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a b s t r a c t 

Artificial Neural Networks (ANNs) are well known for their credible ability to capture non-linear trends in 

scientific data. However, the heuristic nature of estimation of parameters associated with ANNs has pre- 

vented their evolution into efficient surrogate models. Further, the dearth of optimal training size estima- 

tion algorithms for the data greedy ANNs resulted in their overfitting. Therefore, through this work, we 

aim to contribute a novel ANN building algorithm called TRANSFORM aimed at simultaneous and optimal 

estimation of ANN architecture, training size and transfer function. TRANSFORM is integrated with three 

standalone Sobol sampling based training size determination algorithms which incorporate the concepts 

of hypercube sampling and optimal space filling. TRANSFORM was used to construct ANN surrogates for 

a highly non-linear industrially validated continuous casting model from steel plant. Multiobjective opti- 

mization of casting model to ensure maximum productivity, maximum energy saving and minimum op- 

erational cost was performed by ANN assisted Non-dominated Sorting Genetic Algorithms (NSGA-II). The 

surrogate assisted optimization was found to be 13 times faster than conventional optimization, leading 

to its online implementation. Simple operator’s rules were deciphered from the optimal solutions using 

Pareto front characterization and K -means clustering for optimal functioning of casting plant. Comprehen- 

sive studies on (a) computational time comparisons between proposed training size estimation algorithms 

and (b) predictability comparisons between constructed ANNs and state of art statistical models, Kriging 

Interpolators adds to the other highlights of this work. TRANSFORM takes physics based model as the 

only input and provides parsimonious ANNs as outputs, making it generic across all scientific domains. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Artificial Neural Networks (ANN), one of the efficient data mod-

elling techniques, are finding extensive real world applications

including operational research ( Sermpinis, Theofilatos, Karathana-

sopoulos, Georgopoulos, & Dunis, 2013 ). Well known for their abil-

ity to capture nonlinear dynamics of complex data ( Barrow &

Kourentzes, 2016; Denton & Hung, 1996; Sexton, Dorsey, & John-

son, 1999; Kamini, Vadlamani, Prinzie, & Van denPoel, 2014 ), ANNs

are advantageous over similar class of technologies such as Support

Vector Machines (SVMs) and Response Surface Methods (RSMs).

SVMs, like ANNs, implement supervised learning techniques to

classify the given data. Belonging to the class of machine learn-

ing algorithms this method works by creating partition between

data points such that the distance from the closest training point

to the partition is maximised. Primarily designed for linear clas-
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ification, this method is also extended for non-linear classifica-

ion by transforming the working domain to a region of higher di-

ensions ( Sermpinis, Theofilatos, Karathanasopoulos, Georgopou-

os, & Dunis, 2017 ). RSMs on the other hand are statistical models,

hich try to regress lower order (commonly, second order) poly-

omials to build data based relationship between explanatory and

esponse variables. Here, the optimizer finds the optimal response

f objective function through a sequence of designed experiments.

his method has found immense applications in engineering and

perational research due to its extreme simplicity and ease in im-

lementation ( Shi, Shang, Liu, & Zuo, 2014 ). However, several dis-

dvantages which creep in due to the heuristic estimation of pa-

ameters governing the neural networks create suspicion in their

redictability ( Wong & Hsu, 2006 ). This impression is further solid-

fied with the trial and error based determination of training sam-

le size without implementing a formal design of experiments or

ample plan. Lack of an intelligent framework for ANN construc-

ion has put them in the back step behind robust statistical data

odellers such as Kriging Interpolators ( Mogilicharla, Mittal, Ma-

umdar, & Mitra, 2015 ). 

http://dx.doi.org/10.1016/j.ejor.2017.05.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2017.05.026&domain=pdf
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The motivation for the current work is to contribute in op-

rational research a novel ANN building algorithm called TRANS-

ORM ( TR ade-off between A ccuracy, N odes and S ample size FOR

 eta-modelling). This intelligent framework, capable of estimating

ost of the ANN related parameters, thereby making it parameter

ree, determines the best configuration and optimal training sam-

le size, simultaneously. While doing this, TRANSFORM ensures a

alance between the aspects of over-fitting and prediction accu-

acy. Further, three novel sample size determination techniques de-

igned using two potential concepts: hypercube (HC) sampling and

pace filling based single objective optimization (SOOP) formula-

ion, are presented. TRANSFORM is fast enough to be implemented

n real time and generic enough to be applied to any physics based

odel without constraints on dimensionality. 

In this work, we aim to explore the scope of TRANSFORM-ANNs

TRANSFORM based ANNs) as surrogate model for online imple-

entation of computationally expensive optimization processes. As

n example, we considered a 7-input-2-output industrially vali-

ated highly non-linear continuous casting ( concast ) model from

teel plants. The main reason behind our decision to use the con-

ast model is to demonstrate the potential of TRANSFORM to con-

truct ANNs capable of emulating the complex physics based mod-

ls. Physics based models are highly robust and accurate owing to

igorous implementation of scientific principles behind the con-

idered phenomena. Often this leads to the comprisal of several

ifferential Algebraic Equations (DAE), thereby increasing the com-

utational expense in simulating the model ( Mogilicharla, Chugh,

ajumdar, & Mitra, 2014; Olaf, Barth, Freisleben, & Grauer, 2005;

uud, Driessen, Hamers, & Hertog, 2005; U ̆gur, Karasözen, Schäfer,

 Yapıcı, 2008 ). Concast is one such model containing a mix of

artial different equations, ordinary differential equations and sev-

ral algebraic empirical correlations, whose details are described in

ubsequent sections of this paper. 

Optimal running of casting plant in steel industries is one of

he prime targets of production plant managers. Incorporating the

ecisions of management, which are mainly driven by the volatile

ature of markets, requires the plant wide optimization and con-

rol to be implemented in online fashion. In online optimization,

he optimizer works in consolidation with a robust controller, thus

ogether forming an effective Advance Process Control (APC) unit.

ere, considering the practical changes to be implemented, the op-

imizer often solves a multiobjective optimization problem (MOOP)

n real time. The optimal solutions are then provided to the con-

roller as the set point. However, the working of APC unit in real

ime requires the inherent model to be computationally efficient.

hus, owing to the complex nature of concast , its optimization is

lways confined to the offline mode. 

This enables the implementation of meta-models, also known

s surrogate models, which are trained to emulate the physics

ased model accurately. These surrogates then replace the time

onsuming physics based model during their optimization to gen-

rate simulations fast enough to run it in online mode ( Jin, 2011;

abatabaei, Hakanen, Hartikainen, Miettinen, & Sindhya, 2015 ). 

We thus implemented TRANSFORM in conjunction with the

roposed sample size determination techniques to construct par-

imonious ANNs capable of predicting concast with maximum ac-

uracy. Before moving on to the ANN surrogate assisted online

mplementation, we optimized the casting model without surro-

ate using both classical and evolutionary optimizers. Further, a

omparative performances between the TRANSFORM based ANN

TRANSFORM-ANN) and Kriging Interpolators is also presented. As

t turns out the TRANFORM-ANN outperformed Kriging Interpola-

ors in terms of sample size requirement and statistical accuracy.

ignificant reduction in computational time due to the implemen-

ation of TRANSFORM-ANN assisted optimization of concast lead to

ts online implementation. 
Finally, we present a set of operator’s rules using the concept

f Pareto characterization and K -means clustering algorithm. These

ules draw the mapping from complex mathematical realization of

ptimization studies such as Pareto to a set of simple linguistic in-

tructions aiding the ground operators to enable optimal function-

ng of casting plant. 

