DIMENSIONS

35 Years of Innovation and Excellence in Alzheimer’s Disease and Related Dementias Research at the UW

Alzheimer's Disease Research Center
Welcome to Dimensions, the 35th Anniversary Edition!

The UW ADRC and its associated clinical and educational programs at the UW Memory and Brain Wellness Center are pleased to bring you this special edition. We hope you will enjoy the stories of research participants who share their experiences for giving gifts of time and effort to our research projects and trials.

While it is impossible to represent every valuable team member and project in depth, we urge you to follow the clues in these stories and timeline to learn more about what interests you. In the future, the impact of the SARS-CoV-2 pandemic will certainly be a part of our Center’s history. To rise to these challenges, we adapted many resources and programs, enhanced our virtual offerings of educational programs, conferences, and activities, such as nature walks, and continue to brainstorm about ways we can improve the lives of people living with memory loss.

We want to take this opportunity to thank our generous philanthropic donors for supporting numerous Alzheimer’s disease research projects, community initiatives, and faculty positions that help our Center flourish. We recognize the Ellison Foundation, Richard M. and Maude Ferry Charitable Foundation, Paul V. Martinis Estate, Anderson Foundation, Steven G. and Dixie Y. Wilson, Ms. Charlotte Merritt, Sky Valley Whirlwinds, Skyline First Hill, Friends of Alzheimer’s Disease Research, Arthur J. and Marcella McCaffray endowment, Arthur Krause endowment, and Nancy and Buster Alvord endowment, and many members of the public. Your interest also makes a difference and helps us advance the day when threats to memory and brain health will be detected and prevented.

Table of Contents:

FEATURE STORY
/ The Early ADRC’s Search for an Alzheimer’s Gene: How Creative Teamwork, Collaboration, Leadership, and Luck Set the Stage for Today’s Approach to Biological Complexity ... 6-8
/ Celebrating ADRC Researchers ...32-33

FINDINGS
/ A Prescription for Prevention: Exploring the Most Impactful Take-home Lessons of the ACT Study about Dementia Prevention and Risk Factors ...20-25

TIME CAPSULES
/ Revisiting a Defining Question, 34 Years Later ...4-5
/ A Research Mystery for the Ages: Are Females at a Higher Risk for Alzheimer’s? ...38-39

TIMELINE OF ADRC HISTORY
/ ADRC Milestones: 1978-2020 ...Starts on 8

VOICES
/ An Interview with the ADRC’s Founding Director ...

DIMENSIONS Since 1986, Dimensions has served as our regular link to the public, including families, people living with memory loss, research participants, scientists, medical professionals, and interested individuals. Dimensions is one of the core outreach activities of the ADRC, in partnership with the UW Memory and Brain Wellness Center. Each issue seeks to update people who are interested in ADRC research about the latest dementia findings and news stories, as well as relevant local events and other aspects of healthy aging, caregiving, and living well with memory loss. Contact gwanaucha@uw.edu with any questions.

Contact us:
ADRC: uwadrc.org
MBWC: depts.washington.edu/mbwc
Facebook: facebook.com/UWMBWC
Twitter: twitter.com/MemoryBrain_UW

206.744.0588 • Toll free: 855.744.0588
In the inaugural issue of ADRC’s Dimensions newsletter in 1986, this reader’s question was the very first to be answered by Associate Director Burton Reifler, MD, MPH, who was also Founding Director of the (former) UW Geriatrics and Family Services Clinic. This early reader asks, “I am confused about the difference between Alzheimer’s disease and senility. How can you tell them apart?” Looking back, with over three decades of clinical research under our belt, this question still gets to the heart of tricky issues about brain health and aging, but also reveals substantial progress. View the answer from 1986 and join us as we reflect on how clinical researchers at the UW Memory and Brain Wellness Center would update that answer with the most recent knowledge and a prescription for action and hope!

A: “You can’t tell Alzheimer’s disease and senility apart, because in most cases, they are one and the same. At one time, it was thought that ‘senility’ was simply a normal part of getting older. At that time also, we thought that Alzheimer’s disease applied only to an individual under age 60 who had the slow, progressive loss of mental ability so characteristic of the illness. If the person had the same symptoms and was over 60, we called it ‘senility’. We now know that mild forgetfulness, such as not remembering names, can be quite normal. Significant, sustained forgetfulness is a disease. Alzheimer’s disease now refers to all individuals, regardless of age, who are subject to the slow, progressive deterioration of their mental functioning.” – Dr. Burton Reifler, 1986

Thirty-Four Years Later:

Indeed, as Reifler notes, the word ‘senility’ was commonly used in past decades to label elderly individuals who showed signs of severe cognitive impairment. Today, the medical community defines that condition as dementia. Through massive improvements from decades past, the field has better diagnostic tools to clarify whether Alzheimer’s disease is playing a role in a person’s symptoms. It is also now possible to make early diagnoses to help families adapt and plan for the future while they are still able.

But, that readers’ inquiry in 1986 is still relevant today—It’s just asked with different language: “What’s the difference between ‘dementia’ and ‘Alzheimer’s disease’?” remains a baffling question to this day—and our Director, Thomas Grabowski, MD, has made it his mission to provide an answer that makes sense to everyone and fundamentally reframes how the public thinks about these issues of brain health and aging.

Grabowski, a neurologist at the UW Memory and Brain Wellness Center, often starts his public science talks by clearing up a “fundamental and pervasive confusion in our society and the medical community between Alzheimer’s disease and dementia.” The distinction between these two terms has wide-ranging implications. In short, Alzheimer’s disease names the biological process by which amyloid plaques and tangles of tau protein build up in the brain’s medial temporal lobe and eventually spread throughout the entire brain. This process is often accompanied by vascular damage and other proteins, especially in very old people. Only in later stages of the disease does a person become dependent on the care of others to perform activities of daily living, a clinical state called dementia. Importantly, not all cases of dementia are caused by Alzheimer’s disease or related pathologies; other less common neurodegenerative diseases, such as frontotemporal degeneration and Parkinson’s disease, can also lead to dementia.

For perspective, while 1% of people aged 65 have Alzheimer-type dementia, 25-30% of adults aged 65 will show amyloid build-up in PET scans at least 15 years before the onset of dementia symptoms. According to the National Institute on Aging, the prevalence of clinically diagnosed Alzheimer’s disease doubles every 5 years beyond age 65. Some people with these signs of pathology escape developing symptoms during life, and researchers are now on the hunt for the genes or aspects of life history that contribute to this resilience. Learn more on Page 13.

