
  

  

Abstract—This paper applies simultaneous optimization to 

the design of spatially-varying porosity profiles in next-

generation electrodes to maximize the capacity of Li-ion 

batteries, based on porous electrode theory. This paper designs 

a porous positive electrode made of lithium cobalt oxide, which 

is commonly used in lithium-ion batteries for various 

applications. For a fixed amount of active material, optimal 

grading of the porosity across the electrode decreases the 

Ohmic resistance by 25%, which in turn increases the electrode 

capacity to hold and deliver energy. Over 40% enhancement 

was observed in the robustness of the optimal electrode designs 

to variations in model parameters due to manufacturing 

imprecision. The results are sufficiently promising to justify 

investment in the development of experimental procedures to 

fabricate batteries that have a graded porosity across the 

electrode. 

I. INTRODUCTION 

lectrochemical power sources have had significant 

improvements in design and operating range and are 

expected to play a vital role in the future in automobiles, 

power storage, military, and space applications. Lithium-ion 

chemistry has been identified as a preferred candidate for 

high-power/high-energy secondary batteries. Applications 

for batteries range from implantable cardiovascular 

defibrillators (ICDs) operating at 10 µA current to hybrid 

vehicles requiring pulses of up to 100 A. Today, the design 

of these systems have been primarily based on (1) matching 

the capacity of anode and cathode materials, (2) trial-and-

error investigation of thickness, porosity, active material, 

and additive loading, (3) manufacturing convenience and 
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cost, (4) ideal expected thermal behavior at the system level 

to handle high currents, and (5) detailed microscopic models 

to understand, optimize, and design these systems by 

changing one or few parameters at a time.  

Traditionally, macroscopic models have been used to 

optimize the electrode thickness or spatially uniform 

porosity in lithium-ion battery design.
1
 Many applications of 

mathematical modeling to design Li-ion batteries are 

available in the literature.
1-9

 An approach to identify the 

optimal values of system parameters such as electrode 

thickness has been reported by Newman and coworkers.
5-9

 

Simplified models based on porous-electrode theory can 

provide analytical expressions to describe the discharge of 

rechargeable lithium-ion batteries in terms of the relevant 

system parameters. Newman and his coworkers
5-8

 have 

utilized continuum electrochemical engineering models for 

design and optimization as a tool for the identification of 

system limitations from the experimental data. Equations 

were developed that describe the time dependence of 

potential as a function of electrode porosity and thickness, 

the electrolyte and solid-phase conductivities, specific 

ampere-hour capacity, separator conductivity and thickness, 

and current density. Analysis of these equations yield the 

values of electrode porosity and electrode thickness so as to 

maximize the capacity for discharge to a given cutoff 

potential.
5
 Simplified models based on porous-electrode 

theory were used to describe the discharge of rechargeable 

lithium batteries and derive analytic expressions for the cell 

potential, specific energy, and average power in terms of the 

relevant system parameters. The resulting theoretical 

expressions were then used for design and optimization 

purposes and also as a tool for the identification of system 

limitations from experimental data.
6
 Studies were performed 

by comparing the Ragone plots for a range of design 

parameters. A single curve in a Ragone plot involves 

hundreds of simulations wherein the applied current is 

varied over a wide range of magnitude. Ragone plots for 

different configurations are obtained by changing the design 

parameters (e.g., thickness) one at a time, and by keeping the 

other parameters at constant values. This process of 

generating a Ragone plot is quite tedious, and typically 

Ragone curves reported in the literature are not smooth due 

to computational constraints. Batteries are typically designed 

only to optimize the performance at the very first cycle of 

operation of the battery, whereas in practice most of the 

battery’s operation occurs under significantly degraded 

conditions. Further, multivariable optimization is not 

computationally efficient using most first-principles models 

described in the literature. A reformulated model
11-12

 is 
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sufficiently computationally efficient to enable the 

simultaneous optimal design of multiple parameters over any 

number of cycles by including the mechanisms for capacity 

fade. Further, this model can be used to quantify the effects 

of model uncertainties and variations in the design 

parameters on the battery performance. Recently, such an 

application was reported in which the utilization averaged 

over 1000 cycles was maximized for a battery design 

obtained by simultaneous optimization of the applied current 

density (I) and thickness of the separator and the two 

electrodes (ls, ln, lp) for cycle 1, and the effects of variations 

in these four design parameters due to imprecise 

manufacturing was investigated.
13

 The battery design 

optimized for cycle 1 did not maximize the cycle-averaged 

utilization.
 