The rest of the paper is organized as follows – we first present

he literature survey of several recent contributions in the field of

esearch which forms the central theme of this paper. This is fol-

owed by the continuous casting model description and formula-

ion of its optimization problem. Proposed algorithm TRANSFORM

nd novel size estimation algorithms are discussed next. The rest

f the paper is devoted to surrogate building, comprehensive com-

arison studies, ANN surrogate assisted optimization, scope for on-

ine implementation and discussions on Pareto characterization, all

ummed up in the results section following which the novelty in

urrent contribution is briefly summarized in conclusions. 

. Literature review 

ANNs being potential classifiers can serve as ideal candidates

or meta-modelling. However, they suffer with major disadvantages

uch as those listed below: 

• Heuristic based design of architecture. 
• No proper guidelines for choosing the transfer function of net-

work. 
• No sample plan and measure of optimal sample size. 
• ANN model often gets over-fitted. 

These drawbacks not only degrade the performance of ANNs

ut also prevent them from qualifying as potential surrogates for

ptimization. The objective of this work is to contribute an effi-

ient ANN building algorithm capable of solving all the aforemen-

ioned problems simultaneously, within short time frame to en-

ure its streamlining with online optimization. For this purpose,

e present TRANSFORM with two novel sample size estimation

echniques. Our proposed methods for architecture estimation and

ize determination are not implemented yet. However, Dua (2010) ,

eported solving a mixed integer nonlinear programming problem

MINLP) to determine the optimal configuration of ANN. The algo-

ithm being robust, does not address the other issues of ANNs and

urther, the computational complexity involved in solving MINLP

annot be ignored ( Dua, 2010 ). In another work, configuration of

NN was obtained by solving an optimization problem with the

bjective of maximizing the prediction accuracy of each of the out-

uts ( Boithias, Mankibi, & Michel, 2012 ). If the number of outputs

re large (say > 3), the proposed method might take a huge time

o converge ( Deb, 2001 ). Carvalho, Ramos, and Chaves (2011) used

he weighted combination of training error, validation error as a

ingle objective function to resolve the problem of architecture de-

ign ( Carvalho et al., 2011 ). However, a more generic metric such as

he Akaike Information Criteria (AIC) ( Akaike, 1971 ), representing

arsimonious nature of the network, might have served as more

uitable objective function. Moreover, weighted sum approach has

een shown to fail for generating well-distributed Pareto optimal

PO) points while solving MOOPs ( Deb, 2001 ). 

The problem of sample size determination (SSD) for black box

odels in general, is broadly classified into two categories – adap-

ive and sequential sampling ( Eason & Cremaschi, 2014 ). Sequen-

ial sampling is similar to forward marching problem where points

re sampled sequentially until the surrogate is trained with de-

ired accuracy. Many researchers contributed in this area using

ethodologies such as Delaunay triangulations ( Davis & Ierapetri-

ou, 2010 ), Voronoi tessellations ( Crombecq, 2011 ), optimization

ased approaches and Monte Carlo based random sampling meth-

ds ( Crombecq, 2011 ). On the other hand, the adaptive sampling
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Table 1 

MOOP-1 formulation of continuous casting model. 

Objective functions Decision variables 

Maximize slab exit temperature ( T ) S L 2 ≤ Spra y 2 flowrate ≤ S U 2 

Maximize casting speed S L 3 ≤ Spra y 3 flowrate ≤ S U 3 

Minimize bulging ( B ) S L 4 ≤ Spra y 4 flowrate ≤ S U 4 

S L 5 ≤ Spra y 5 flowrate ≤ S U 5 

S L 6 ≤ Spra y 6 flowrate ≤ S U 6 

S L 7 ≤ Spra y 7 flowrate ≤ S U 7 

LB ≤ caster speed ≤ UB 
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methods focus on sampling exclusively in the regions which ex-

hibit extreme non-linearity. A classic contribution in this regard

is by Jones 2001 for Kriging Interpolation (KI) surrogate models,

a Gaussian regression based statistical procedure and the current

state of art in surrogate literature ( Jones, 2001 ). The advantage

with this stochastic technique, is the availability of standard mea-

sure of prediction accuracy at any interpolated point. The sampling

strategy to sample a new point is such that the improvement in

the prediction error is maximized. Although this makes KI a ro-

bust technique, concern still lies with its ability to uniformly sam-

ple the input domain ( Müller & Shoemaker, 2014 ). Of other adap-

tive sampling techniques reported in literature, the most promi-

nent one is the technique which samples by minimizing the pre-

diction variance ( Kleijnen, 2016 ). A recent contribution reported

three novel iterative methods for SSD ( Eason & Cremaschi, 2014 ).

First one, based on incremental Latin Hypercube Sampling (i-LHS)

sampling strategy, fails to preserve the sample points utilized in

previous iterations while the second method requires creation of

large number of random subsamples for variance estimation. The

third method is a combination of first and second. 

SUMO toolbox built using MATLAB ( Gorissen, Couckuyt, De-

meester, Dhaene, & Crombecq, 2010 ) is one of the effort s towards

enabling usage of various surrogate models under one platform.

This package has wide applicability as it effectively deals with al-

most all the aforementioned surrogate techniques. Similarly, Müller

and Shoemaker (2014) presented a framework, where the choice of

surrogates and problem of training sample size is articulated. How-

ever, the SUMO toolbox does not provide a robust sample size de-

termination algorithm which can avoid over-fitting, while the lat-

ter tries to utilize the combinatorial power of heterogeneous sur-

rogates along with random sampling strategy. 

3. Continuous casting model and its optimization problem 

formulation 

Cost and energy effective process of continuous casting has en-

abled a steep rise in implementation of this process by the steel-

makers across the globe. In this process, molten steel coming from

a blast furnace is first cooled in a water cooled copper cast, held by

a steel jacket. Subsequently the melt is further cooled by moving

it across a series of seven water sprays. This ensures progressive

cooling of the liquid steel within the desired temperature range.

Recently, the casting mill is integrated with rolling mill to enable

the steel makers to produce flat and thin strips of steel in cost ef-

fective manner. The casted steel bar is further sent to the hot mill

where it is hot rolled to produce flat strips of steel. Continuous en-

deavour is there to increase the productivity of the steel using this

process of casting into thin sheets. 

Mitra and Ghosh (2008) suggested that increasing the caster

speed could be one possible route by which the productivity can

be improved ( Mitra & Ghosh, 2008 ). However, increasing the caster

speed results in severe fluctuations in the bulging profile of steel,

thereby increasing the chances of deformations in the slab ( Mitra

& Ghosh, 2008 ). The fluctuations in the bulging profile can be sup-

pressed by increasing the cooling rate of the slab. But random

increase in flowrates of the series of sprays will reduce the exit

temperature of the slab drastically, before it is sent to an in line

furnace leading to the roll mill. In accordance with the effective

industrial operating conditions, the temperature of the incoming

steel slab into the reheating furnace should be maintained as high

as possible to save upon the fuel and energy consumption. Thus,

on the basis of these conflicting industrial requirements, a multi-

objective optimization problem (MOOP-1) was formulated where

the objectives considered were considered as minimizing the total

bulging, maximizing the exit temperature and maximizing the cas-

tor speed, simultaneously. The flow rates of series of sprays (start-
ng from Spray 2 to 6) and caster speed act as the decision vari-

bles (see Table 1 ). Due to the industrial constraint, the flowrate at

ozzle Spray 1 was maintained constant. 

In order to solve MOOP-1, a robust continuous casting model

as built to map the 6 spray flowrates and caster speed with out-

et temperature and an empirical measure of bulging in steel slab.

he model involves partial differential equations for heat transfer

oupled with empirical models for bulging phenomena. It is solved

sing control volume method with tri-diagonal matrix algorithm.

he details of this model formulation are presented in Appendix A

f supplementary file. 

