RCMAR – HEALTHY AND UNHEALTHY BRAIN AGING

NAD-RCMAR EVENT

Kristoffer Rhoads, PhD
Clinical Neuropsychologist
UW Neurology, Harborview Medical Center
April 29, 2019
Overview

• Learning Objectives/Overview
 • Dementia statistics
 • Context
 • Normal, age related cognitive changes
 • Western, biomedical framework of cognition
Dementia Overview

- “Umbrella” term that includes a variety of neurodegenerative diseases and conditions that cause progressive cognitive and behavioral impairments affecting ADLs (Cooper & Greene, 2005).
 - Chronic and persistent, with no cure
 - Caused by damage to brain cells
 - Type of dementia and symptoms depend on which regions of the brain are damaged.

- Dementia is not part of the normal aging process.
- Some symptoms of dementia are potentially caused by treatable conditions
Key Points

• Most forms of dementia come on slowly and may be preceded by mild cognitive impairment (MCI). MCI does not include functional losses.

• Alzheimer’s disease is the most common but not the only type of dementia.

• Diagnosis of dementia requires impairment in two or more core cognitive functions.

• Dementia of Alzheimer’s disease has been described as progressing through three stages: early, middle, and late stage.

• Diagnosis is predominantly made by primary care provider (PCP), geriatrician, neuropsychologist, or neurologist.

• Not all memory issues are indicative of Alzheimer’s disease or another type of dementia.
Alzheimer’s and Dementia Worldwide
(Population = 7.6 billion)
The global impact of dementia

Around the world, there will be 9.9 million new cases of dementia in 2015, one every 3 seconds.

46.8 million people worldwide are living with dementia in 2015. This number will almost double every 20 years.

68% in 2050

Much of the increase will take place in low and middle income countries (LMICs): in 2015, 58% of all people with dementia live in LMICs, rising to 63% in 2030 and 68% in 2050.

This map shows the estimated number of people living with dementia in each world region in 2015.

The total estimated worldwide cost of dementia in 2015 is US$ 818 billion. By 2018, dementia will become a trillion dollar disease, rising to US$ 2 trillion by 2030.

18th largest economy in the world exceeding the market values of companies such as Apple and Google.

Dementia: US$ 818 billion
Apple: $742 billion
Google: $368 billion

(source: Forbes 2015 ranking)

We must now involve more countries and regions in the global action on dementia.

2019 Facts and Figures

- 58% in low and middle income countries
 - 68% in 2050
- Three quarters of people with dementia are undiagnosed
 - 55% in the US
 - 90% in India

Growth in numbers of people with dementia in high-income and low and middle-income countries

The Lancet DOI: (10.1016/S0140-6736(17)31363-6)

Copyright © 2017 Elsevier Ltd *Terms and Conditions*
Alzheimer’s in the United States
(Population = 326 million)
Increased Life Expectancy and Epidemic of Alzheimer’s/Dementia

- 10,000 Americans reach 65 each day

- Current life expectancy 78 years
 - 35 in 1776
 - 47 years in 1900

- **Age** is single greatest risk factor for Alzheimer’s disease

- 80 million Baby Boomers (born 1946-1964)

- 6.8 million AI/AN in 2017 census
 - 10.4% over the age of 65
 - 7.6% in 2007
 - 18% by 2050
2019 Facts and Figures

Projected Number of People Age 65 and Older (Total and by Age Group) in the U.S. Population with Alzheimer’s Disease, 2010 to 2050

<table>
<thead>
<tr>
<th>Age Group</th>
<th>2010</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ages 65-74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ages 75-84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ages 85+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEMENTIA, HEALTHCARE & ECONOMIC BURDEN

• $604 Billion worldwide in 2010
 Wimo & Price 2010
 • $238 billion/year = (T2DM+CAD+HTN+CVA)

• Third most costly health condition in 2018
 • Annual cost ~ $259 billion
 • $172 billion in 2010

• Projected 2050 prevalence of 100,980 AI/AN with dementia
 • $2.6 billion
 Garrett et al, Mental Health Disorders Among an Invisible Minority: Depression and Dementia Among American Indian and Alaska Native Elders, The Gerontologist, Volume 55, Issue 2, April 2015, Pages 227–236,

• $7.9 trillion cost savings with early detection
Figure 13

Hospital Stays per 1,000 Medicare Beneficiaries Age 65 and Older with Specified Coexisting Medical Conditions, with and without Alzheimer’s or Other Dementias, 2014

