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Transport and kinetic parameters of lithium-ion batteries are 
estimated using a first-principles electrochemical engineering 
model based on porous electrode theory (1, 2). A full-order model 
reformulated using advanced mathematical techniques (3, 4) was 
used for the simulations. Since batteries and other power sources 
are used in hybrid environments, with devices with time constants 
less than a second (like a super capacitor or an induction motor), 
parameter estimation algorithms were developed with high 
computational efficiency. As a complement to approaches to 
mathematically model capacity fade that require detailed 
understanding of each mechanism (5), capacity fade was 
accurately and efficiently predicted for future cycles by 
extrapolating the change in effective transport and kinetic 
parameters with cycle number (N), for a battery under controlled 
experimental conditions. Parameter estimation using mathematical 
reformulation (4) was more efficient and robust than full-order 
models based on the traditional finite difference approach.  

 
Introduction 

 
Electrochemical power sources are expected to play a vital role in future applications in 
automobiles, power storage, military, mobile, and space. Lithium-ion chemistry has been 
identified as a preferred candidate for high-power/high-energy secondary batteries. 
Significant progress has been made towards modeling and understanding of lithium-ion 
batteries using physics-based first-principles models. These models are based on 
transport phenomena, electrochemistry, and thermodynamics.  
 
For the analysis and control of lithium-ion batteries in hybrid environments (with a fuel 
cell, capacitor, or electrical components), methods are needed to simulate state of charge, 
state of health, and other parameters in near real-time conditions (milliseconds). Full-
order physics-based models take up to few seconds to minutes to simulate discharge 
curves depending on the solver, routines, computers, battery design, and operating 
conditions, whereas circuit or empirical models (based on the past data) can be simulated 
in real time. However, the latter models fail at various operating conditions, and use of 
these models may cause abuse or underutilization of electrochemical power sources. 
Hence the need arises for a faster model that includes the physics of the system and 
enables the extraction of transport and kinetic parameters from the model efficiently. This 
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is made possible by a reformulated model (4) that takes a few milliseconds to predict a 
discharge curve. The reformulated model is used in parameter estimation algorithms to 
extract kinetic and transport parameters. Further, the estimated parameters are used to 
address capacity fade in the battery with cycling. 
 

Reformulated Model 
 
First-principles-based battery models typically solve electrolyte concentration, electrolyte 
potential, solid-state potential, and solid-state concentration in the porous electrodes and 
electrolyte concentration and electrolyte potential in the separator. These models are 
represented by coupled nonlinear PDEs in one or two dimensions, are typically solved 
numerically, and require a few minutes to hours to simulate. The reformulated model (4) 
conserves mass, charge, and current in each electrode, unlike traditional finite-difference 
full-order models. Also, the memory requirement and the computational time and cost are 
far less compared to finite difference full-order models. These features can be utilized by 
parameter estimation techniques to extract effective kinetic and transport parameters from 
experimentally measured voltage discharge curves. Two different nonlinear parameter 
estimation techniques were used: (i) ordinary least-squares and (ii) Bayesian estimation, 
which takes into account prior knowledge on the probability distributions for the model 
parameters. The reformulated model also enabled the application of the Markov Chain 
Monte Carlo (MCMC) method to quantify the magnitude of uncertainties in the model 
parameters. 

 
Capacity Fade in Lithium-ion Batteries 

 
The literature is abundant with various possible mechanisms for understanding capacity 
fade (6). However, mathematical models that include these phenomena are very few (7) 
and do not include all postulated mechanisms. Such a mathematical model, although 
highly desirable, has not been forthcoming due to (i) incomplete understanding of all of 
the capacity fade mechanisms, (ii) a lack of knowledge for the values of the model 
parameters in these mechanisms, (iii) difficulties in obtaining these values due to 
cumulative non-separable effects of individual mechanisms occurring simultaneously, 
and (iv) numerical inability and lack of efficient numerical solvers. Often times in the 
quest for adding detailed mechanisms, researchers have neglected important 
electrochemical/transport phenomena typically included in physics-/porous electrode-
based battery models by using single-particle models or empirical fits. 
 