. TRANSFORM: a novel parameter free ANN surrogate building 

lgorithm 

.1. Idea behind TRANSFORM 

The output of ANN is a summation across several layers of

eighted inputs and biases activated using a specific function

alled transfer function. Apart from input and output layers, ANNs

onsists of a number of hidden layers made up of parallel process-

ng units called nodes which provide sufficient handles for cap-

uring nonlinear dynamics. Representing each hidden layer of an

NN as a hyper-plane which linearly segregates the sampled data

 Hagen, Demuth, & Beale, 2002; Haykin, 1994 ), it is evident that

ultiple hidden layers are required for classifying linearly insep-

rable data. Since the nature of the training set is not known

 priori , the exploration of architectures cannot be restricted to sin-

le layered networks. Thus for enhancing the classification ability

nd thereby prediction accuracy, ANNs need to have large num-

er of hidden layers with sufficient number of nodes in each layer.

owever, consideration of a large arbitrary number of hidden lay-

rs is also not appropriate as it might lead to an outburst of pa-

ameters (e.g., weights and biases) causing over-fitting. This en-

bles us to achieve a trade-off between prediction accuracy and

otal number of nodes in the network. 

For a given architecture, initially the increment in number of

raining samples enhances its predictability. Although the extent

f improvement also depends significantly on selected architec-

ure and the underlying model, the aforementioned fact is justi-

ed under the purview of the basis on which adaptive and sequen-

ial sampling methods were developed. However, providing a large

ample set over-fits the considered ANN model. Thus a trade-off

etween accuracy of predictions and training sample size can be

nferred easily. The interdependency of accuracy, sample size and

otal nodes, results in third trade off which is between the sam-

le size and total nodes of the network. This ideology pictorially

epresented in Fig. 1 , leads to the formulation TRANSFORM. 

.2. Problem formulation 

Given the conflicting nature of accuracy, sample size and total

odes (as shown in Fig. 1 ), a multiobjective optimization problem

MOOP-2) has been formulated with the objectives of finding an
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Fig. 1. Idea behind formulation of TRANSFORM. 

Table 2 

Multiobjective optimization problem (MOOP-2) formulation for TRANSFORM. 

Objectives Decision variables 

Maximize accuracy in terms of R 2 Nodes in hidden layer 1: 1 ≤ N 1 ≤ 8 

Minimize total number of nodes, N Nodes in hidden layer 2: 0 ≤ N 2 ≤ 7 

Minimize total sample size, n Nodes in hidden layer 3: 0 ≤ N 3 ≤ 7 

Transfer function choice: N _TF 0 or 1 
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Fig. 2. TRANSFORM: parameter free ANN surrogate building algorithm. 
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rchitecture having maximum prediction accuracy along with min-

mal associated nodes and minimum training points (as shown in

able 2 ). Exploration of multiple hidden layers was limited up to

our layered architectures (3 hidden and one output layer), as fur-

her increase in number of layers would lead towards the dangers

f over-fitting. The first three decision variables of MOOP-2 rep-

esenting the number of nodes in the three hidden layers were

aried from 1 to 8, 0 to 7 and 0 to 7, respectively, while, the

ourth decision variable representing the transfer function choice

as binary. A choice of 0 and 1 for the fourth decision variable,

ould enable the activation using log sigmoidal transfer function

nd tan sigmoidal function, respectively. The inclusion of 0 as the

ower limit for the bounds of the second and third decision vari-

bles was to ensure the emergence of single and two hidden lay-

red networks as candidates for optimization. An architecture pre-

ented as 7-3-4-2-1 signifies 7 inputs and 1 output as the first and

ast entry in the numeric expression, whereas there are three hid-

en layers in the architecture with 3, 4 and 2 number of nodes

n the first, second and third hidden layers, respectively. The deci-

ion variable set describing the same architecture will be { N 1 = 3,

 2 = 4, N 3 = 2, N _TF = 0}. 

The integral nature of the decision variables and nonlinear ob-

ective functions in the proposed MOOP-2 formulation gives it the

tatus of Mixed Integer Non-Linear Programming Problem (MINLP)

hich are known to be extremely challenging to solve using the

onventional optimization solvers. Further lack of gradient infor-

ation and multi-objective nature of MINLP problem prevents the

se of conventional classical methods to solve MOOP-2 because of

hich we implemented binary coded non dominated sorting Ge-

etic Algorithm, NSGA II ( Deb, 2001 ) in the current work to solve

OOP-2. 
.3. Information flow in TRANSFORM 

The decision variable set obtained from the optimizer is sent

s input into the sample size determination algorithm (described

ater), which would determine the optimal size of training data.

nce the training data is created, a set of 200 input–output points

rom the original complex model are further generated within

he prescribed input bounds, using the best LHS plan ( Forrester,

obester, & Keane, 2008 ). As it will be described later in the sec-

ion on sample size determination, the training set is obtained us-

ng a sampling scheme completely different from LHS. Thus, the

00 point test set generated exclusively for validation is entirely

ifferent from the data set used for training. The architecture,

ransfer function choice and sample set for training and validation

re then sent into the multiple-input–single-output (MISO) ANN

ode built to enable parallel computing. The ANN code would then

rain the network and evaluate the validation accuracy in terms of

 statistical measure called R 2 (see Eqs. (1 )–( 3 )) which along with

otal nodes N and the sample size required for training n , is sent

ack to optimizer. The objectives along with architecture are saved

n a database to check redundancy, thereby making TRANSFORM

aster. The flow of TRANSFORM is depicted schematically in Fig. 2 .

 

2 = 

⎛ 

⎝ 

cov 
(
y, ̂  y 

)
√ 

var ( y ) var 
(

ˆ y 
)
⎞ 

⎠ 

2 

(1) 

ov 
(
y, ̂  y 

)
= n 

n ∑ 

i =0 

y ( i ) ˆ y ( i ) −
n ∑ 

i =0 

ˆ y ( i ) 
n ∑ 

i =0 

y ( i ) (2) 

ar ( y ) = n 

n ∑ 

i =0 

y ( i ) 2 −
( 

n ∑ 

i =0 

y ( i ) 

) 2 

(3) 

Here, y is the original output and ˆ y is the predicted output. 

. Sample size determination algorithm 

.1. Sampling plan 

Chi, Mascagni, and Warnock (2005) reported about the superi-

rity of LHS plans over the low discrepancy sampling plans such

s Sobol and Halton for the large dimensional models ( Chi et al.,

005 ). However, the fact that LHS plan always generates a different

et of points when prompted for a different sample size, discard-

ng the previously generated sample points, cannot be neglected.

his quality of sampling schemes to preserve and utilize the pre-

iously generated sample points, is of high prominence from the



298 S.S. Miriyala et al. / European Journal of Operational Research 264 (2018) 294–309 

Table 3 

Quantitative analysis of sampling plan for 500 sample set in different input spaces. 

Sampling plan and sample size Number of inputs PHI-LHS PHI-Sobol 

500 3 273.454 254.342 

500 10 114.91 114.54 

500 20 54.9 54.8 
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view point of saving computational time. Sampling plans such as

Sobol and Halton ( Diwekar & Kalagnanam, 1997 ) are equipped

with this quality apart from being extremely fast when compared

with the best-LHS plan ( Forrester et al., 2008 ). The effectiveness of

space filling can be quantitatively measured using the PHI metric

( Forrester et al., 2008; Morris & Mitchell, 1995 ). 