This paper applies simultaneous optimization to the 

design of spatially varying porosity profiles in next-

generation electrodes to maximize the capacity of Li-ion 

batteries, based on porous electrode theory. The optimization 

procedure is followed by the electrochemical model, the 

results and discussion, and conclusions.  

II. ELECTROCHEMICAL POROUS ELECTRODE MODEL 

This paper considers the optimization of a single porous 

positive electrode, where the electrode has the current 

collector at one end (x = 0) and electrolyte separator at the 

other end (x = lp). The expressions for current in the solid 

phase (i1) and electrolyte phase (i2) are given by
1
  

1
1 ( )

d
i x

dx
σ

Φ
= − ;

            

2
2 ( )

d
i x

dx
κ

Φ
= −

              

(1), (2) 

where σ  is the electrical conductivity, κ  is the ionic 

conductivity, and Ф1 and Ф2 are the solid-phase and 

electrolyte-phase potentials, respectively. The total applied 

current density across the cross-section of the electrode is 

equal to the sum of the solid-phase and liquid-phase current 

densities: 

1 2app
i i i= + .

                                                           

(3) 

The electrochemical reaction occurs at the solid-liquid 

interface and relates the solid-phase current (i1) to the 

distance across the electrode (x) by the linear kinetics: 

1 0 1 2/ ( ) ( ) /( )di dx a x i F RT= Φ − Φ
                           

(4) 

where the active surface area is given by 

( )( ) 3 1 ( ) / pa x x Rε= −
                                              

(5) 

Rp is the particle radius of active materials in the porous 

electrode, and ε(x) is the spatially-varying porosity in the 

electrode. The electrical and ionic conductivities are related 

to the spatially-varying porosity by  

( )0( ) 1 ( )x xσ σ ε= − ;

      
0( ) ( )

brugg
x xκ κ ε=

   

(6), (7) 

The boundary conditions for solution of these equations are 

given as  

1 2 10
1; 0; 0;

p px x l x l
i

= = =
Φ = Φ = =  (8) 

where brugg is the Bruggman coefficient to account for the 

tortuous path in the porous electrode. The ohmic resistance 

of this electrode is obtained by  

1 20 px x l

app
i

ψ
= =

Φ − Φ
= ; 

1

0

( )app

x

d
i x
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σ

=

Φ
= −    (9), (10) 

The above equations are valid for any continuous or 

discontinuous functional form for ε(x) and can be readily 

extended to more detailed micro-scale models for the 

conductivities and transport parameters as a function of 

porosity. Electrochemical engineering models accounting for 

the effects of local stress, phase transfer in the electrodes, 

electrodes with two different particle sizes, and thermal 

behavior have extended the applicability and flexibility. 

Garcia et al.
14

 used a detailed microstructure model to model 

and identify porosity or particle size variations in the 

electrodes to maximize performance. Atomistic simulations 

have predicted new materials with higher energy density, but 

the physical limit has never been reached in a full-cell 

design. Previous efforts have been made on atomistic 

simulations of batteries,
15

 microstructural simulations,
16

 and 

modeling the relationships between the properties and 

microstructure of the materials within packed multiphase 

electrodes. The effect of this equation on the optimal design 

of the porous electrode is also considered by analyzing a 

range of values for Bruggman coefficient. 

The electrochemical modeling equations are usually 

solved by setting the applied current and computing the 

voltage, or vice versa. However, many practical devices 

operate at constant current or constant power mode. It is 

important to realize that the capacity of each device is 

limited by the state variables and theoretical capacity of the 

material. To solve the mathematical model for a practical 

electrochemical device, it is necessary to obtain the 

physically realizable current value to be applied to or drawn 

from the electrode.  

A. Constant-Current Method 

In solving this model for constant-current, the constant 

current iapp is set and the modeling equations are simulated 

with corresponding boundary conditions for the variables 

like Ф1, Ф2, and i1 as given below. Then the resistance (ψ) is 

computed using the output equation.  