Different mechanisms causing capacity fade include (i) capacity fade during formation 
cycles, (ii) overcharging, which results in a decrease in capacity in both positive and 
negative electrodes and the electrolyte, (iii) decomposition of the electrolyte during the 
reduction process, (iv) self-discharge depending on the purity of materials used in 
manufacturing, and (v) formation of a passive film on the electrode that grows in 
thickness as the cycle number increases. 
 
Page limitations preclude the inclusion of a review of electrochemical engineering 
models and a step-by-step description of what a possible mechanism means in terms of 
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model formulation and numerical simulation. In part due to the combination of multiple 
simultaneous mechanisms possible for capacity fade (see Figure 1), the experimental data 
available (discharge curves at different cycles) may not be sufficiently sensitive to all 
possible scenarios and mechanisms. To address this, nonlinear parameter estimation and 
the MCMC method were used to estimate effective model parameters that characterize 
capacity fade and to quantify uncertainties in the parameters. The use of reformulated 
models for discharge curves facilitated the application of the latest system theory to 
quantify and discriminate models and mechanisms using MCMC and polynomial chaos 
theory. 

 
Figure 1: A schematic showing some capacity fade mechanisms postulated in a Li-ion 
battery. 
 

Parameter Estimation and Uncertainty Analysis Techniques 
 

Nonlinear Parameter Estimation 
 

Many numerical algorithms are available for nonlinear parameter estimation, such as 
the steepest descent method, the Gauss-Newton method, and the Marquardt method. In 
this work, the Gauss-Newton method was applied to estimate parameters in the 
reformulated model. For ordinary least-squares estimation, this Jacobian-based method is 
an iterative process that reduces the error between the model outputs and the 
experimental data. The same numerical optimization algorithm was also applied to 
optimize the objective function for Bayesian estimation, which was formulated in terms 
of the sum of the least-squares errors and a quadratic term that took prior information on 
the probability distribution on the model parameters into account (e.g., in the same 
manner as in equation 5 of Reference (8)). 
 
Uncertainty Quantification 
 

Uncertainties in the model parameter estimates were quantified by three methods: (i) 
estimation of hyperellipsoidal regions by application of Chi-squared statistics to a Taylor 
series expansion between the model parameters and the model outputs, (ii) estimation of 
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nonlinear uncertainty regions by application of F-statistics to the parameter estimation 
objective function (8, 9), and (iii) estimation of probability distributions by application of 
Markov Chain Monte Carlo (MCMC) simulation (10, 11). Methods i and ii, which are the 
most commonly applied, gave highly biased probability distributions for this application, 
whereas there is no statistical bias in method iii. Other advantages of method iii include 
its explicit consideration of constraints and arbitrary non-Gaussian distributions for prior 
knowledge on the parameters, and that it exactly handles the full nonlinearity in the 
model equations. Method iii requires many more simulation runs than methods i and ii, 
which provided further motivation for the use of the reformulated model.  
 

Results and Discussion 
 

The experimental data for the analysis were obtained for the Quallion® BTE cells and 
chemistry (12). Finite-difference and reformulated models were validated at cycle 0. 
Using the model parameters at cycle 0 as an initial guess, Figure 2 compares the 
experimental voltage-discharge curve at cycle 25 with reformulated model output 
obtained using five model parameters fit by ordinary least-squares to that experimental 
data set (the five parameters were the effective solid-phase diffusion coefficients and 
electrochemical reaction rate constants in positive and negative electrodes, and the 
electrolyte diffusion coefficient). Similar parameter estimations and fits were obtained for 
various cycle numbers like 50, 100, and 150, etc. Initially 5 different parameters are 
estimated for each of the cycles as shown in Figure 3a. However, only two parameters, 
namely the solid-phase diffusion coefficient Dsn and the reaction rate constant kn for the 
negative electrode, had to significantly change their values to be able to fit the voltage-
discharge curves at higher cycle number. Hence the rest of the study was restricted to 
extracting only these two parameters. Figure 3b shows the variation of these two model 
parameters for different cycle numbers. 
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Figure 2: Comparison of model predictions with the experimental data, with five model 
parameters obtained from ordinary least-squares estimation applied to the experimental 
data for cycle 25. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3a: Five-parameter estimation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3b: Two-parameter estimation. 
 