The PHI metric is reported to be one of the prominent mea-

sures of uniformity of sampling plans. Lower the PHI metric of the

sampling plan, better is its uniform space filling ability. Given a set

of N points { X } ⊂ C 

k , where C 

k is k dimensional unit cube, define

the norm function D as follows: 

D 

(
X i , X j 

)
= 

∥∥X i − X j 

∥∥
2 

= 

( 

k ∑ 

q =1 

(
X qi − X qj 

)2 

) 1 / 2 

∀ i, j = 1 , 2 , . . . N | i � = j (4)

Let D be the set of unique norm values D can take and let

the cardinality of set D = M . We then define a counting function

T ( D m 

) as the number of { X i X j } pairs which have same norm

value. The PHI metric of the sampled set { X } is defined as, 

PHI = 

( 

M ∑ 

m = 1 

T ( D m 

) 

D 

2 
m 

) 2 

(5)

The PHI metric for both LHS and Sobol distributions with 500

sample points for 3, 10 and 20 dimensional input spaces has been

measured and tabulated in Table 3 . These results clearly show the

efficiency of Sobol over LHS in terms of space filling. 

5.2. Idea behind proposed SSD techniques 

A robust model evaluation method known for preventing over-

fitting, such as the K fold cross validation ( Miriyala, Mittal, Ma-

jumdar, & Mitra, 2016 ), works by (i) dividing the given sample set

P for training into K folds, (ii) training the model with data from

all but 1 fold and validating it with the data from left over fold,

(iii) identifying the model having minimum cross validation error,

defined as the mean of K errors obtained by training the model in

K different ways of step ii. 

We propose three novel samples size determination algorithms,

capable of preventing over-fitting without implementing the com-

putationally expensive K times validation approach. These tech-

niques, based on sequential sampling, are designed in such a way

that they succeed in both the aspects of speed and accuracy. The

principle behind these methods is to intelligently identify a vali-

dation set V out of the given sample set P such that, V provides

a holistic representation of the input domain defined by P . Thus,

training with the data points in the set P \ V and validating the

model with V , retains the significance of K fold cross validation

based method. The proposed SSD techniques are dedicated to iden-

tify this validation set V . 

5.3. Sample size determination based on optimization framework 

(SOOP) 

The validation set V can be obtained such that it has maximum

space filling ability among all the subsets of P of similar size. The

size of this subset V = n _ V is considered one thirds of the size of
et P . A single objective optimization problem (SOOP) was formu-

ated to identify V which has minimum PHI value (see Section 5.1 ).

ue to the lack of gradient information, the SOOP formulation was

olved using Genetic Algorithms (GA). This method is described se-

uentially in following steps: 

Step 1. SSD starts with initial set P obtained from Sobol 

scheme. 

Set i = 1. Cardinality of set P , card( P ) = n . 
Iteration i starts 

Step 2. Solve the SOOP for minimizing PHI and obtain the 
subset V from P . 

Step 3. Define T = P \ V = { x : x ∈ P and x / ∈ V } . 
card( T ) = n _ T . Train ANN using T and obtain 

validation error ε i . 
Step 4. if i = 1 

Go to step 6, 

else 

Calculate the slope ratio (SR), defined as: 

S R i = 

abs ( ε i −ε i −1 ) 

( n i −n i −1 ) ∗max ( SR ) 

End 

Step 5. Set ∝ = 0.01 (user defined tolerance). 
if S R i ≤ ∝ 

Final Sample size n = n i and terminate SSD. 
else 

Go to step 6. 

end 

Iteration i ends. 
Step 6. Set i = i + 1 and go to step 2. 

.4. Sample size determination based on hypercube sampling (HC) 

Step 1. SSD starts with initial set P obtained from Sobol 
scheme. 

Set i = 1. Cardinality of set P , card( P ) = n . 
Iteration i starts 

Step 2. Divide the input space into of n _ V (or greater) 

number of hyper-cubes of equal volume and 

randomly sample one data point from each to 

create V . 
Step 3. Define T = P \ V = { x : x ∈ P and x / ∈ V } . 

card( T ) = n _ T . Train ANN using T and obtain 

validation error ε i . 
Step 4. if i = 1 

Go to step 6, 

else 
Calculate the slope ratio (SR), defined as: 

S R i = 

abs ( ε i −ε i −1 ) 

( n i −n i −1 ) ∗max ( SR ) 

end 

Step 5. Set ∝ = 0.01 (user defined tolerance). 
if S R i ≤ ∝ 

Final Sample size n = n i and Terminate SSD. 

else 

Go to step 6. 

end 

Iteration i ends. 
Step 6. Set i = i + 1 and go to step 2. 

Although the SOOP based method provides a quicker alterna-

ive to the time consuming K-fold based method, it remains to be

lower when brought into the realm of TRASNFORM. To facilitate

aster selection of the n _ V points out of n , which will form the val-

dation set V , the input domain can be divided into smaller hyper-

ubes of equal volumes of number ≥ n _ V and a random point is se-

ected from each hyper-cube to form the validation set V . This will

nstil the space filling quality in the validation set in least possible
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Fig. 3. HC Sampling technique for a three dimensional input space: lighter points in the leftmost cube indicate set P . This cube is split into smaller hyper-cubes and a 

representative from each hyper-cube (dark points) is randomly sampled, which collectively form V . 

Fig. 4. Pictorial representation of problem associated with HC based SSD: random 

selection from each hyper-cube has led to the sampling of closer points-the encir- 

cled region depicts this. 
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omputational time. The pictorial presentation of hypercube (HC)

ampling technique is presented in Fig. 3 . 

The HC sampling based algorithm may face certain issues which

re described below: 

(a) After division into n _ V hyper-cubes, some of them may re-

main empty, resulting in no selection of sample point from

them. 

(b) In case of high dimensional models, due to the random

selection from each hyper-cube, there might be the cases

where, although the points are selected from different ad-

jacent hyper-cubes, they might still be closer to each other

as depicted in Fig. 4 . 

To solve problem (a), we implemented the method where a

rogressive division of the input space is done, till exactly the n _ V

umber of points are sampled. The minimal addition of compu-

ational burden because of this approach can be neglected when

ompared to the amount of time saved by implementing the HC

ampling method. The problem (b) can be resolved in one way

y taking mean of multiple (large number of) samples randomly

rawn from each hyper-cube, but this will make the algorithm

omputationally intensive. In order to resolve this problem, we

ropose the following SSD technique where the goodness of both

C and SOOP based methods are combined 

.5. Sample size determination based on hybrid approach (HC + SOOP)

The validation set V , obtained within no time using the HC

ased method, is given as the initial guess in the population of

A for solving the SOOP based method to find the set having min-

mum PHI value. Since the initial guess is intelligently obtained us-

ng HC based method, the SOOP may converge quickly to the op-

imum and thus the number of populations and number of gener-

tions are kept low. This will, therefore, make the GA much faster

hen compared with the case where only SOOP formulation is im-

lemented with random initial guess. Thus, this method is the best

ethod out of all three SSD techniques as it has a theoretical justi-

cation for space filling and converges in very less time. However,

C based SSD technique remains to be fastest amongst all. 

. Kriging Interpolators 

The standard Expected Improvement (EI) based sampling strat-

gy to infill the sample points for training the KI model has been
sed. To start with, we sampled 10 data points using LHS sampling

lan and constructed an initial KI model. Further number of sam-

le points were found iteratively using EI approach, until KI pre-

icted with desired accuracy. The principle and working of Krig-

ng Interpolation along with the EI based sampling strategy is pre-

ented in detail in Supplementary text. 