<table>
<thead>
<tr>
<th>Condition</th>
<th>With Alzheimer’s or other dementias</th>
<th>Without Alzheimer’s or other dementias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congestive heart failure</td>
<td>804</td>
<td>753</td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease</td>
<td>791</td>
<td>590</td>
</tr>
<tr>
<td>Chronic kidney disease</td>
<td>772</td>
<td>576</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>727</td>
<td>475</td>
</tr>
<tr>
<td>Stroke</td>
<td>716</td>
<td>550</td>
</tr>
<tr>
<td>Diabetes</td>
<td>678</td>
<td>386</td>
</tr>
<tr>
<td>Cancer</td>
<td>682</td>
<td>392</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medical Condition by Alzheimer’s/Dementia (A/D) Status</th>
<th>Total Medicare Payments</th>
<th>Hospital Care</th>
<th>Physician Care</th>
<th>Skilled Nursing Facility Care</th>
<th>Home Health Care</th>
<th>Hospice Care</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronary artery disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With A/D</td>
<td>$26,223</td>
<td>$9,753</td>
<td>$2,199</td>
<td>$4,386</td>
<td>$2,343</td>
<td>$3,092</td>
</tr>
<tr>
<td>Without A/D</td>
<td>16,366</td>
<td>5,556</td>
<td>1,565</td>
<td>1,410</td>
<td>971</td>
<td>374</td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With A/D</td>
<td>25,385</td>
<td>7,472</td>
<td>2,154</td>
<td>4,242</td>
<td>2,267</td>
<td>2,590</td>
</tr>
<tr>
<td>Without A/D</td>
<td>14,014</td>
<td>4,681</td>
<td>1,380</td>
<td>1,225</td>
<td>844</td>
<td>255</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With A/D</td>
<td>28,773</td>
<td>8,825</td>
<td>2,310</td>
<td>4,794</td>
<td>2,455</td>
<td>3,452</td>
</tr>
<tr>
<td>Without A/D</td>
<td>24,412</td>
<td>8,960</td>
<td>2,075</td>
<td>2,596</td>
<td>1,742</td>
<td>807</td>
</tr>
<tr>
<td>Chronic kidney disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With A/D</td>
<td>28,002</td>
<td>8,457</td>
<td>2,255</td>
<td>4,666</td>
<td>2,319</td>
<td>3,075</td>
</tr>
<tr>
<td>Without A/D</td>
<td>20,077</td>
<td>6,989</td>
<td>1,779</td>
<td>1,883</td>
<td>1,201</td>
<td>473</td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With A/D</td>
<td>27,797</td>
<td>8,481</td>
<td>2,283</td>
<td>4,624</td>
<td>2,399</td>
<td>3,189</td>
</tr>
<tr>
<td>Without A/D</td>
<td>18,962</td>
<td>6,792</td>
<td>1,725</td>
<td>1,749</td>
<td>1,201</td>
<td>602</td>
</tr>
<tr>
<td>Stroke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With A/D</td>
<td>26,608</td>
<td>7,751</td>
<td>2,177</td>
<td>4,564</td>
<td>2,254</td>
<td>3,199</td>
</tr>
<tr>
<td>Without A/D</td>
<td>19,169</td>
<td>6,305</td>
<td>1,753</td>
<td>2,294</td>
<td>1,455</td>
<td>605</td>
</tr>
<tr>
<td>Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With A/D</td>
<td>25,207</td>
<td>7,352</td>
<td>2,109</td>
<td>3,934</td>
<td>2,074</td>
<td>2,862</td>
</tr>
<tr>
<td>Without A/D</td>
<td>15,987</td>
<td>4,833</td>
<td>1,447</td>
<td>1,050</td>
<td>692</td>
<td>484</td>
</tr>
</tbody>
</table>

*This table does not include payments for all kinds of Medicare services, and as a result the average per-person payments for specific Medicare services do not sum to the total per-person Medicare payments.

Created from unpublished data from the National 5% Sample Medicare Fee-for-Service Beneficiaries for 2014.

Normal Aging Versus Dementia: Identifying the Differences

Suspicion and recognition of dementia versus normal aging are based on changes that occur across the following capabilities:

• Cognitive function
 o Memory
 o Executive function
 o Information processing
• Visuospatial function
• Other sensory changes
• Language skills
• Ability to perform basic and instrumental activities of daily living (ADLs and IADLs, respectively)
• Appearance of specific behavioral and psychologic symptoms
Cognitive Function

• Cognitive function refers to how a person becomes aware of, perceives, or comprehends ideas (Anstey et al., 2004).

• It declines gradually while young and more rapidly among older adults (>60s) (Anstey et al., 2004).

• Many other medical and psychological factors can influence cognitive function (Pankratz et al., 2015; Mayo Clinic, 2017b; UCSF Memory and Aging Center, 2017; Heaton et al., 2010; Karakis et al., 2016; Emory Alzheimer’s Disease Research Center, 2017; HelpGuide.org, n.d.; Pagoria et al., 2011).
Domains of Cognitive Functioning

- Intelligence/Premorbid Functioning
- Memory (Verbal and Visual)
- Executive Functioning
- Attention/Concentration
- Reasoning/Judgment
- Language
- Visuospatial/constructional
- Sensory/Perceptual
- Motor
- Academic
Executive Function

• Executive function refers to a set of mental or cognitive skills believed to be controlled by the frontal lobe, anterior cingulate, prefrontal cortex, basal ganglia, and thalamus.