“So, if our plan is to advance the day when we prevent these threats to brain health, we really are going to have to intervene early, either with a strategy of primary prevention based on identification of early amyloid burden and genetic factors, or secondary prevention methods to treat early symptoms,” says Grabowski.

In Grabowski’s reframing of Alzheimer’s disease, the long presymptomatic phase becomes a wide window during which lifestyle changes in exercise and other heart-healthy behaviors, and eventually, future therapeutics, can help improve or maintain cognitive function or delay dementia onset for many years. In fact, the Lancet Commission on Dementia Prevention, which uses research from the UW Adult Changes and Thought Study, documents that not smoking and managing conditions such as obesity, hypertension, diabetes, hearing loss, and social isolation can help prevent dementia. In 2020, new additions to the list of preventable risk factors include head injury, heavy alcohol use, and air pollution exposure. Learn more on Page 20.

At the UW Memory and Brain Wellness Center, our focus goes beyond slowing or preventing dementia. We take a strengths-based approach to helping people with early symptoms of memory loss find ways to leverage areas of strength that remain intact in the midst of decline. “The vast majority of older adults over 65 with early to mid-stage dementia symptoms typically have the capacity to live meaningful and engaging lives for many years in spite of the impairments,” says Grabowski.

The aim to maximize the impact of strengths-based approaches to memory loss motivates certain unique areas of emphasis in our clinic. We are engaged in efforts to improve dementia diagnosis and education for primary care physicians, so more people can access diagnosis and resources without referrals to specialty neurology centers. The clinic advocates for people living with memory loss and their families to participate in local dementia-friendly programs.

– Memory and Brain Wellness Center provider team, 2020
George Martin, MD, Emeritus Professor of UW Pathology, has led a long and productive career at the University of Washington. He earned a PhD in 1957 and MD degrees and has been a member of its faculty since 1957. Martin's research has for many years been concerned with the development of genetic approaches to the study of aging and age-related diseases. At the UW, he is recognized for creating research opportunities in neurobiology and the biology of aging. By the time he founded the ADRC in 1985, he had already started the UW Medical Scientist Training Program in 1970 and the UW Genetic Approaches to Aging Research Institutional Training Grant, supported by the National Institute on Aging. At 93 years of age, George Martin is devoted to supporting research in aging and many of the most challenging issues in studying Alzheimer’s disease and related neurodegenerative conditions.

He shares memories, fascinating insights about evolutionary biological theories of aging and genetics, and his hopes for the field of Alzheimer’s disease research.

HOW DID YOU FIRST BECOME INVOLVED WITH AGING AND GENETICS RESEARCH?

After I finished my medical residency at the University of Chicago, my late colleague and Associate Professor Earl Benditt, MD, asked me to join him as a faculty member at the University of Washington in 1957. Benditt had been recruited to build an academic pathology department and jump-started research in the department on a modest National Institutes of Health grant.

I had developed an interest in the neurobiology of the genetic disorder called Wilson’s disease in my medical residency, so I decided to connect with the chair of the Department of Medical Genetics and the late Professor Arno Motulsky, the founder of Medical Genetics here at the UW. I said, “I want to learn more about genetics!” They were welcoming to me. I asked them to participate in our pathology course for the first time. So, I had to coordinate by bringing medical genetics experts in to give lectures to our new Department of Pathology.

At the time, I was working on an enzyme called ceruloplasmin, which is dysfunctional in Wilson’s disease. Wilson’s disease prevents the body from getting rid of excess copper, and these patients develop copper deposits in their liver and around their eyes. That work led to the cloning of the copper-transporting gene, ATP7B. Defects in ATP7B remain the only known genetic cause of Wilson’s disease. And I said, “Hey, that’s interesting! What about the element vanadium? It’s a close cousin of copper.” Our experiments indeed showed that vanadium made a tremendous difference in modulating organic compounds produced by the body, such as serotonin and adrenaline.

There was no predicting where that research would go. In a literature search, I came across the late Professor Arno Motulsky, the founder of Medical Genetics here at the UW. I said: “I want to learn more about genetics!” He was very welcoming to me. I asked them to participate in our pathology course for the first time. So, I had to coordinate by bringing medical genetics experts in to give lectures to our new Department of Pathology.

At the time, I was working on an enzyme called ceruloplasmin, which is dysfunctional in Wilson’s disease. Wilson’s disease prevents the body from getting rid of excess copper, and these patients develop copper deposits in their liver and around their eyes. That work led to the cloning of the copper-transporting gene, ATP7B. Defects in ATP7B remain the only known genetic cause of Wilson’s disease. And I said, “Hey, that’s interesting! What about the element vanadium? It’s a close cousin of copper.” Our experiments indeed showed that vanadium made a tremendous difference in modulating organic compounds produced by the body, such as serotonin and adrenaline.

There was no predicting where that research would go. In a literature search, I came across the late Professor Arno Motulsky, the founder of Medical Genetics here at the UW. I said: “I want to learn more about genetics!” He was very welcoming to me. I asked them to participate in our pathology course for the first time. So, I had to coordinate by bringing medical genetics experts in to give lectures to our new Department of Pathology.

At the time, I was working on an enzyme called ceruloplasmin, which is dysfunctional in Wilson’s disease. Wilson’s disease prevents the body from getting rid of excess copper, and these patients develop copper deposits in their liver and around their eyes. That work led to the cloning of the copper-transporting gene, ATP7B. Defects in ATP7B remain the only known genetic cause of Wilson’s disease. And I said, “Hey, that’s interesting! What about the element vanadium? It’s a close cousin of copper.” Our experiments indeed showed that vanadium made a tremendous difference in modulating organic compounds produced by the body, such as serotonin and adrenaline.

There was no predicting where that research would go. In a literature search, I came across the late Professor Arno Motulsky, the founder of Medical Genetics here at the UW. I said: “I want to learn more about genetics!” He was very welcoming to me. I asked them to participate in our pathology course for the first time. So, I had to coordinate by bringing medical genetics experts in to give lectures to our new Department of Pathology.

At the time, I was working on an enzyme called ceruloplasmin, which is dysfunctional in Wilson’s disease. Wilson’s disease prevents the body from getting rid of excess copper, and these patients develop copper deposits in their liver and around their eyes. That work led to the cloning of the copper-transporting gene, ATP7B. Defects in ATP7B remain the only known genetic cause of Wilson’s disease. And I said, “Hey, that’s interesting! What about the element vanadium? It’s a close cousin of copper.” Our experiments indeed showed that vanadium made a tremendous difference in modulating organic compounds produced by the body, such as serotonin and adrenaline.