. Results and discussions 

This section has been segmented into subsections for bet-

er clarity and easy readability. Section 7.1 begins with the dis-

lay of extent of non-linearity present in the considered casting

odel. The optimization formulation of casting model (MOOP-1)

s then solved conventionally without surrogate using both evo-

utionary and classical methods of optimization, a brief compari-

on of which follows next. Section 7.2 presents time comparison

etween novel SSD techniques, results of TRANSFORM algorithm

MOOP-2) for constructing ANN surrogates and discussion on se-

ection of ANN architecture to emulate the casting model while

ection 7.3 provides the analysis of results obtained by TRANS-

ORM. Section 7.4 provides a comprehensive comparison of con-

tructed ANN models and Kriging surrogate model in terms of ac-

uracy and sample size required for training. In Section 7.5 , the re-

ults of TRANSFORM-ANN assisted optimization of casting model,

OOP-1 are presented and compared with those obtained through

onventional optimization as demonstrated in Section 7.1 . Section

.6 analyses the scope of practical implementation of online opti-

ization of complex models using TRANSFORM, focussing on con-

idered case study. Section 7.7 provides the results of Pareto char-

cterization using K -means clustering method which provide with

 set of simple operator’s rules for optimal performance of casting

ndustry. Section 7.8 describes the novelty in the current work in

utshell. 

For surrogate model, inputs 1–6 are the six nozzle spray

owrates (see Table 1 ) in continuous casting model, while input

 denotes the casting speed. Similarly, outputs 1 and 2 stand for

he slab exit temperature and predicted value of bulging, respec-

ively. Although similar results were obtained for both the outputs,

o honour the space constraints, we present the results, for output

 only. Results related to output 2 are included in the supplemen-

ary material. The proposed algorithms and codes are exclusively

eveloped in MATLAB ۚ(version 2015), without the use of any spe-

ific toolbox. All the simulations were run in Intel(R) Xeon(R) CPU

5-26900 @ 2.90 gigahertz (2 processors) 128 gigabytes RAM ma-

hine. 

.1. Continuous casting model and solving MOOP-2 

.1.1. Extent of nonlinearity 

In order to assess the complexity of concast , certain number of

ample points were obtained using the full factorial sampling plan

o construct the tile plots ( Forrester et al., 2008 ) as depicted in Fig.

 . Tile plots are specifically the contours of outputs with respect

o two inputs taken at a time. They provide a qualitative measure

f (i) non-linearity through contour diagrams and (ii) impact of in-

uts on considered output through intensity of shades. These plots
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Fig. 5. Tile plot depicting the contours of output-1 with respect to all inputs. 

Table 4 

NSGA II credentials for solving the MOOP-1 for- 

mulation mentioned in Table 1 . 

Parameters Value s 

Number of real variables 7 

Population size 100 

Number of generations 50 

Crossover probability 0.9 

Mutation probability 0.01 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

MATLAB’s fmincon credentials for solving the 

reformulated MOOP-1 formulation. 

Parameters Values 

Fmincon algorithm SQP 

Number of real variables 7 

Number of initial guesses 100 

Maximum function evaluations 10 0,0 0 0 

Maximum iterations 10,0 0 0 

Constraint tolerance 1E-10 

Function tolerance 1E-20 
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in Fig. 5 clearly reveal that concast is highly non-linear and of all

the inputs, the input 7 – castor speed, has maximum effect on the

output 1. A similar plot for output 2 is presented in Fig. S.F.1 of

Supplementary text. 

7.1.2. Solution of MOOP-1 using evolutionary and classical 

optimization methods 

Concast was optimized in conventional manner using one of the

robust evolutionary optimizers, NSGA II whose details are listed in

Table 4 . The total number of function evaluations required for that

run was 50 0 0 (50 × 100). Selection of this generation number was

purely on the basis of convergence of candidate solutions on the

Pareto front. 

In order to justify the implementation of population based evo-

lutionary solver, NSGA-II, MOOP-1 was also solved by the clas-

sical optimization techniques after reformulating it using the ε-

constraint methodology ( Deb, 2001 ). In this method, the multi ob-

jective problem is reformulated into a single objective optimiza-

tion formulation by considering only one of the objectives and

confining others within stipulated bounds ε m 

. For a K dimensional

MOOP problem containing M objectives, I inequality and E equality

constraints the corresponding ε-constraint formulation is shown

below. 
Here ε m 

represents the upper bound on objective m . By select-

ng different values for ε m 

and solving the corresponding SOOP

roblem, intermediate Pareto Optimal (PO) points are generated.

his method is reported to be a better method than the weighted

um approach to solve MOOP formulations using classical opti-

ization routines ( Deb, 2001 ). In our problem we implement the

-constraint method by considering the speed maximization as the

nly objective while the remaining two objectives, the Tempera-

ure and Bulging were converted into constraints. The lower and

pper bounds on these two objectives (modified as constraints),

hat is the values of ε m 

were obtained by identifying the anchor

oints of the Pareto front. The anchor points were obtained by

olving one objective at a time and repeating this exercise for all

hree objectives. The anchor points provided the best and worst

ossible values of each objective function out of which we used

he best and worst solutions of Temperature and Bulging as up-

er and lower bounds. This formulation was solved using the fmin-

on function of MATLAB ۚ, where sequential quadratic programming

SQP) algorithm was implemented. For obtaining an unbiased com-

arative study of optimization, the population of zeroth genera-

ion of NSGA-II (100 in number) were given as initial conditions

or fmincon and the reformulated optimization problem was solved

sing each one of these cases, one at a time. To ensure the con-

ergence of fmincon , the values as mentioned in Table 5 were

sed. 

The total number of function evaluations required by the clas-

ical technique for generating the Pareto Optimal front was 3600.

he comparison of PO fronts obtained using NSGA II and fmincon

s shown in Fig. 6 . The PO front obtained by the classical opti-

ization approach is found to be a local front as compared to the

ame achieved by NSGA II. Moreover, the spread of PO solutions

btained by the classical approach is not as uniform as the NSGA

I solutions. Though the number of function evaluations is more,

SGA II has been preferred further as the choice of algorithm

o solve the MOOPs due to the higher quality of PO solutions it

rovided. 

.2. Implementation of TRANSFORM to find best ANNs 

TRANSFORM algorithm was implemented to generate the best

NNs for emulating concast . Details of NSGA II algorithm for

olving MOOP-2 are listed in Table 6 . To present an unbiased

omparison, we incorporated HC and HC + SOOP based SSD tech-

iques in TRANSFORM. However, in practise, prior to the ANN con-

truction, one SSD technique needs to be finalized based on the
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Fig. 6. Comparison of classical and evolutionary optimizer for solving the multiobjective optimization of industrial casting model from steel plants. 

Table 6 

Credentials of NSGA II for solving the MOOP-2 mentioned in Table 2 . 

Parameters Values 

Number of binary variables 4 

Population size 200 

Number of generations 100 

Crossover probability 0.9 

Mutation probability 0.01 

Table 7 

Computational time comparison between proposed SSD techniques for a fixed ar- 

chitecture [7–5–2–1–1] using tan sigmoidal activation for emulating output-1. 

Technique Architecture N _TF Computational time Sample size 

SOOP 7-4-3-3-1 1 1240 seconds 130 

HC 7-4-3-3-1 1 500 seconds 130 

HC + SOOP 7-4-3-3-1 1 555 seconds 130 
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Fig. 7. Plot describing the computational time required by proposed techniques of 

SSD for architecture (7-4-3-1-1) for emulating output-1. 
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omputational constraints. The following subsection thus provides

he computational time comparison between the proposed SSD

echniques to enable the decision maker to select one based on

he necessity. 