A discrete approach was adopted for the prediction of capacity fade, by keeping track of 
the change in effective transport and kinetic parameters with cycle number (N). Figure 4 
shows the variation of the effective diffusion coefficient and rate constant with cycle 
number. A power law fit is shown for variations in each parameter as a function of cycle 
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number. The inset plot in Figure 4 compares the extrapolated model prediction and 
experimental data at cycle 600 using the power laws for capacity fade fit to parameters 
predicted only up to cycle 200. The mathematical model provides an accurate prediction 
of the voltage-discharge curves for higher cycle numbers. 

 
Figure 4: Variation in the effective solid-phase diffusion coefficient at the negative 
electrode. 
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Figure 5: Uncertainty quantification for the effective solid-phase diffusion coefficient Dsn 
and the reaction rate constant kn for the negative electrode at cycle 500 and 1000 (13). 
 
Bayesian estimation was also used to estimate the model parameters from experimental 
data obtained using lithium-ion batteries from Quallion® LLC. Figure 5 shows the 
resulting probability density functions for two model parameters obtained by the MCMC 
method; with statistically significant reductions in both the effective solid-phase diffusion 
coefficient Dsn and the reaction rate constant kn for the negative electrode. These model 
parameters reduced monotonically with cycle number, which is consistent with a 
monotonic decrease in the pore volume in the negative electrode. 
 
The effect of the parameter uncertainties on the accuracy of the predictions of the 
lithium-ion battery model was quantified by polynomial chaos expansions (14). This 
approach avoids the high computational cost associated with applying the Monte Carlo 
method or parameter gridding to the simulation code by first computing a series 
expansion for the simulation model, followed by application of robustness analysis to the 
series expansion. The very low computational cost of the series expansion enables the 
application of the Monte Carlo method, gridding the parameter space, or the application 
of norm-based analytical methods (15-17). 95% prediction intervals computed for each 
cycle provided confidence that the model can be used for predictions and design (Figure 
6). 
 
We explored the use of the model to predict the remaining battery life based on voltage-
discharge curves measured in past cycles. To characterize the degradation in the model 
parameters, a power law was fit to the estimated parameter values from cycles 25 to 500 
similar to what was done for ordinary least-squares estimation. Implicitly assuming that 
the changes in the parameter values are the result of the same mechanism in later cycles, 
the parameter values for the subsequent cycles were predicted using the power law 
expressions. The voltage-discharge curve predicted by this model was in very good 
agreement with the experimental data at cycle 1000 (Figure 7), indicating that the model 
was suitable for prediction of capacity fade. 
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Figure 6. Comparison of the experimental voltage-discharge curve with the model 
prediction for cycle 500. Each red dot is a data point, the blue line is the model prediction, 
and the 95% predictive intervals were computed based on the parametric uncertainties 
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reported in Figure 5. Similar quality fits and prediction intervals occurred for the other 
cycles (13). 
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Figure 7. Comparison of the experimental voltage-discharge curve with the model 
prediction using parameter values calculated from the power law fits (13). 
 
In summary, the effective solid-phase diffusion coefficients and electrochemical reaction 
rate constants in positive and negative electrodes, and the electrolyte diffusion coefficient 
were estimated and tracked as a function of N. Uncertainties in parameter estimates were 
quantified by the MCMC method, which indicated that (i) nearly all of the variation in 
voltage-discharge curves could be explained by changes in only two model parameters, 
and (ii) the changes in the estimated parameter values due to capacity fade were due to 
actual changes in the model parameters rather than uncertainties in the parameter 
estimation due to limited parameter identifiability and limited data. After characterizing 
uncertainties in the parameters, the effects of the parameter uncertainties on the outputs 
of the system were quantified using polynomial chaos theory. Small prediction intervals 
provided, as well as comparisons of model predictions with experimental data, provided 
confidence in the ability of the model to predict capacity fade. 

 
Future Directions 

 
As a next step, mechanisms will be added to the existing battery model and predictions 
and confidence intervals will be compared. Future work also includes uncertainty 
analysis for design calculations and capacity fade predictions with multiscale models. 
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