There was no predicting where that research would go. In a literature search, I came across the late Professor Arno Motulsky, the founder of Medical Genetics here at the UW. I said: “I want to learn more about genetics!” He was very welcoming to me. I asked them to participate in our pathology course for the first time. So, I had to coordinate by bringing medical genetics experts in to give lectures to our new Department of Pathology.

At the time, I was working on an enzyme called ceruloplasmin, which is dysfunctional in Wilson’s disease. Wilson’s disease prevents the body from getting rid of excess copper, and these patients develop copper deposits in their liver and around their eyes. That work led to the cloning of the copper-transporting gene, ATP7B. Defects in ATP7B remain the only known genetic cause of Wilson’s disease. And I said, “Hey, that’s interesting! What about the element vanadium? It’s a close cousin of copper.” Our experiments indeed showed that vanadium made a tremendous difference in modulating organic compounds produced by the body, such as serotonin and adrenaline.

There was no predicting where that research would go. In a literature search, I came across the late Professor Arno Motulsky, the founder of Medical Genetics here at the UW. I said: “I want to learn more about genetics!” He was very welcoming to me. I asked them to participate in our pathology course for the first time. So, I had to coordinate by bringing medical genetics experts in to give lectures to our new Department of Pathology.

At the time, I was working on an enzyme called ceruloplasmin, which is dysfunctional in Wilson’s disease. Wilson’s disease prevents the body from getting rid of excess copper, and these patients develop copper deposits in their liver and around their eyes. That work led to the cloning of the copper-transporting gene, ATP7B. Defects in ATP7B remain the only known genetic cause of Wilson’s disease. And I said, “Hey, that’s interesting! What about the element vanadium? It’s a close cousin of copper.” Our experiments indeed showed that vanadium made a tremendous difference in modulating organic compounds produced by the body, such as serotonin and adrenaline.

There was no predicting where that research would go. In a literature search, I came across the late Professor Arno Motulsky, the founder of Medical Genetics here at the UW. I said: “I want to learn more about genetics!” He was very welcoming to me. I asked them to participate in our pathology course for the first time. So, I had to coordinate by bringing medical genetics experts in to give lectures to our new Department of Pathology.

At the time, I was working on an enzyme called ceruloplasmin, which is dysfunctional in Wilson’s disease. Wilson’s disease prevents the body from getting rid of excess copper, and these patients develop copper deposits in their liver and around their eyes. That work led to the cloning of the copper-transporting gene, ATP7B. Defects in ATP7B remain the only known genetic cause of Wilson’s disease. And I said, “Hey, that’s interesting! What about the element vanadium? It’s a close cousin of copper.” Our experiments indeed showed that vanadium made a tremendous difference in modulating organic compounds produced by the body, such as serotonin and adrenaline.

There was no predicting where that research would go. In a literature search, I came across the late Professor Arno Motulsky, the founder of Medical Genetics here at the UW. I said: “I want to learn more about genetics!” He was very welcoming to me. I asked them to participate in our pathology course for the first time. So, I had to coordinate by bringing medical genetics experts in to give lectures to our new Department of Pathology.
WHAT IS YOUR OWN FAVORITE HYPOTHESIS?

Epigenetic gambling: The best example comes from studies of wild-type Caenorhabditis elegans worms when grown in sterile suspension cultures. Their genes are identical, like identical twins. The environment is identical. In those experiments, biogerontologists have observed for many decades that, despite all efforts to control genotype and environment, there are substantial variations in the lifespan of individual worms. In fact, the expression of genes in a family of identical cells gets more and more different as an organism gets older. I raised a hypothetical mechanism for this observable variation: Nature wants to have one more year to sleep late! –

WHAT IS YOUR HOPE FOR THE FUTURE OF BRAIN HEALTH AND DISEASE PREVENTION?

If I had a lot of money and power, I would put a tremendous amount of money into early education. And it’s the single most desperate thing that we need to do now: address inequality in education and the rampant misunderstanding of scientific evidence. Correlation is not causation. That’s where we should put our money. I love what the mayor of New York City is doing. Mandatory education, preschool, beginning at age 3. The key is, you’ve got to give these teachers a lot more money, and you’ve got to train them in teaching critical thinking. Kids have curious little minds. And when they see something new or hear about something new, they’ll say, “Gee, teacher, that’s interesting.” The teacher should then instruct them to automatically ask: How do we know that’s true? Can you imagine if every kid grew up in our democracy asking the question: “How do we know that’s true? What is the evidence?” It would be a transformation.

YOU ARE 93 YEARS OLD, REGULARLY ATTEND SEMINARS, CO-AUTHOR JOURNAL ARTICLES AND KEEP UP WITH THE LATEST ADVANCES IN RESEARCH. WHAT DO YOU ATTRIBUTE TO THIS INCREDIBLE SUPER-AGING?

Your question is one that deserves a great deal of research. While we have gotten a good start on learning a bit about the phenomena of resistance and resilience to basic mechanism of aging and diseases of aging via the study of unusually healthy centenarians, we need more research on what I have named Unimodal Antierogenid Syndromes—the genetic and environmental basis for resistance and resilience to each of the numerous specific age-related disorders.

In my case, my number one hypothesis is good luck. I probably inherited a few good genetic variants, which I may share with a beloved Uncle who remains cognitively sharp and who will shortly become a centenarian. I was also lucky enough to have gotten outstanding teachers and fellow students from early primary school to postdoctoral training. On the other hand, when my Mom asked me if I wanted to pursue the option of attending kindergarten, my answer was “No, Mom, I want to have one more year to sleep late” –

TIMELINE OF ADRC HISTORY

1978

Eric Larson and Burton Reifler open the first clinic at the University of Washington to evaluate outpatients with dementia.

1980

Rudolph Tanzi publishes a study linking Huntington disease to a gene on chromosome 4, sparking George Martin’s curiosity and influncing the founding of the UW ADRC.

1983

UW’s first paper on Alzheimer’s disease is a report on how the progression of dementia relates to the concentration of immune system cells. The study marks the beginning of UW’s scientific effort to piece apart the causes of Alzheimer’s disease.

1984

The first NIH funded ADRC grant application is submitted. The direct costs requested for the entire proposed 5-year project period total $6,697,620. Adjusted for inflation, that is over $16 million today.

