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INTRODUCTION 

 Mathematical modeling of electrodeposition is a process that yields information 

about the plating system of interest.  The process consists of first determining the 

composition of the plating bath of interest by using thermodynamic information.  The 

second step consists of specifying or determining the electrochemical reactions that occur 

on the electrodes and the chemical reactions that occur on the electrodes and in the bath.  

The third step consists of specifying the governing equations (material balance equations) 

for the concentrations of the species in the bath.  Next, reaction rate expressions must be 

specified for the electrochemical reactions that occur at the electrodes.  Finally, the 

geometry of the plating bath must be specified.  Since the material balance equations for 

species in the bath depends on fluid flow, the flow conditions in the tank must be 

specified.  In some cases the material balance equations for the concentration of species 

in the bath and the momentum balance equations for the fluid flow must be solved 

simultaneously because the electrodeposition process can give rise to density changes at 

the surface of the working electrode. These density changes cause the hydrodynamics in 

the bath to change.  Sparging and stirring of the bath also effect the flow conditions at the 

work piece.  The hydrodynamic effects are sometimes lumped together and described by 

a hydrodynamic boundary layer.  Similarly, the mass transfer effects in plating baths are 

often lumped together and represented by a diffusion layer.  These concepts of boundary 

layers and diffusion layers have been used to simplify the mathematical modeling of 

electrodeposition. 

Our work1 on the mathematical modeling of electrodeposition began with a study 

of electrodeposition of copper from an acid chloride bath containing iron.  We used the 
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diffusion layer thickness on a rotating disc electrode to normalize the distance from the 

disk.  We included ionic species complexed with chloride ions, multiple electrode 

reactions, and a homogeneous reaction between the complexed ferric and cuprous ions in 

the diffusion layer.  This gave rise to a reaction plane in the diffusion layer.  We also 

included in the model the effect of ionic migration in the solution, and a reaction rate 

expression for the electrochemical reactions that includes the relative activity of iron in 

the deposit but not copper, since it was assumed that solid copper would be the dominant 

species in the deposit.  We were able to predict the conditions under which very little iron 

was deposited.  This study was limited to the center of the disk only.  To determine the 

effect of position on the disk, we2 solved for the current density distribution across the 

disk surface for copper deposition from an acid bath on a rotating disk electrode. 

Next, we extended3 our work on mathematical modeling of alloy to remove the 

restriction that the deposit was mostly copper with a small amount of iron.  We did this 

by expanding the dependence of the exchange current density and the open-circuit 

potential for each electrodeposition reaction to include the composition of each species in 

the alloy (see equation 27 of reference 3).  This new electrochemical reaction rate 

expression (i.e., extended Butler-Volmer equation) enabled us to predict the composition 

of the alloy as a function of the composition of the plating bath, system parameters, and 

potential driving force for the reaction.  

The next step in the development of our framework for mathematical modeling of 

electrodeposition was to extend our modeling work to include galvanostatic pulse 

plating,4 and the thickness of the deposit.  The electrodeposition of a NiCr alloy by pulse 

plating was used to illustrate the utility of our simulation model. According to the 
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predictions of the model, a periodic steady state is established after about four pulse 

cycles. This simulation was used to show quantitatively that hydrogen evolution can be 

reduced by using pulse plating instead of direct current plating. 

 Our pulse plating modeling4 also included the effect of ionic migration, which 

was shown to be important near the surface of the working electrode. The predicted 

concentration of Cr2+ at the electrode surface depends on whether or not the effect of 

ionic migration is included in the simulation.  In many cases the concentration of Cr2+ is 

predicted to be lower at the surface when the effect of ionic migration is ignored.  This is 

due to the unrealistically large predicted overpotential causing Cr2+ to be reduced to Cr. 

 Our work on pulse plating of alloys was preceded by work published by 

Verbrugge and Tobias.5,6  Unfortunately, they did not include the effect of ionic 

migration in their transport equation, but they did include the effect of short-range, 

nearest neighbor interaction in their CdTe deposit.  This solid state interaction is 

important and should be included in models for the electrodeposition of alloys that do not 

form ideal, solid state alloys such as CdTe.  We have also published other articles7-11 on 

mathematical modeling of electrodeposition that may be of interest to the readers. 