Modeling equations:  

1
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Boundary conditions:  
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p px x l x l
i
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Output equation: 
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This procedure is easy to implement and the modeling 

equations are straightforward to simulate. However, the 

applied fixed current may not be commensurate with the 

capacity of the given battery and there is a chance of 

obtaining physically inconsistent results such as a predicted 

potential of −100 or +1000 V. To avoid this potential error, 

the constant-potential method has been used as described in 

next subsection. 

B. Constant-Potential Method 

To avoid the shortcoming of the constant-current method, 

the constant-potential method is used. In this method, the 

potential (Ф1, Ф2) is set and the current is treated as the 

output. This is done by solving iapp as the unknown variable 

in the model equations. Then the resistance (ψ) is estimated 

using the output equation. 

Modeling equations: 
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Boundary conditions: 
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Output equation: 

1 20 px x l

app
i

ψ
= =

Φ − Φ
=                            (11) 

One additional boundary condition has been incorporated for 

describing the relationship of the applied current with the 

state variables. The advantage of this procedure is that, the 

current has been determined using the state variables of the 

battery instead of being fixed to a preset number by the 

modeler. This computationally robust approach ensures that 

the voltage and current are at physically consistent values.  

III. OPTIMIZATION PROCEDURE 

A general formulation for the model-based optimal design 

of a system is
17

  

( ), ( ),
min
x x

Ψ
z u p                                                               (12)

 

s.t. ( ( ), ( ), ( ), ),  ( (0)) 0,  ( (1)) 0,
d

x x x
dx

= = =z f z y u p f z g z

                                       (13) 

( ( ), ( ), ( ), ) 0,x x x =g z y u p
                                    

(14)
 

( ) ,  ( ) ,   ( ) ,
L U L U L U

x x x≤ ≤ ≤ ≤ ≤ ≤u u u y y y z z z
   

(15)
 

where Ψ is the battery design objective to be minimized,
18

 

z(x) is the vector of differential state variables, y(x) is the 

vector of algebraic variables, u(x) is the vector of control 

variables, and p is the vector of design parameters. Different 

methods are available for solving constrained optimization 

problems, which include (i) variational calculus, (ii) 

Pontryagin’s maximum principle, (iii) control vector 

iteration, (iv) control vector parameterization, and (v) 

simultaneous nonlinear programming.
17

 Control vector 

parameterization (CVP) is one of the commonly used 

methods and is the easiest method to implement. In the 

context of this particular application, the control variable 

u(x) is parameterized by a finite number of parameters, 

typically as a polynomial or piecewise-linear function or by 

partitioning its values over space, and the resulting nonlinear 

program is solved numerically. Most numerical optimization 

algorithms utilize an analytically or numerically determined 

gradient of the optimization objective and constraints to 

march towards improved values for the optimization 

variables in the search space. While advances in 

simultaneous discretization have been made in the field of 

dynamic and global optimization,
19

 these algorithms are still 

too computationally expensive to be used for most 

applications such as electrochemical processes, which are 

usually highly stiff with highly nonlinear kinetics and 

requires adaptive time-stepping, stiff solvers, etc. It is not 

expected that the simultaneous simulation-optimization 

approach,
17

 which fixes the time or independent variable 

discretization a priori, will be computationally efficient for 

lithium-ion battery applications. In this paper, CVP is used 

to simultaneously optimize multiple parameters describing a 

spatial profile of porosity of an electrode in a lithium-ion 

battery. The numerical optimization was carried out using 

Marquardt’s method,
20

 in which new parameter values for 

the next iteration are related to the gradient multiplied by the 

old values of the design parameters. The numerical 

algorithm was repeated until a pre-specified tolerance on the 

change in the design parameters was met. 

In this formulation, the control variable (i.e., porosity) is 

partitioned across the electrode length. In each partition, the 

modeling equations described by Eqs. (1) to (11) are solved 

as a function of porosity. The boundary conditions at each 

partition are matched using the flux balance of the species. 

The number of equations is directly proportional to the 

number of partitions. The number of boundary conditions 

will also increase with the number of equations and 

partitions. The optimization objective was to minimize the 

Ohmic resistance (ψ) across the electrode thickness in Eq. 