1985

The UW ADRC is established as one of the first 10 Alzheimer’s Disease Centers originally funded by the National Institute on Aging.

1986

Dimensions newsletter inaugural issue is published, with the mission to link the public to ADRC information, outreach, and research opportunities. The title “Dimensions” was chosen to reflect the many stages and faces of Alzheimer’s disease. Blue ink on yellow paper is thought to be most readable for people with dementia.

1987

Eric Larson and Bud Kukull are awarded an NIA grant to start an epidemiological model of an Alzheimer’s incident case registry, similar to cancer registries. The Alzheimer’s Disease Patient Registry is established. Named the Adult Changes in Thought study in 1994, it follows the lives and wellness of thousands of individuals in Seattle as they age to better understand risks of source and resilience.

1988

An External Advisory Board comes to the ADRC for the first time to offer suggestions and critiques to prepare for submitting the Center renewal application. Members included Fred Plum, Tony Phelps, Marilyn Albert, Amico Bignami, Kevin Cain, Robert de Mars, and Sherman Weissman.

1989

The ADRC becomes a key gateway for patients to the fifty-five support groups running in WA State, mostly hosted by the local Alzheimer’s Association.

1991

NIA grants ADRC $85,100,000 over the next five-year funding cycle (adjusted for inflation, that is over $10 million today). The funding supports the Center’s community engagement and research projects, chiefly the search for Alzheimer’s disease-causing genetic variants that requires cross-discipline expertise.

1992

The ADRC funds the first 4 pilot projects, enabling young investigators to develop new areas of knowledge about Alzheimer’s disease. Now called Development Projects, these funding awards, focused on junior investigators, are as robust as ever.

1993

The ADRC launches a mobile clinic led by Soo Borson, MD that would travel and assist underserved communities in King County and establish ties with diverse community organizations in the Seattle area, for the first time. (Picture date, 2007) Learn more on Page 16.
The Early ADRC’s Search for an Alzheimer’s Gene
How Creative Teamwork, Collaboration, Leadership, and Luck Set the Stage for Today's Approach to Biological Complexity

By Franklin Faust and Genevieve Wanucha

I was one of the longest distances that Thomas Bird, MD ever traveled for science—an eight-hour flight from Seattle to Amarillo, Texas, and a two-hour drive north into the Oklahoma panhandle to arrive at a small church in the small town of Beaver. It was 1987, which he still remembers because those two states were celebrating the 200th anniversary of the signing of the Constitution. He had come for the reunion of a large family he had come to know through phone calls to the UW Alzheimer’s Disease Research Center and a previous visit.

The Reiswig family was unique, in a medical sense—at least twenty members had developed dementia over four generations, with ages of onset from 40 to 75 years old. This family had been described in 1979 by Robert Cook-Deegan, MD at University of Colorado, but their particular shared ethnic background had gone unrecognized. In the late 1980s, researchers were just beginning to understand that some cases of dementia linked to Alzheimer’s disease likely had a genetic cause. While Bird knew that inherited or “familial” Alzheimer’s disease only accounts for a tiny fraction of cases, he also knew studying these unique families could open the door to better understanding the mechanisms of disease and, possibly, a treatment target for all cases.

That day, seated in the church pews, the Reiswig family listened as Bird explained the details of their neurogenetic study. The family signed consent forms to participate, and Bird took blood samples, which he sent back to the team’s research nurse, Ellen Nemens (now Ellen Steinhart). The team would extract the blood cells’ DNA and search for it what could be a faulty genetic factor. Importantly, the family shared their history so the researchers could create a pedigree, a family health history indicating relationships and disease cases using universal symbols.

Bird brought over twenty years of experience working with families with genetic disorders, such as Huntington’s disease, at the UW Medical Genetics clinic, which he founded in 1974. Medical geneticist Ephrat Levy-Lahad, MD, who would later bring this family study to fruition in 1995, remembers, “Tom works so closely to the families that he sees as a physician, and while he’s not a molecular biologist, he has that genetic vision – seeing families and seeing patients and thinking about problems in a genetic way. I really learned to take that approach at the ADRC, and I still practice it. The families and researchers share a goal in that kind of project, and that is very powerful to me to this day.”

Bird knew that at-risk families often have a person who is particularly motivated to address the problem and seek help, a firebrand whose enthusiasm will inspire even hesitant relatives to open up about painful topics and organize them to join a research effort. This family was no different. Ester May Reiswig was eager to help shed light on the disease that had recently taken her husband. “Thanks to her, the family reached out to us,” says Bird. “They were concerned that they had hereditary Alzheimer’s disease and that nobody was paying attention to it.” Bird and Nemens fostered a dialogue. He listened to her as she spoke about her husband’s ancestors and genealogy. Reiswig’s late husband’s family was part of an ethnic group called the ‘Volga Germans,’ who had moved from the Hesse region of Germany to the Volga River region in Russia at the behest of Catherine the Great in the 1760s. Later, amidst the political and economic tumult of the 20th century, many came to the US to settle in small villages along the trans-continental railroad.

And the people busy catching up at the reunions weren’t the only ones of Volga German ancestry with a history of Alzheimer’s disease, she shared. Reiswig knew of two other families who had been documented as suspected genetic Alzheimer’s cases, but no one had asked them about their background—as Bird was accustomed to do.

“As I was sitting there listening to her story, I remembered that one of our families back in Seattle had a German last name, and a relative who wrote a book called The Volga Pilgrims,” says Bird. “It got me thinking.” Bird continued to listen as Reiswig recalled that these affected Volga German families came from the same two tiny villages in southwestern Russia, Frank and Walter. “I realized that there could be many families whose ancestors migrated over from those same villages—distant relatives with a gene for Alzheimer’s,” Bird said. He quickly checked the families already in the ADRC study, discovering three more families with a Volga German connection.

Over thirty years later, Bird would recall what he calls his “Eureka Moment.” The Volga Germans would be a particularly useful collection of families in the search for an Alzheimer’s disease gene because the affected family members would almost certainly share the same responsible gene, even more significant was that these family members could all be related to a common ancestor who first introduced the mutation into the family line. His question: Which gene is it?

“Still remember the day when Tom came to my office really excited one morning, and he started telling me all about how he had visited this family and learned that they were Germans from Russia,” says Gerard Schellenberg, PhD, now Professor of Pathology and Laboratory Medicine at University of Pennsylvania and Director of the Penn Neurodegeneration Genomics Center.