 

CURRENT DENISITY DISTRIBUTIONS 

 Prediction of current density distributions is useful in designing the electrode 

configurations for plating baths.  Earlier12-14 we presented methods for predicting 

secondary current density distributions.  These methods are based on the finite element 

method.  Unfortunately, the computation time for the finite element method has in the 

past been too long to be useful for rapid prototyping of electrode configurations.  
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However, a relatively new software package (FEMLAB15) based on the finite element 

technique and MATLAB16 is now available for two dimensional (two spatial coordinates) 

problems and current density distributions for a variety of geometrical configurations, 

operating conditions, and kinetic parameters.  For example, figure 1 presents the potential 

distribution for a Hull cell with the physical conditions and operating conditions given in 

Table 1.  Figure 2 presents the potential distribution for a cylindrical anode in the center 

of the bearing for the same operating conditions.  Figure 3 presents the potential 

distribution with superimposed anodes for the current density distributions for the current 

density versus overpotential relationship that exists for a composite of electrochemical 

reactions which includes the current density due to a mass transfer limited reactant (see 

equation 20 of ref. 17). 

 FEMLAB software can also be used to predict the partial current density 

associated with a binary allow deposition process for hypothetical components A and B.  

For illustration purposes, assume that it is reasonable to describe the deposition of these 

two species (A and B) according to the following expressions. 

 

  ( )A 0,Ai  = i exp(0.5 ) exp( 0.5 )η − − η  (1) 

and 

 

  ( )B 0,Bi  = i exp(0.5( 0.2)) exp( 0.5( 0.2))η− − − η−  (2) 

where 

c=  - η φ φ                                                           (3) 
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Comparing equations 1 and 2 reveals that the potential difference between the open-

circuit potentials of A and B is 0.2.  The total current density is equal to the sum of the 

potential current densities (i.e., iA and iB) and must equal the gradient of the potential in 

the solution at the electrode surface:   

[ ]x y A B
1n  + n  = i  + i

x y
∂ ∂
∂ ∂
φ φ

κ
                                          (4) 

The current density distribution for this binary alloy deposition case for the Hull cell is 

shown in figure 4 and for the bearing case in figure 6.  It should be noted that FEMLAB 

can be used easily for a nonlinear kinetic expressions such as the Butler-Volmer equation. 

 Recently,18 Subramanian and White presented a semianalytical method for 

predicting current density distributions for two dimensional systems.  Their method is 

very useful for rapid prototyping because the method utilizes a solution procedure that 

provides a general solution for a given geometric configuration.  The solution obtained 

can be used to determine easily the current density distribution for different operating 

conditions of the bath (different set potentials of the electrode, e.g.), different boundary 

conditions (linear and nonlinear), different geometries in the y direction.  This capability 

of the semianalytical method is also useful for doing rapid nonlinear parameter estimation 

for determining the kinetic parameters (exchange current density, e.g.) given the 

configuration of the electrodes, operating conditions, and current density distributions 

data.  Recently, we extended the semianalytical method to provide a means of predicting 

the thickness of the deposit as a function of time for a given system.  Figure 6 presents 

the growing metal deposit in a working electrode predicted using our semianalytical 

method facing an anode (working electrode is half the size of anode) embedded with 

insulators.19 
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SUMMARY 

 Our mathematical modeling of electrodeposition has been reviewed briefly.  We 

began in 1977 (reference 1) by considering a steady-state one spatial coordinate problem 

for copper deposition in the presence of iron.  We presented later a more complete 

method for predicting deposited alloy composition for both steady cases3 and for 

galvanostatic pulse plating.4  Next we reviewed the methods we have used in the past to 

predict current density distributions for single reactant cases and showed here how to 

extend current density predictions to include binary alloy deposition.  We also mentioned 

our semianalytical technique18 for determining current density distributions, which we 

have recently extended to include the capability of predicting the deposit thickness as a 

function of time.  In conclusion, we hope that our contributions and those of others 

workers in the area of mathematical modeling of electrodeposition will be used to 

improve the processes of electroplating and surface finishing.  It should be possible now 

to test many plating ideas on a computer (through mathematical modeling) before 

investing time in chemicals, electrodes and tanks. 
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Figure Captions 

 

1. Predicted potential distribution in a Hull cell during alloy plating. 

2. Potential distribution in a bearing cell during alloy deposition. 

3. Potential distribution with superimposed anodes for composite electrochemical 

reactions. 

4. Predicted partial current densities in a Hull cell. 

5. Predicted partial current densities along the cylindrical bearing anode. 

6. Growing metal deposit predicted by semianalytical method. 

 

Nomenclature 

i current density (dimensionless) 

i0 exchange current density (dimensionless) 

φ dimensionless potential 

η overpotential (dimensionless) 

κ conductivity (dimensionless) 
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Figure 1: Predicted potential distribution in a Hull cell during alloy

plating. 
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Figure 2: Potential distribution in a bearing cell during alloy deposition
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Figure 3: Potential distribution with superimposed anodes for composite

electrochemical reactions. 
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Figure 4: Predicted partial current densities in a Hull cell. 
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Figure 5: Predicted partial current densities along the 
cylindrical bearing anode 
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Figure 6: Growing metal deposit predicted by semianalytical method 
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