.2.1. Computational time comparison between proposed SSD 

echniques 

The proposed SSD methods were implemented to determine the

ample size of a complicated network of given configuration e.g.,

7-4-3-1-1], which was arbitrarily chosen such that it contained

 hidden layers. Tan sigmoidal activation function was chosen for

mulating output-1 using the selected architecture. The results of

his study are presented in Fig. 7 and Table 7 . A sample size of

40, 130 and 130 were determined by SOOP, HC and HC + SOOP, re-

pectively. Although the sample size determined by each of these

ethods for the architecture considered were different, the results

re presented for a fixed sample size (130) to provide a common

latform for comparing execution times of these methods. Since

he choice of incrementing the sample size is purely based on the

ecision maker, any different smaller value of increment in sam-

le size is encouraged, provided the resultant increase in compu-

ational time is acceptable to the decision maker. Also, the choice

f termination criteria α is left to the decision maker. Since these

wo parameters (increment in sample size and termination crite-

ia) play less significant role in ANN construction, they were not

onsidered for estimation of optimal parameters in TRANSFORM. 
The results confirmed that the HC and HC + SOOP based sam-

ling techniques are nearly 2.5 and 2.2 times faster than the SOOP

ased technique, respectively. The comparison in terms of accu-

acies can only be obtained after the entire optimization run is

ompleted. Thus, considering the objective of this work to be

he online implementation of optimization, TRANSFORM algorithm

as run with the relatively faster HC and HC + SOOP based SSD

echniques. 

.2.2. Implementation of TRANSFORM with HC and HC + SOOP based 

SDs 

The developed MATLAB ۚ code being MISO in nature, two

arallel simulations of TRANSFORM algorithm using HC based

SD technique were implemented for constructing ANNs corre-

ponding to the two outputs of concast . Since there were three

bjectives ( Table 2 ), the resulting solution of the MOOP-2 was a

-dimensional PO front, as shown in Fig. 8 (a). The corresponding

O points along with their sample size requirement, total nodes

nd accuracies are listed in Table 8 . Based on a similar implemen-
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Fig. 8. 3 D PO front obtained from TRANSFORM using (a) HC based SSD and (b) HC + SOOP based SSD for emulating output-1. 

Table 8 

PO solutions obtained from TRANSFORM using HC SSD for emulating output-1. 

N 1 N 2 N 3 N _TF R 2 N n 

1 0 1 1 0.995277 1 120 

1 0 2 0 0.995277 1 120 

1 2 0 0 0.995381 3 120 

1 2 2 1 0.995073 5 100 

1 5 4 0 0.995524 10 130 

2 0 0 1 0.995839 2 140 

2 0 0 0 0.995839 2 140 

2 1 0 1 0.996098 3 230 

2 1 0 0 0.996102 3 240 

4 1 1 1 0.989285 6 90 

Table 9 

PO solutions obtained from TRANSFORM using HC + SOOP for emulating output-1. 

N 1 N 2 N 3 N _TF R 2 N n 

1 0 0 0 0.995277 1 120 

1 0 5 1 0.995277 1 120 

1 1 4 0 0.994981 6 100 

1 1 6 0 0.993575 8 90 

1 2 0 0 0.995314 3 120 

1 2 2 1 0.994795 5 100 

1 2 5 0 0.995024 8 100 

1 3 0 1 0.995359 4 120 

1 3 1 1 0.995405 5 120 

1 3 2 0 0.99353 6 90 

2 0 0 0 0.996106 2 250 

2 1 0 1 0.996109 3 250 

2 1 0 0 0.99611 3 250 

2 1 1 1 0.996111 4 250 

2 1 1 0 0.996111 4 250 

2 1 2 0 0.996111 5 250 

2 1 4 0 0.996104 7 240 

2 3 1 1 0.995526 6 190 

2 4 1 1 0.99566 7 120 

2 5 1 1 0.995826 8 140 

 

 

 

Table 10 

ANN models to emulate the output-1 and output-2 of the casting model. Higher 

order information used is: AIC. 

Architecture Sample N _TF R 2 (for 200 

[7- N 1- N 2- N 3-1] size ( n ) test set) 

HC 

Output-1 7-2-0-0-1 140 0 0.99 

Output-2 7-2-1-0-1 200 0 0.98 

HC + SOOP 

Output-1 7-1-1-4-1 100 0 0.99 

Output-2 7-2-1-0-1 190 1 0.98 
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tation of TRANSFORM, but this time with HC + SOOP based SSD,

the results of MOOP-2 are presented in Fig. 8 (b) and Table 9 . 

7.2.3. Selection of single ANN from set of PO solutions 

In order to perform the surrogate assisted optimization of con-

cast , a single ANN architecture for each output, is needed from the
et of PO solutions of MOOP-2. Selection of a single selection from

 set of PO solutions is performed by using some legitimate higher

rder information coming from the decision maker ( Deb, 2001 ).

e, being the decision makers in this case, have utilized a robust

etric for model selection called AIC ( Akaike, 1971 ), well known in

iterature for selecting the model which is least over-fitted ( Basak,

002; Dirick, Claeskens, & Baesens, 2015; Qi & Zhang, 2001 ). The

eaders are encouraged to implement any higher order informa-

ion to select a single best ANN model for emulating the given

hysics based model. Of all the existing models (PO solutions), the

ne with least measure of AIC (see Eq. 6 ) is selected. 

IC = 2 P + S log ( MSE ) (6)

In Eq. (6 ), P is the number of parameters in the model, S is the

raining sample size and MSE is the mean square error of the pre-

ictions. There exists a subtle difference between these parameters

nd the entirely different set of parameters governing the ANN,

onsidered for estimation in TRANSFORM. The parameters in Eq.

6 ) are the ones which are trained by a suitable training algorithm

f the model to capture the variations in the training set. For ANNs,

hese are simply the total number of weights and biases in the

etwork. Table 10 shows the selected architectures for emulating

he outputs of concast in surrogate assisted optimization run. Fig. 9

hows the evolution of the selected architecture [7-1-1-4-1] with

ample size increments in the HC + SOOP based SSD technique. In

his figure, across a row, the left subfigure shows the distribution

f Sobol points in specific three dimensions, the central subfigure

escribes the corresponding surface plots of ANN while the third



S.S. Miriyala et al. / European Journal of Operational Research 264 (2018) 294–309 303 

Fig. 9. Evolution of ANN model [7-1-1-4-1] in HC + SOOP SSD for emulating output-1. 
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Fig. 10. Comparison of parity plots of KI (top) and TRANSFORM-ANN with 

HC + SOOP (bottom) for emulating output 1 (left) and output 2 (right) of casting 

model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11 

Comparison of TRANSFORM-ANN with HC + SOOP and Kriging Interpolators in terms 

of emulating the casting model: sample size and accuracies. 

ANN model Kriging model 

R 2 RMSE Size R 2 RMSE Size 

Output 1 0.99 0.02 100 0.004 0.14 730 

Output 2 0.98 0.03 190 0.8 0.07 700 

Total function calls = 190 Total function calls = 1430 
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subfigure provides the parity between the original output and ANN

predicted outputs. 

7.3. Analysis of results obtained using TRANSFORM 

• Emergence of multi-layered ANNs for emulating casting model,

justifies the exploration for multi-layered perceptron through

TRANSFORM and their ability to capture the highly non-linear

dynamics with optimal (less) sample points for training. 
• Appearance of architectures with both log and tan sigmoidal ac-

tivation justifies their selection as crucial parameters governing

the predictability of ANNs. 
• Novel SSD techniques, robust in terms of both speed and accu-

racy, ensured rapid convergence of TRANSFORM in real time. 
• The issue of over-fitting arising mainly due to large number of

nodes and data greedy nature of ANNs has been resolved by

manoeuvring the trade-off between efficiency and parsimony. 
• ANNs built by TRANSFORM went through a robust and estab-

lished model selection criteria, AIC, which further eliminated

the threats of over-fitting. 