Nemens’ degree in German became a valuable asset. She started digging through the ADRC registry, which is a large pool of potential research participants who agree to be contacted for research. She kept an eye out for families with German last names and contacted them to find out if they were Germans from Russia. “I do remember this one morning, and he came to my office really excited,” says Bird. “They were concerned that they had hereditary Alzheimer’s disease and that nobody was paying attention to it.” Bird and Nemens fostered a dialogue. He listened to her as she spoke about her husband’s ancestors and genealogy. Reiswig’s late husband’s family was part of an ethnic group called the ‘Volga Germans,’ who had moved from the Hesse region of Germany to the Volga River region in Russia at the behest of Catherine the Great in the 1760s. Later, amidst the political and economic tumult of the 20th century, many came to the US to settle in small villages along the trans-continental railroad.

And the people busy catching up at the reunions weren’t the only ones of Volga German ancestry with a history of Alzheimer’s disease, she shared. Reiswig knew of two other families who had been documented as suspected genetic Alzheimer’s cases, but no one had asked them about their background—as Bird was accustomed to do.

“As I was sitting there listening to her story, I remembered that one of our families back in Seattle had a German last name, and a relative who wrote a book called The Volga Pilgrims,” says Bird. “It got me thinking.” Bird continued to listen as Reiswig recalled that these affected Volga German families came from the same two tiny villages in southwestern Russia, Frank and Walter. “I realized that there could be many families whose ancestors migrated over from those same villages—distant relatives with a gene for Alzheimer’s,” Bird said. He quickly checked the families already in the ADRC study, discovering three more families with a Volga German connection.

Over thirty years later, Bird would recall what he calls his “Eureka Moment.” The Volga Germans would be a particularly useful collection of families in the search for an Alzheimer’s disease gene because the affected family members would almost certainly share the same responsible gene, even more significant was that these family members could all be related to a common ancestor who first introduced the mutation into the family line. His question: Which gene is it?

“The families and researchers share a goal in that kind of project, and that is very powerful to me to this day.”

Bird knew that at-risk families often have a person who is particularly motivated to address the problem and seek help, a firebrand whose enthusiasm will inspire even hesitant relatives to open up about painful topics and organize them to join a research effort. This family was no different. Ester May Reiswig was eager to help shed light on the disease that had recently taken her husband. “Thanks to her, the family reached out to us,” says Bird. “They were concerned that they had hereditary Alzheimer’s disease and that nobody was paying attention to it.” Bird and Nemens fostered a dialogue. He listened to her as she spoke about her husband’s ancestors and genealogy. Reiswig’s late husband’s family was part of an ethnic group called the ‘Volga Germans,’ who had moved from the Hesse region of Germany to the Volga River region in Russia at the behest of Catherine the Great in the 1760s. Later, amidst the political and economic tumult of the 20th century, many came to the US to settle in small villages along the trans-continental railroad.

And the people busy catching up at the reunions weren’t the only ones of Volga German ancestry with a history of Alzheimer’s disease, she shared. Reiswig knew of two other families who had been documented as suspected genetic Alzheimer’s cases, but no one had asked them about their background—as Bird was accustomed to do.

“As I was sitting there listening to her story, I remembered that one of our families back in Seattle had a German last name, and a relative who wrote a book called The Volga Pilgrims,” says Bird. “It got me thinking.” Bird continued to listen as Reiswig recalled that these affected Volga German families came from the same two tiny villages in southwestern Russia, Frank and Walter. “I realized that there could be many families whose ancestors migrated over from those same villages—distant relatives with a gene for Alzheimer’s,” Bird said. He quickly checked the families already in the ADRC study, discovering three more families with a Volga German connection.

Over thirty years later, Bird would recall what he calls his “Eureka Moment.” The Volga Germans would be a particularly useful collection of families in the search for an Alzheimer’s disease gene because the affected family members would almost certainly share the same responsible gene, even more significant was that these family members could all be related to a common ancestor who first introduced the mutation into the family line. His question: Which gene is it?
The vast majority of people of Volga German descent do not carry this genetic factor and do not necessarily live at a higher risk of dementia than the general population. Take for example Pacific Northwest natives Arlene and Al Noreen, who are known to many as active and cognitively sharp “superagers” in their mid 90s. Arlen’s own grandparents immigrated with their family from the Russian village Walter on the Volga River to escape civil unrest. By the time the family reached the United States in 1901, the group included an infant who would one day become Arlen’s mother. They settled in Walla Walla, Washington State, close to other Volga German immigrant families.

Arlene, age 96, attributes her enduring health to several key factors now recognized to boost brain health and lower dementia risk. She has lived a life full of cognitive stimulation from a childhood spent playing in nature and learning in primary school, libraries, and then college at the University of Washington. Raising five children, volunteering in classrooms and museums, and serving as a mountain tour guide with her husband Al, Arlene and her husband Al, have supported each other in a difficult task: “I think we must have a lot to do with how they have an active and social life. But most importantly, I have constantly embraced an intensely curious learning mind, and they did not recommend funding.”

The UW team only because they wanted to show the NIA that genetic family studies held the key for understanding the mechanisms of Alzheimer’s disease. The team persisted and prepared to shoot for a spot among the remaining five center allocations coming up the following year. Meanwhile, Martin impressed upon the NIA Program Manager the importance of including application reviewers who had an interest in genetics or biology.

BUILDING THE CASE FOR THE UW ADRC

It was Bird who built a better case for their Center’s funding, following a research direction that would eventually lead him to the Volga German family a few years later. Families with a history of Alzheimer’s disease continued to be referred to him by Washington State neurologists who were puzzled by their shared predisposition to the disease. “Many of the Alzheimer’s-type dementia families referred to me during this time fortunately happened to have individuals who had undergone an autopsy, which was necessary for an Alzheimer’s diagnosis at the time,” says Bird. “Back then, ‘senility’ was still the normal term – you had to have an autopsy that proved the presence of Alzheimer’s plaques and tangles.”

Today, brain imaging technology or spinal fluid tests allow doctors to see this protein evidence in living patients, but a diagnosis of Alzheimer’s disease at the time required the expert look at the brain postmortem. Shuzo Mark Sumi, MD, a neurologist, neuropathologist, and lauded mentor, now Professor Emeritus of UW Neurology and Pathology, started to study the brain tissues from individuals in these families who had consented to brain autopsy when they died. The verified presence of plaques and tangles further strengthened the argument that these cases were truly Alzheimer’s disease.