• There are 2 main types of executive functions:
 o Organization: attention, managing time, planning and organizing, remembering details, sequencing, and working memory
 o Regulation: self-control, emotional regulation, decision-making, and moral reasoning

• Impairments in executive function can lead to difficulty planning, emotional swings and changes, loss of fine motor skills, apathy, and socially inappropriate behaviors
Memory Loss

• Many different types of memory (Arlt, 2013; Atkinson & Shiffrin, 1968)

• General types of memory (Arlt, 2013; UCSF Memory and Aging Center, 2018d):
 o Short-term (or working) memory (<1 min)
 o Long-term (lifetime) memory
Memory - Systems

- Working
 - Short term storage
 - Manipulation
- Semantic
 - Permanent, general knowledge, context free
- Episodic
 - Personal events, contextual
- Perceptual representational
 - Presemantic, modality specific
- Procedural
 - Motor/cognitive skills
- Sensory
 - Visual (iconic), auditory (echoic), smell-based (olfactory), taste-based, or haptic (touch-based) memory

Schacter & Tulving, 1994
The multi-store model of memory (Atkinson & Shiffrin, 1968)

Sensory Store

Short Term Store (STM)

Long Term Store (LTM)

Attention

Rehearsal

Transfer

Retrieval

Information lost (forgetting)
Normal Aging, continued

• As people age, they retain their ability to perform basic ADL without needing assistance (Galvin, 2012; Gold, 2012).
 - Inability to perform IADL typically precedes inability to perform basic ADL (Galvin, 2012).
 - Inability to manage finances may be one of the earlier IADL changes suggestive of dementia (Gold, 2012).
Visual Perception, Language Skills, Sensory Impairments

Normal aging leads to changes in all 5 senses:

• Visuoperceptual difficulties (Macknik et al., 2016; Staudinger et al., 2011; NEI, n.d.)
• Auditory problems (Tun et al., 2012)
• Speech and language impairments (Sörös et al., 2009; Tun et al., 2012)
• Changes in taste (NIA, n.d.)
• Changes in smell (Vasavada et al., 2015)
What’s Normal, What’s Not?

Normal Aging

Cognitive Function

Years
Normal Aging: Cognitive Changes

- Vocabulary: +20% for 50 YO, +20% for 80 YO
- Mental Math: -20% for 50 YO, -20% for 80 YO
- Verbal Fluency: -40% for 50 YO, -40% for 80 YO
Normal Aging: Cognitive Changes

20 YO

- Auditory Attention
- Working Memory
- Picture Ordering

50 YO

80 YO

+20%

-20%

-40%

-60%
Normal Aging: Cognitive Changes

- Selective Attention: -60% (50 YO), -60% (80 YO)
- Mental Flexibility: -40% (50 YO), -60% (80 YO)
- Visual Construction: -20% (50 YO), -40% (80 YO)
Normal Aging: Memory Changes

- 50 YO
- 80 YO

-20% to +20%

20 YO

Story Recall

Picture Recall

List Memory
Age-Related Memory/Cognitive Changes

• Few changes:
 • Crystallized Intelligence
 • Procedural Memory
 • Long-term Memory
 • Auditory Attention
 • Verbal Fluency
 • Working Memory?

• Declines:
 • Sensory Memory
 • Short-term Memory
 • Complex/Selective Attention
 • Executive Skills
 • Processing Speed
 • Motor Tasks
 • Working Memory?
Normal Aging: Cognitive Changes

The graph illustrates the mean T-scores for various cognitive abilities across different age groups:

- Inductive reasoning
- Spatial orientation
- Perceptual speed
- Numeric ability
- Verbal ability
- Verbal memory

The x-axis represents age, ranging from 25 to 81 years, while the y-axis represents mean T-scores, ranging from 35 to 60.
Cognitive Changes: Physiological Theory

- Shrinkage of neurons
- Decreases in:
 - myelination
 - number of synaptic connections
 - neurotransmitter availability
 - perfusion
- Location Specific:
 » Hypothalamus vs. prefrontal cortex
Cognitive Changes: Physiological Theory

Related health conditions:

- Smoking
- Alcohol
- Sitting disease/Sedentary lifestyle
- Depression
- Sleep apnea
- Delirium
- Hospitalization/Sepsis
- Head Injury
- Low level of education
- Type 2 Diabetes
- Obesity
- High blood pressure
- Hyperlipidemia
- Cerebrovascular risk
Differential Risk Factors: AI/AN