7.4. Comparison of TRANSFORM-ANN and Kriging Interpolation 

To further justify the robustness of the proposed TRANSFORM

algorithm, Kriging surrogates, constructed for emulating concast

using EI based sampling approach, are compared in this section

with ANNs constructed using TRANSFORM. Since we have two dif-

ferent Kriging models built correspondingly for two outputs, their

sample points are completely different. The final reported sample

size in case of Kriging is the sum of individual sample sizes re-

quired for emulating two outputs. It should be noted here that

ANNs consider the larger sample size out of both the outputs as

the maximum sample size because of the efficient quality of Sobol

scheme to preserve and maintain the sequence of sample points

generated. 

The parity plots (original output versus predicted output) ob-

tained using Kriging and ANNs for both the outputs are compared

in Fig. 10 , while Table 11 presents an account of sample sizes and

accuracies. The results clearly show that Kriging model was un-

able to capture the non-linearity even with large number of sam-

ple points, whereas ANN could successfully capture the same with

high accuracy and comparatively very less number of samples. 

Two inferences can be drawn from this comparative analysis: 
(i) Reason for Kriging failure: EI based sampling primarily fo-

cuses on the region of maximum non-linearity. Thus more

and more samples are dedicated to only a specific region.

Thereafter focus shifts to the subsequent region having max-

imum error estimate. Thus, very huge set of samples are re-

quired to capture all the regions with non-linearity. 

(ii) ANNs, on the other hand, through sequential sampling tech-

niques, were able to uniformly sample the complete input

domain. Thus, as it is evident from the aforementioned re-

sults, ANNs could emulate the complete non-linear region

with very less sample points compared to Kriging. This can

be accredited to the combination of robust Sobol based

SSDs and the proposed intelligent framework – TRANSFORM

which brought up the best ANN. 

.5. ANN Surrogate assisted optimization of continuous casting 

odel: solving MOOP-1 

The optimization of concast (MOOP-1) was performed next us-

ng NSGA-II with each of the selected ANN model (see Table 10 ).

lthough the number of population and generations were kept at

00 each, it was observed that the solutions converged around

0th generation. All function evaluations during optimization were

btained using the significantly faster ANN model, thus resulting

n completion of the optimization run in very less time. This time

dvantage allows the decision maker to go for a larger size of pop-

lation leading to PO front having denser spread of PO solutions,

hereby providing more alternatives to the decision maker. The de-

ision variables which form the final PO front were provided to the

riginal time expensive casting model for obtaining the outputs

or comparison. These comparisons for the cases of TRANSFORM-

NN with HC and HC + SOOP based SSDs are shown in Fig. 11 (a)

nd (b), respectively. The average RMSE values (averaged over the

hree objective functions) were also calculated and reported to be

ess than 3% for both the cases. Fig. 11 shows that the ANN Pareto

ront obtained using the HC + SOOP based TRANSFORM-ANN results

n a better solution compared to the original Pareto front (see top

ight sub-figure of Fig. 11 (b) where the improvement in optimality

sing ANN surrogate is clearly visible). However, with HC based

RANSFORM-ANN in place, we obtain results similar to the con-

entional Pareto front. The advantage with HC based surrogate in

lace is it is faster than the HC + SOOP based surrogate. These re-

ults justify the trade-off between the computational speed and ac-

uracy of predictions using surrogate models. 

.6. Scope of online optimization through TRANSFORM 

With reference to Table 10 , it is clear that the ANN model ob-

ained using TRANSFORM with HC and HC + SOOP based SSD al-

orithm, consumed 200 and 190 sample points, respectively, for

raining the corresponding networks. Apart from the training set,

ach of the network was validated with a LHS sample set of size

00. Thus, the total sample size required by the ANN models is 390

or HC + SOOP and 400 for HC + SOOP (190 + 200 and 200 + 200)

nd therefore only those many function evaluations of the original

odel were required for the entire optimization run. Comparing
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Fig. 11. Comparison between the PO fronts of conventional optimization (MOOP-1) using and Surrogate assisted optimization with (a) HC and (b) HC + SOOP SSD based 

TRANSFORM-ANN. 
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Table 12 

Comparison of function evaluations between classical optimization, modern evolu- 

tionary optimization and surrogate assisted optimization for checking the scope of 

online implementation. 

Optimizer PO front quality Function evaluations Online possibility? 

fmincon Local 3600 No 

NSGA-II Better than local 50 0 0 No 

ANN + NSGA-II Better than local 390 Yes 
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t  
ith the 50 0 0 function evaluations of the original casting model

hen optimized conventionally without using the surrogates, the

NN based optimization is reported to be nearly 13 times efficient

esulting in a saving of 92% function evaluations {10 0 ×(50 0 0 –

390)/50 0 0}. Although the surrogate construction has seen a maxi-

um sample size of 250 ( Tables 8 and 9 ), the margin of 60 points

250 – 190) does not significantly influence the speed of the sur-

ogate based optimization. Also, on account of considering the fact

hat the sample size for validation can be safely reduced to a value

s low as 80 from 200 (according to the generic thumb rule of con-

idering one third of the size of training set to be the size of vali-

ation set), the surrogate building algorithm can actually be made

uch faster even after considering the maximum sample size ob-

ained in the entire algorithm. The considered sample set for train-

ng is obtained such that, majority of the operation of the cast-

ng plant lies within the upper and lower bounds of the training

et, thus ensuring only one time implementation of TRANSFORM.

he ANNs once built need not be altered unless the plant operat-

ng conditions go beyond the limits of training set, which may be

 rare case. It is important to mention that TRANSFORM requires

onsiderable amount of time for constructing the best ANN model.

owever, once the model is trained, it is observed that ANN hardly

equires a maximum of 1 second of CPU time for predicting sin-

le input–output data point. Thus, the ANN assisted optimization

un (1 second per single simulation) will take less than {(50 0 0 ∗1)/

60 ∗60)} = 1.5 hours, where 50 0 0 is the function evaluations re-

uired by NSGA II to optimize concast conventionally without sur-

ogate. The computational speed of TRANSFORM and thereby the

cope for online optimization can be increased by several mani-

olds if the source-codes are ported from MATLAB to much faster

igh level languages such as FORTRAN or C. Since NSGA II works

ith population of solutions, the execution time for the optimiza-

ion algorithm could have been further reduced by implementing

arallel programming. The summary of the function evaluations

s shown in Table 12 which clearly articulates that ANN assisted

A based optimization of continuous casting model can be made

nline. 
v
The proposed methodology does not differentiate the simula-

ion models with the experimental setups and thus can be used

ithout bias for optimizing the operation of an experimental set

p. All that is required by TRANSFORM is the experimental data

ampled at the points obtained using the Sobol sampling plan.

lthough this study is restricted to feed forward perceptron net-

orks, it can be easily extended to recurrent networks which have

isplayed immense capability in time series predictions, thus be-

oming one of the prominent candidates for dynamic data mod-

lling. 

.7. Pareto characterization 

In general after solving a multiobjective optimization problem,

e obtain a set of decision variables called PO solutions which

ead corresponding non-dominated realizations in objective func-

ion space, called PO front. It is often a general practise to select

 single point from the PO front using some higher order informa-

ion and discard the other solutions ( Deb, 2001 ). Although effec-

ive, this procedure might not provide the complete information

bout the solution set. However, applying the data analytic tech-

iques on the PO front may help in identifying the hidden pattern

r information in the PO front about the corresponding decision

ariables ( Mitra & Ghosh, 2008 ). We call this procedure as Pareto

haracterization where we clustered the PO front into segments

o retrieve the characteristic features of corresponding decision

ariables. 
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Fig. 12. K -means clustering of PO points obtained using surrogate assisted optimization. 
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Since the objectives of MOOP-1 were to maximize the caster

speed, thereby leading to high productivity, maximize the exit

temperature, thereby leading to more energy savings with less op-

erational cost and minimize the bulging, thereby leading to high

quality of the product, the PO points obtained from surrogate

based optimization were further clustered using K -means method

to identify credible information about the corresponding decision

variables. Such information might be of significant importance to

an industrial operator in order to successfully operate the plant in

desired optimal fashion. The readers are referred to Section S.4 of

Supplementary text for a brief description about K -means cluster-

ing algorithm ( Hartigan & Wong, 1979 ). 