When the NIA came back for the second round of visits, Bird was prepared to make what he hoped was an air-tight case. The team presented their relatively large cohort of research participants from these unique families, autopsy data from several individuals from these families, as well as their advanced genetic tools and qualified investigators who were ready to take on this large-scale challenge. “I remember saying: ‘These pedigrees show three or four generations. Males and females are both affected. It’s autopsy-confirmed Alzheimer’s disease,’ recounts Bird. “If that isn’t genetic, I don’t know what it is.”

“Tom, I think I’d buy a used car from you,” whispered Schellenberg after presentation to the site visitors. This ADRC application, a 537-page compendium of yellowing typewritten sheets, now rests on a shelf on the 14th floor of the Ninth and Jefferson Building at Harborview Medical Center, in the current Director’s office. >>> Next page
“You have to remember that in the 1980s, before the era of computers, the grant applications were huge masses of paperwork,” said Bird. “This big center grant had to be put all together with a fax, copy, and Xerox machines, and the job fell onto the lap of Marie Walters, the first ADRC Program Manager. And she was able to do it. I remember seeing tables with all the paperwork that was necessary for submitting the Center grant. And Walters was able to keep track of all of that really well, and keep the Center funded through the years.”

In 1985, under the founding directorship of George Martin, the UW received funding in the amount of $6,697,620 (about $16,000,000 by today’s standards) to become one of the first of ten NIA ADRCs in the country. Each directorship transition over the next 35 years would shift the ADRC’s major research themes and contributions. From Directors George Martin, MD (1985-1999) to Murray Raskind, MD (1999-2012), to Thomas Montine, MD, PhD (2012-2016), to Thomas Grabowski, MD (2016 – present, as of 2020), the Center built historic strengths in genetics and genomics, caregiving programs, fluid biomarkers, and neuropsychology, and newer strengths in cell biology, stem cell model technology, genetic profiling of neurons, and brain imaging, along with transformative dementia-friendly community outreach at the UW Memory and Brain Wellness Center. Through these successive waves of innovation however, the original family genetic research of the ADRC’s original Cares and Projects would stay a constant thread and foundation of future projects.

“WHY GENETICS MATTERED”

Fifteen years before that statement, Bird had used the knowledge of genetic inheritance to search for the location of a disease-causing gene in the human genome. Shortly after Bird’s founding of the first neurogenetics clinic at UW, he began searching for a mutated sequence of DNA in one of his first families of patients—a family with an unusually high occurrence of a rare neurogenetic condition called Charcot-Marie-Tooth (CMT) disease.

Bird started from a family pedigree—a map of the family tree that shows multiple generations of descendents starting from the earliest known relative and that denotes the presence or absence of the disease being researched (see Explainer). Through colors and symbols, it gives an overview of which family members had the disease, and which family members were spared. The pattern of inheritance looked autosomal dominant. To trace the disease gene down to a specific chromosome, he needed some sort of genetic marker—a piece of DNA whose known position can be compared to the inheritance of a disease.

At the time, a handful of genes that determined certain blood group types had been linked to specific chromosomes. Bird noted the family members’ blood group types on the pedigree. To his surprise, he found that a blood group called “Duffy” was always positive in family members affected by CMT and negative in unaffected members. The presence of the Duffy gene strongly correlated with the presence of whatever gene was causing CMT disease in this family.

The two genes appeared to be ‘traveling together’ from generation to generation. Bird knew that genes situated close to each other on the same chromosome are more likely to stay together through generations of chromosomal “cross-over”—an event preceding a sperm or egg’s formation. In cross over, each pair of chromosomes swap sections of DNA with each other before one of the chromosomes in the pair goes into an egg or sperm. So, the chromosomes that go into the sperm or egg cells contain a little bit of DNA from both of the grandparents. The likelihood that cross-over will split up genes onto separate chromosomes depends on the genes’ physical distances to each other. Therefore, in Bird’s research case, it was likely that the Duffy gene and the mystery disease variant were located very close together, enabling the two genes to be passed down together for generations.

Fortunately, Bird had gotten lucky with Duffy. "When the Duffy blood group is positive, it actually puts a link in chromosome 1, and you can see it under a microscope," says Bird. "Because the two genes were traveling together so closely, we knew that the Charcot-Marie-Tooth disease gene had to be on chromosome 1 too! Bird’s research took place before researchers knew the chromosomal ‘address’ for many genes, so his successful linkage of a disease gene to a chromosome was fairly serendipitous. "Back then, if you didn’t happen to have a marker for the location of the gene, you were out of luck," says Schellenberg. This success made Bird a candidate for leading the ADRC’s first familial genetics project.

By the time the ADRC launched in 1985, researchers had access to a more advanced method for tracking down a disease gene thanks to genetic advances of the Human Genome Project. "Brand-new research showed that we could take human DNA, chop it up into little chunks, and use them as markers for linkage studies," says Bird. Those markers gave scientists ‘genomic “addresses” for genes on every chromosome. With known locations for so many genes, scientists started using ‘genetic linkage analysis’, a powerful new statistical method to detect the chromosomal location of disease gene, based on the understanding of genetic inheritance that Bird had used in the 1970s.

EXPLAINER: AUTOSOMAL DOMINANT INHERITANCE OF ALZHEIMER’S DISEASE

In a medical pedigree, the pattern of a gene’s inheritance is shown with colors and shapes. In this hypothetical example, squares are male and circles are female. Red denotes individuals with a genetic variant that increases the risk of Alzheimer’s disease in adulthood, while blue denotes individuals with other genetic variants that do not increase the risk of Alzheimer’s disease in adulthood.
In 1999, the ADRC Education Core began to go the distance to help improve care for patients with Alzheimer’s disease and their families living in rural areas and reservations in western states. ADRC psychologist Rebecca Logsdon, PhD presented a cross-country series of workshops on Alzheimer’s disease, caregiving, and healthy aging to Native American and Alaska Native Communities. Focusing on communities without easy access to educational programs, her workshop series took her to rural Alaska, from the Aleutian Islands to Haines, Petersburg, and to Browning, Montana. This investment of time and effort began a long-term partnership with the Blackfeet Indian Tribe, to present talks about brain health and memory loss, provide educational materials, and consult with health-care providers about caring for elders with dementia.