(1) for the control variable u(x) = ε(x) subject to the 

constraints 

a) 0 < ε(x) < 1 

b) Average {εi} < 0.4, where i = 1,…,N (when a 

specific amount of active material is desired) 

c) Eqs. (1) to (11), where y(i) = [Ф(1,i), Ф(2,i), i(1,i)] and 0 

≤ x ≤ lp 
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d) Boundary conditions for accommodating the 

partitions across the electrode are  

(1, ) (1, 1)/ 0

(2, ) (2, 1)/ 0

(1, ) (1, 1)/ 0

p

p

p

i ix l N x

i ix l N x

i ix l N x
i i

+= =

+= =

+= =

Φ = Φ

Φ = Φ

=

 

where i indicates the i
th

 partition and x = 0 and x = lp/N  

indicate the starting and ending spatial boundaries of the i
th 

partition. The non-negativity constraint is imposed on the 

porosity and the average-value constraint is imposed when 

specific amount of active material is desired in the electrode. 

The Ohmic resistance is calculated as a function of the 

porosity from the modeling equations. The model equations 

along with fixed boundary conditions and boundary 

conditions arising from CVP were solved using a Boundary 

Value Problem (BVP) solver. Table 1 shows the basic set of 

parameters used for the simulation of the model equations 

(1)-(11) at various conditions. All simulations are performed 

using Maple
®
 13’s BVP solver using a personal computer 

with a 3 GHz processor and 3.25 GB of RAM. The 

equations were reformulated to reduce computational cost, 

as described in prior publications.
12-13 

IV. RESULTS AND DISCUSSIONS 

A. Optimization Results For Uniform Porosity 

Fig. 1 shows the variation in the ionic resistance of the 

organic electrolyte solution across the electrode as a function 

of spatially-uniform porosity obtained by brute-force 

gridding of the porosity, which shows a clearly identifiable 

optimal porosity of about 0.2. Operating with the porous 

electrode at this optimum porosity should provide the best 

performance for a system described by the model (1)-(11).  

   0 0.5 1

10
-2

10
-1

 
   

Fig. 1 Resistance versus porosity, ε. The plot was constructed by computing 

the resistance from the model equations (5)-(11) for each spatially-uniform 

porosity between 0 and 1. 

Fig. 2a shows the convergence of the numerical 

optimization to the globally optimal value of the spatially-

uniform electrode porosity. This plot was constructed by 

optimizing the electrochemical model described in Section 2 

starting at three different initial guesses (third guess being 

the optimal value obtained in Fig. 1) for the electrode 

porosity. The final converged value for the electrode 

porosity was the same for many different initial guesses (two 

of which are shown in Fig. 2a). Fig. 2b shows the 

convergence of the Ohmic resistance across the electrode to 

the same single optimal value. A very low resistance was 

achieved by using the globally optimal value for the porosity 

of the electrode. Significant improvements in terms of 

performance were achieved by numerical optimization; the 

optimal design is about 15% more efficient in comparison 

with an average value of 0.4 used in practice for the 

electrode porosity for this chemistry. 
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Fig. 2(a) Convergence to the optimal spatially-uniform porosity ε starting 

from different initial guesses for the porosity 
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Fig. 2(b) Corresponding convergence of the Ohmic resistance. 

B. Optimization Results For Graded Porosity 

Numerical optimization was performed for a porous 

electrode with a graded porosity, that is, porosity that varies 

as a function of distance across the electrode. The porosity 

profile was divided into N optimization zones, with constant 

porosity within each zone (see Fig. 3). For N = 5, the 

resistance across the electrode is minimized when the 

porosity is higher towards the electrode-separator interface 

(see Fig. 4), to have more electrolyte solution in the porous 

matrix. The optimal profile shows a significant decrease in 

pore volume at the other end, at the electrode-current 

collector interface. This optimization procedure shows 

improvement of electrode performance of 17.2% compared 

to the base-case spatially uniform porosity of 0.4. The 

spatially optimized electrode porosity has 4% better 

performance than the optimal spatially-uniform porosity for 

the same chemistry. Batteries with more complicated 

chemistry models or different chemistry models, and 

optimization with additional physical constraints on the 

design, can have different performance improvements when 

using spatially-varying porosity. Increasing the value of the 

number of zones N above 5, while being more difficult to 
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fabricate, does not show much improvement in the 

performance. For instance, an improvement of 0.1% was 

obtained for N = 12 compared to N = 5. The choice of N = 5 

provides a good tradeoff between optimality and 

manufacturability.  