Since the working of any clustering algorithm, such as K -means

method, is based on a mathematical formulation involving the

norm of points from the cluster centre ( Hartigan & Wong, 1979 ),

it is important to decipher a physical meaning out of the clusters

before we proceed to observe any trend in corresponding decision

variables. With this objective, the number of clusters in K -means

method was varied from 2 to 10 till an optimal value of 5 clus-

ters was identified. The clusters were obtained such that, we have

five distinct operating conditions leading to five classes of products

each varying in terms of productivity, operation cost and product

quality. The clustered PO points in the objective function space

are shown in Fig. 12 . The corresponding decision variables, i.e., the

flowrates at six nozzle sprays starting from Spray 2 to Spray 7 (see

Table 1 ) of these clustered PO points (addressed from now on as

PO flowrates) are plotted in Fig. 13 along with corresponding ob-

jective function classification. 

We observed an interesting trend in the PO flowrates, at each

nozzle spray for each cluster governing the optimal operation of

casting process. Although the flowrates at each nozzle spray were

allowed to vary anywhere between the lower and upper bounds

(depicted by normalized values 0 and 1, respectively, in Fig. 13 )

the PO flowrates, however, confined themselves to particular re-

gion in the decision variable space. The distribution of PO flowrates

at each spray in each cluster is presented in Fig. S.F.4 of Supple-

mentary text. Based on this observation, a simple rule set is formu-

lated and presented in Table 13 . This rule set tells to the end user
 c  
n how to vary the flowrates at six nozzle sprays such that cast-

ng operation can be performed with high productivity and high

uality with least operational cost. 

For instance, Rule 1 in Table 13 reads, In order to perform the

asting of steel such that the caster speed is maintained at its max-

mum, exit temperature of the slab is maintained at its maximum

nd quality of the product is maintained at mid-level of the de-

ired lower and upper qualifications, the plant needs to be run with

he flowrate of second nozzle spray near its maximum, flowrate at

hird nozzle spray ranging between its lower bound and central value,

hile the flowrates at all the remaining nozzle sprays are ensured at

heir minimal values. The set of five rules are also presented pic-

orially in Fig. 14 and in Figs. S.F.5–S.F.8 of Supplementary text,

espectively. 

This result based on Pareto Characterization is interesting and

f high practical importance. The trend in PO decision variables

uides the end user (here the casting plant operator) to run his/her

rocess (here the casting operation) in optimal fashion by follow-

ng a set of simple instructions which do not necessitate any im-

erative prerequisite about the knowledge of process optimization

nd control. Although we have used Pareto Characterization to de-

ive the general framework of operators’ rules, the most efficient

ay to obtain a single solution from a set of PO solutions is to

se the desired higher order information. However, in absence of

igher order information, such as the situation in the current case

tudy, the readers may implement Pareto Characterization to cap-

ure a trend if present in the PO solutions. Further, the selection

f clustering method entirely depends on the perspective of the

eader. We used K -means in this work to since we believe it to

e well known to the readers and exploit its advantages such as

implicity and easy accessibility. There is no prejudice in selecting

 -means as the clustering method and the readers are encouraged

o use a more efficient clustering method. 

.8. Novelty in TRANSFORM 

This section presents in brief, the novelty of TRANSFORM when

ompared with one of our previous works in Miriyala et al. (2016) .
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Fig. 13. Distribution of decision variables corresponding to the PO clusters. 

Fig. 14. Pictorial representation of operator rule-1. 
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Table 13 

Set of operators rules, deduced after clustering the PO solutions obtained from surrogate based optimization, for optimal 

functioning of the continuous casting process. 

Rules Desired normalized objectives Operating region of normalized decision variables (nozzle flowrates) 

Caster speed Temp. Bulging Spray 2 Spray 3 Spray 4 Spray 5 Spray 6 Spray 7 

1 1 0.8 0.3–0.5 0.7–1 0–0.6 and 1 0–0.1 0–0.1 0–0.1 0–0.1 

2 1 0.8 0.4–0.6 0.5–0.9 0–0.3 0–0.1 0–0.1 0–0.1 0–0.1 

3 1 1 0.8–0.9 0–0.2 0–0.1 0–0.1 0–0.1 0–0.1 0–0.1 

4 1 0.9 0.7–0.8 0.2–0.5 0–0.1 0–0.1 0–0.1 0–0.1 0–0.1 

5 0–0.9 0–0.6 0.3–0.5 0.9–1 0.3–0.4 and 0.7–1 0–0.2 0–0.2 0–0.4 0–0.4 
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• The previous work focused on optimal architecture estimation,

whereas TRANSFORM incorporated a three objective optimiza-

tion problem with thrust on minimizing the sample size, maxi-

mizing accuracy and parsimony along with optimal architecture

estimation. 
• The current work proposes three novel sample size determina-

tion algorithms, which compared to the K -fold based method of

our previous work, are nearly one order of magnitude faster. 
• All the three novel SSD algorithms proposed in the current

work are found to be working successfully for high dimensions

whereas the work published earlier was confined to a three di-

mensional problem. 
• Pareto Characterization provided with simple rules for optimal

functioning of process industry. 
• Comparative studies between evolutionary and classical opti-

mization algorithms are included. 

8. Conclusions 

Optimization and control of real world processes is performed

offline owing to large computational time required by evolutionary

optimizers to solve the inherent MOOP. In the present study, this

problem has been resolved using surrogate assisted optimization

by selecting ANNs as potential surrogate models. However, ANNs

in general, are governed by certain parameters, such as the archi-

tecture and sample size for training, etc., whose heuristic assump-

tion deteriorates the surrogate quality. Thus, in order to realise a

logical framework which would intelligently estimate the associ-

ated parameters, a novel parameter free ANN building algorithm

called TRANSFORM is proposed in this work. ANN models are then

constructed for a highly nonlinear industrially validated continu-

ous casting model which were then used for the optimization. The

constructed ANN models were also compared with the state-of-

the-art Kriging surrogates for accuracy and speed. The application

of K -means clustering algorithm on PO points resulted in interest-

ing trends followed by PO decision variables. This led to a set of

simple operator’s rules for optimal operation of casting plant. The

conclusions of the proposed work are as follows: 

• ANN based optimization of casting process is 13 times efficient,

saving 92% function evaluations compared to the conventional

methods, thus enabling its online implementation. 
• Over-fitting of ANNs is successfully prevented by incorporat-

ing three equipotent fast sample size determination (SSD) tech-

niques in TRANSFORM apart from robust AIC based model se-

lection criteria. 
• SSD techniques are motivated by the concepts of space filling

and a novel hypercube based data classification method. 
• A comparative study between these SSD techniques provided

huge flexibility to the algorithm enabling it to adjust as per the

choice of the decision maker. 
• The failure of KI based method for emulating the considered

complex model, provided justification to the robustness of the

proposed method. 
• All this was possible with TRANSFORM – a generic parame-

ter free ANN building algorithm, requiring only a first princi-

ple based simulation model or experimental data as input and

capable of providing best parsimonious ANN based surrogate

through simultaneous estimation of all the parameters govern-

ing the process of surrogate building. 

upplementary materials 

Supplementary material associated with this article can be

ound, in the online version, at doi:10.1016/j.ejor.2017.05.026 . 
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