AN EYE TO CULTURE AND LIVED EXPERIENCE

Logsdon brought ADRC funding to a 2009 study with researchers from the Center for World Indigenous Studies. Together, they enrolled forty-two American Indian family caregivers of individuals with dementia, living on and off reservations into a trial of touch therapy. This intervention uses gentle pressure on energy points to resolve stress and promote physiological relaxation. In the Pacific Northwest, traditional medicine practitioners frequently employ hands-on healing, including energy healing and a variety of massage techniques. The trial found that touch therapy is an effective, implementable intervention for highly stressed American Indian caregivers, which fit with the cultural framework of beliefs and practices.

GOING “OFF THE BEATEN PATH”

In 1992, ADRC psychiatrist Soo Borson, MD formed the Center’s first effort to specifically reach out to disadvantaged minority groups in King County, particularly Asian Americans, creating a mobile clinic that provided free memory evaluations, care referrals, and opportunities to join Alzheimer’s research at the ADRC. During this time, Borson began conversations with UW Institute for Health Sciences (IHS) to learn about the possibility and process of involving American Indians and Alaska Natives in Alzheimer’s research. The IHS was the only UW entity with a memorandum of understanding with the Seattle Indian Health Service about developing research collaborations with tribal members. Borson connected the IHS with information about the mobile services and access to research participation available through the new ADRC effort to reach the underserved.

REACHING OUT WITH NEW RESOURCES

The present-day UW ADRC Outreach, Recruitment, and Engagement Core (ORE) is invested in an effort to reach out to American Indian and Alaska Native communities in the Pacific Northwest, in order to provide resources to people struggling with memory loss and educational materials to local clinic staff. Starting in 2016, Meghan Jernigan, MPH (Choctaw Nation of Oklahoma), then a staff scientist at P4NH, spearheaded an ADRC effort to foster culturally responsive clinical care and information about research participation and brain donation. Her work culminated in 2019 with the ADRC’s Indigenous Aging webpage, which is tailored for American Indian and Native Alaskan communities. The site, found on the homepage of uwadrc.org, offers education and material resources for clinicians, community health representatives, and Native caregivers. Jernigan also inspired the ADRC communications team to create the Indigenous Aging Brain Health series in issues of Dimensions, based on interviews with Native leaders in healthy aging initiatives, including traditional foods and culturally tailored exercise-based prevention programs.

A RENEWED COMMITMENT TO INCREASING DIVERSITY AND INCLUSION

The persistent underrepresentation of Native populations in Alzheimer’s and related dementia clinical studies and research is a complex issue. In part, this lack of diversity is linked to disparities in health, education, and socioeconomic conditions that limit access to a diagnosis of memory loss, and importantly, feelings of skepticism about medical research. Now, the ADRC is engaged in its strongest efforts yet to increase the diversity of research participants in order to learn about risk factors and resilience unique to these communities. Launching the Native Research and Resource Core in 2020, P4NH’s Dedra Buchwald, Lonnie Nelson, PhD, Astrid Suchy-Dicey, PhD and Meghan Jernigan, MPH (Choctaw Nation of Oklahoma) set about improving the methods that researchers use to evaluate major modifiable risk and protective factors for cognitive impairment in Native populations. Soon after, Astrid Suchy-Dicey, PhD joined the ADRC to improve the methods that researchers use to evaluate major modifiable risk and protective factors for cognitive impairment in Native communities, and ultimately, to suggest ways to address disparities and promote healthy aging.

Since 2015, the study of Alzheimer’s disease and related conditions in American Indian and Alaska Natives has been a core theme of the ADRC. This focus is made possible by a collaboration with Partnerships for Native Health (P4NH), a local program with a mission of improving the health and well-being of Native people of all ages, directed by Washington State University’s Dedra Buchwald, MD. Leveraging her leadership of the Cerebrovascular Disease and its Consequences in American Indians Study, the ADRC established a Satellite Core to gain further insights about Alzheimer’s and related causes of dementia in these rural-dwelling study participants, as well as American Indians living in the Seattle area. Lonnie Nelson, PhD (Eastern Band of Cherokee Indians) kicked off the effort with an ADRC pilot project, using brain imaging to document changes in brain structures over time and their relationship to decline. Her team aimed to establish diagnostic standards and estimates of prevalence for brain diseases in these underrepresented populations. Soon after, Astrid Suchy-Dicey, PhD joined the ADRC to improve the methods that researchers use to evaluate major modifiable risk and protective factors for cognitive impairment in Native communities, and ultimately, to suggest ways to address disparities and promote healthy aging.
If you ask a group of Seattle King County locals over the age of 65, you can bet that several of them will have heard about the ACT study. They exist because this study, launched at the end of the 1990s, has followed the physical and cognitive health of 5,750 members of major health maintenance organizations in Seattle for decades. At any given time, over 2,000 people are participating, with almost perfect rates of follow up for the cohort of people that take place every 2 years. Of inherent interest to many aging individuals, ACT focuses on finding ways to delay or prevent dementia and declines in memory and thinking. It aims to deep understanding of how the body, especially the brain, ages—and discover how people can age in the healthiest possible ways.

A LIVING LABORATORY FOR BRAIN AGING

The ACT study functions as a population-based “living laboratory” for brain aging research. Researchers select participants at random from a pool of Seattleites who have reached age 65 and are in relatively good health, and then follow their cognitive trajectories until death. If a participant ever develops dementia, researchers can rewind that individual’s history and look for clues as to what lifestyle, medical conditions, or local environmental factors may have contributed to their cognitive decline. There are also secrets to learn from “superagers” whose minds show cognitive resilience to aging and disease and preserve their mental function remarkably well into old age. ACT’s goal is to search for patterns in an aging population that point to lifestyle factors that act as risky pitfalls or supportive bridges on the journey towards lifelong brain health.

“ACT is the world’s only study that can link outcomes for dementia, frailty, and aging to data that captures each participant’s whole health history, including medical, laboratory, and pharmacy records,” says co-principal investigator of the ACT Study, Paul Crane, MD, MPH, UW Professor of General Internal Medicine. “If you’re really interested in the form of dementia that’s in the community, the ACT study is the place to go,” adds Eric B. Larson, MD, MPH, now ADRC Associate Director and Senior Investigator and recent past Executive Director at Kaiser Permanente Washington Health Research Institute where he leads ACT.