Now consider the same optimal design problem but with 

the additional constraint of having a specified amount of 

active material in the electrode, which is equivalent to 

having a fixed value for the porosity averaged across the 

electrode. For a fixed average porosity ε0 = 0.3, the 

performance improvement is 15% compared to the base 

case, while having an optimal porosity profile that is 

qualitatively similar to that without the average porosity 

constraint (compare Figs. 4a and 5a). A qualitatively similar 

optimal porosity profile is obtained for a fixed average 

porosity ε0 = 0.5, while providing a performance 

improvement of 33% over the base case. The performance 

improvement of 33% compared to 20% for Fig. 4 is due to 

the increased number of optimization zones. 

i = 1

x = 0 x = ln

i = N

���������	
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Fig. 3 Schematic of an electrode of a lithium-ion battery divided into N 

optimization zones. 

Fig. 6 shows the applied current profile across the 

electrode for optimized and base-case design. The optimized 

current at the electrode-current collector interface is higher 

in magnitude due to lower resistance. The spatial variation in 

the electrolyte-phase potentials follow a similar qualitative 

trend but are very different quantitatively (see Fig. 7). The 

solid-phase potential in both cases does not show much 

variation across the electrode (see Fig. 8). The net potential 

drop (Φ1−Φ2) at the electrode-current collector interface is 

greater in the base case compared to the optimized case, 

indicative of the much lower resistance inside the cell with 

optimized porosity profile. 
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Fig. 4 Optimal porosity profile for N = 5 optimization zones. 

Due to limited manufacturing precision and capacity fade, 

model parameters will vary somewhat from one electrode to 

the next. The importance of quantifying the effects of such 

uncertainties on the performance of microstructured 

materials is well established.
21

 The probability distribution 

functions (pdfs) for the Ohmic resistance for spatially-

uniform electrode porosities indicate that the optimized 

design is more robust to uncertainties in comparison to a 

non-optimized porosity, with a reduction in variance for the 

optimal design of about 36% (see Fig. 9). The design with 

the optimized spatially-varying porosity is slightly more 

robust, with a reduction of variation of about 42% compared 

to a non-optimized porosity (see Fig. 10). The robustness 

could be further enhanced by explicitly including uncertainty 

quantification into the optimization formulation. 

V. CONCLUSION 

Model-based optimization was applied to the design of 

spatially varying porosity profiles in next-generation 

electrodes to minimize the Ohmic resistance in Li-ion 

batteries, based on porous electrode theory. The 

implementation of control vector parameterization is 

demonstrated for a porous electrode model for the cobalt 

oxide chemistry in commercial lithium-ion batteries. The 

optimal design of graded porosity was found to reduce 

Ohmic resistance by at least 25% without increasing the 

amount of active material. Over 40% enhancement in the 

performance robustness of the optimal electrode designs was 

observed. The results are sufficiently promising to justify 

investment in the development of experimental procedures 

to fabricate batteries that have a graded porosity across the 

electrode. It is expected that further investigations into a 

whole-cell battery model will lead to a significant 

engineering design alternatives that can meet energy and 

power requirements for emerging applications for batteries 

in vehicles, satellites, and in the military.  
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Fig. 5 Optimum porosity profile for N = 6 optimization zones for a fixed 

average porosity of (a) 0.3 and (b) 0.5. 
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Fig. 6 Applied current profile across the electrode in base-case and 

optimized designs. 
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Fig. 7 Electrolyte-phase potential profile in base-case and optimized 

designs. 
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Fig. 8 Solid-phase potential profile in base-case and optimized designs. 
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Fig. 9 Probability distribution function for the Ohmic resistance for 

electrodes with spatially-uniform porosities of ε = 0.4 and obtained by 

optimization (ε = 0.21388). 
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Fig. 10 Probability distribution function for the Ohmic resistance for the 

electrode with the optimal spatially-varying porosity profile. 
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