battery model is presented
in Figure 10. The SEI layer causes lithium ions’ diffusion resistance
and a voltage drop across the battery. Including the SEI layer growth
as an internal variable can be used to control the capacity fade over
cycles.* Even though capacity fade/degradation is accelerated by ex-
treme charging patterns, increased temperature, and overcharging, the
batteries degrade even under normal operation.

Practical Impact and Implementation into a Microcontroller

Current state of the art typically involves using empirical models
for batteries in grid simulation. Recently, aggressive and efficient
control strategies for grid and renewable grids are heavily supported
by the U.S. Department of Energy.’’-® However, current perception
amongst the grid community is that physics-based battery models
are too complicated to be used in grid control. We hope that this
paper shows that aggressive control strategies for renewable grids can
benefit from real-time simulation of physics-based battery models. In
this section, we illustrate that the DAE-based microgrid control can be
implemented in a low cost microcontroller, while performing better
than current microgrid algorithms. Lithium-ion battery packs in grid
or otherwise are always connected to a Battery Management System
(BMS). BMSs are devices that are responsible for safely operating the
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battery.>* With a microcontroller or a microprocessor onboard, a BMS
can be made to operate the battery for satisfying desired control goals.
To make the DAE-based microgrid control commercially viable, we
must be able to simulate the model in a low cost microcontroller in real-
time. As a proof-of-concept, we have used a BeagleBone Black (BBB)
to represent such a microprocessor system with minimal computing
specifications. BBB has 512 MB of onboard RAM with Cortex ARM
processor running Linux*’ and is the size of a credit card. An open
source free solver IDA, which is part of SUNDIALS,* simulates the
PV array with the DAE-based MPPT controller and power electronics
(see Modeling of PV arrays with MPPT controller & power electronics
components section) in 1.1 seconds and the implementation of the
reformulated P2D battery model with other microgrid components
(see Modeling of PV arrays with MPPT controller, battery & power
electronics components section) in 2.8 seconds.

Conclusions

Batteries in the microgrid system need to be understood well for
accurate characterization, and an intelligent management system to
monitor and maintain economic, safe and optimal operations. Con-
ventional battery controls in the microgrid only allow for meeting
the power demand but lack predictability and accuracy. This work
provides new insights for research on microgrid control strategy for
the following reason: simultaneous modeling, simulation, and con-
trol by incorporating physics-based electrochemical engineering bat-
tery models along with PV arrays, DAE-based MPPT algorithm, and
power electronics. Our findings show that the proposed microgrids
control, including the DAE-based MPPT algorithm with the P2D bat-
tery model, is capable of saving a significant amount of energy and
cost. Proposed controls approach would help optimize the perfor-
mance of batteries in microgrids. Also, proposed controls simulate
the performance of individual components in the microgrid simulta-
neously and meet the grid constraints. Our current and future work
involves performing optimal and model predictive control strategies to
improve the performance of battery stacks for grid applications for im-
proved life, deeper depth of discharge, reduced levelized cost, and to
enable and benefit from two bidirectional flow of information, energy
and control actions from both batteries and the rest of the grid. Ad-
vanced controls based on proposed modeling and control techniques
would reduce the induced degradation of batteries and improve the
performance of the overall microgrid system.
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