• High prevalence of vascular risk factors
 • Strong Heart and Cerebrovascular Disease and Consequences studies
 • Cholerton et al 2017
 • 80% with hypertension
 • 48% with diabetes
 • 40% with dyslipidemia
 • Reduced whole brain/hippocampal volumes associated with decreased processing speed
 • Total brain volume associated with verbal learning (not recall)

• Environmental factors
 • Chronic low level arsenic exposure associated with decreased processing speed and fine motor speed (Carrol et al, 2017)
 • Chronic low level domoic acid exposure (Tracy et al, 2016)
 • PCB exposure effect in older Mohawk, but not younger (Haase et al, 2009)
Differential Risk Factors: AI/AN

• Diabetes prevalence in white populations = 6.2% (Mokdad et al., 2000)
 • blacks (10.8%)
 • Mexican Americans (10.6%)
 • AIANs (9.0%)

• Increase in hypertension and diabetes with age (Rhoades et al, 2007)
 • Despite decreases in smoking

• High prevalence of multiple vascular risk factors in AI veterans without diagnosed cognitive impairment (Kirkpatrick et al, 2019)
 • 44% with abnormal MoCA scores
 • 15 received comprehensive workup
 • normal \(N = 4 \)
 • non-amnestic MCI \(N = 4 \)
 • vascular MCI \(N = 5 \)
 • vascular dementia \(N = 2 \)

Social Cognitive Theory

Stereotypes → Expectations → Active Strategies → Recall

Expectation impacts performance (Trivia Study)

- Younger vs. Older
- Different instructions
 - “Test of Memory” vs. “Ability to Learn Trivia”
- Outcome: Age differences for “Memory,” not “Trivia”

Rahal, Hasher, & Colcombe (2001)
Sociocultural Determinants

• Culturally appropriate definitions of normality and functionality

• Acculturation (Trimble, 2000)

• Socioeconomic status
 • Rural versus urban AI/AN (Jervis & Manson, 2002)

• Linguistic and cultural translation/logic
• Education and task familiarity

• Critical importance of culturally-appropriate measures as well as norms
Sociocultural Determinants

• Culturally appropriate definitions of normality and functionality

• Acculturation (Trimble, 2000)

• Socioeconomic status

 • Rural versus urban AI/AN (Jervis & Manson, 2002)

• Linguistic and cultural translation

• Education and task familiarity
Cognitive Screening - MMSE

- 30 items, 6 domains, 5-10 minutes
- Standard cutoff of 23-24
 - Sensitivity = 66-73%
 - Specificity = 87-92%
 - Positive Predictive Value = 58-67%
- Misclassification rate = 15%
- Age and education effects/norms
 - Sensitivity = 92%
 - Specificity = 96%
Cognitive Screening- MMSE

- SALSA study (MMSE) (Espino et al., 2001 & 2004; JAGS)
 - Internal consistency depends on scoring
 - Education effects
 - Language ability
 - Neighborhood effects
 - Socioeconomic status

- MMSE False Positive Rates
 - 6% for non-impaired majority
 - 42% for non-impaired minority
Cognitive Screening- MMSE/DRS-2

• MMSE and DRS-2 in AI/AN elder populations (Jervis et al., 2007 & 2010)
 • Comparison to age norms = 10-27% impairment
 • DRS impairment was 81% for age/ed adjusted norms
 • Education effects
 • Type and character
 • Language ability
 • Socioeconomic status/SSI need
 • Access to necessary health care
 • Pre/peri natal factors?

• In addition to age and overall level of education
• No gender or blood quantum effects (2010)
Brain autopsy results from cognitively healthy individuals

![Graphs showing cognitive performance and neuropathology scores for different stages and conditions.]

The Lancet DOI: (10.1016/S0140-6736(17)31363-6) Copyright © 2017 Elsevier Ltd Terms and Conditions
Distinguishing Normal from Pathological Aging

Cognitive Function

- No Symptoms
- MCI
- Dementia

gradual accumulation of neuropathology
Treatment Targets

Presymptomatic / MCI

Cognitive Function

Years

Presymptomatic

gradual accumulation of neuropathology

decrease neuropathology

MCI

Dementia

Presymptomatic / MCI
Encouraging Developments

• Critical need for culturally appropriate and ecologically meaningful measures

• Critical need for specific normative data

• Trends toward alternative approaches to interpret cognitive data (Schretlen et al)

• Viability of virtual/telemedicine neuropsychological assessment in AIAN populations (Wadsworth et al., 2016)
Thank you for your attention!
Kristoffer Rhoads, PhD
UW Medicine, Harborview Medical Center
325 9th Ave., 3rd Floor West Clinic
Seattle, WA 98104
Phone 206-744-3045
Fax 206-744-5030
krhoads@uw.edu

uwadrc.org