The origins of ACT can be traced back to Larson’s guiding motivations. As co-founder of the Genentech Family Services Clinic in 1978, the first clinic on the West coast to provide impaired older persons with comprehensive evaluation for Alzheimer’s disease, he already had decades of experience following the trajectory of people developing dementia by the time the ACT began to form. The geriatrics clinic, along with outpatient clinics at the VA and Harborview Medical Center, became the primary source of research subjects in the ACT's budding longitudinal study. A groundbreaking feature of an Alzheimer’s study at the time, participants also gave consent to ultimately donate their brains for autopsy, enabling the ADRC to connect an individual’s meticulously documented clinical history with neuropathological findings from their brain tissue.

However, Larson had always wanted to answer the question: "What can we learn from our research that will ultimately allow people to reduce age-associated cognitive decline and, ideally, prevent and delay the onset of Alzheimer’s disease?" He knew that would mean reaching beyond a targeted cohort model, in which a volunteer’s interest in participating was often based on clinical motivations. As co-founder of the Geriatric Family Services Clinic, Larson recognized that a true cohort study would be best to study Alzheimer’s disease, akin to the cohort studies like the famous Framingham Heart Study and Honolulu Heart Watch. They then recruited a randomly selected community sample, formally named the Adult Changes in Thought study in 1994. Today the ACT study maintains extensive data resources in collaboration with the ADRC, including an unraveled population of people over 90 years old and a collection of over 850 brains—one of the largest in the world. The ACT team attributes the size and the richness of the data to the comprehensive care provided in Group Health, now Kaiser Permanente Washington, and years of detailed medical records that are now stored electronically: The ACT study has learned many lessons to date, which has contributed data to 98 funded grants, with results published in over 350 scientific articles on brain health and dementia risk. See the next page for highlights of the most influential ACT findings on dementia prevention.

TOWARDS AN ECOLOGY OF THE AGING HUMAN BRAIN: The Shared Project of the Adult Changes in Thought Study and UW ADRC

by Franklin Faust and Genevieve Wanucha

A GROWING STRENGTH IN NEUROPATHOLOGY

ACT is the only truly population-based study involving autopsy and the study of disease in the brain, or neuropathology—a unique feature that shows how ACT and the ADRC complement each other’s strengths. “We truly intersect and interact synergistically at the level of the neuropathology program,” says Thomas Grabowski, MD, ADRC Director. It was Thomas Montine, MD, PhD, Director of the ADRC from 2012-2016, who did the heavy lifting of uniting ACT and the ADRC through common work in neuropathology, allowing ADRC expertise to make even more scientific use of each ACT participant’s brain. “The way the ADRC Precision Neuropathology Core’s workup looks these days bears Tom Montine’s stamp,” says Grabowski.

When Montine accepted a new position at Stanford University, he turned over leadership of the core to C. Dirk Keene, MD, PhD, who has since launched a powerful collaboration with the Allen Institute for Brain Science to adapt tissue dissection and preservation protocols to next-generation technologies that can identify and measure pathology in autopsy tissue and analyze the patterns of gene expression in single neurons. Under Keene’s lead, the Precision Neuropathology Core uses identical, state-of-the-art methods to analyze the donated brains of both ACT and ADRC participants. This data resource has given researchers the ability to investigate the biology of common forms of late-onset dementia and make conclusions that generalize to the local aging community.

In a seminal ACT-ADRC contribution, UW Pathology’s Joshua Sonnen, MD, now a neuropathologist at McGill University, along with Montine, Larson, and others, evaluated brain autopsies from ACT and other large population studies. Publishing the paper ‘Ecology of the Aging Human Brain’ in 2012, the team became the first to report a high prevalence of multiple different pathologies in the brains of cognitively normal older people and characterize it as a late, complex pathology in the community population.

Caitlin Latimer, MD, PhD, co-Lead of the ADRC Precision Neuropathology Core, added to this story in 2019, producing strong evidence for a little recognized factor behind the resilience or resistance to Alzheimer’s pathology seen in some of ACT’s oldest participants. Her most striking finding was that almost all of the brains from older people with symptoms of dementia showed buildup of a protein called TDP-43, yet the brains of age-matched people who were resilient or resistant did not. The field is now considering whether a secret to resilience to Alzheimer’s disease in late life simply depends on never developing TDP-43 pathology. Researchers hope that this ecology of brain disease proteins in the aging brain will inform future biomarker studies and clinical trials with older individuals — setting the stage for new insights into the factors of risk and resilience that influence the susceptibility to common forms of dementia.

Since the complexity of the aging human brain became apparent, ACT and the ADRC have worked closer together to understand the common forms of late-onset dementia. More powerful as separate institutions, the two projects paint a detailed picture of each individual who takes part in research, connecting the dots between cellular processes and lifestyle factors to arrive at a more comprehensive understanding of brain health and disease. “I don’t think there’s anything in the world that matches the richness of our data and the way we can go back so far,” says Larson. The emergence of this unique strength at the ADRC, and new ACT/ADRC collaborations with the Allen Brain Institute, is fulfilling ADRC Founding Director George Martin’s early dreams of genetics and epidemiology coming together to benefit Alzheimer’s research. •

Read on to explore the most impactful take-home lessons from ACT!
The Adult Changes in Thought study's longstanding commitment to epidemiological research, and collaborations with the ADRC, have helped to build a large body of work on brain health, aging, and disease that is relevant to public health policy. The fruits of that labor are now on the record in the Lancet Commission 2020 Report on Dementia Prevention, Intervention, and Care. Created by an international team of researchers, including UW’s Eric Larson and former ADRC leader Linda Teri, PhD, the report is a comprehensive synthesis of the current science of preventing dementia. It provides policy makers, doctors, researchers, and the general public with evidence-based strategies for reducing dementia risk, and the authors recognize the barriers that many people face in accessing the vital components that support brain health at every age.

The report suggests that 40% of all dementia cases worldwide may be prevented by addressing a group of risk factors: high blood pressure, obesity, hearing loss, late-life depression, diabetes, physical inactivity, smoking, social isolation, lower levels of education, alcohol consumption over 14 drinks a week, traumatic brain injury, and air pollution. “It’s not a single thing that’s going to lead to late-life dementia,” says Eric Larson. “In the report, we emphasized this idea of the life course, with elements ranging from early life to late life that influence risk.” Fortunately, existing public health interventions and personal lifestyle changes can directly address these risks.

Some help preserve the mind by reducing damage to brain cells from pathology or inflammation, some help by constructing a cognitive “buffer” that keeps the mind functional in spite of the presence of disease in the brain; or, a combination of both fortuitous pathways. Behind the list of preventable risk factors in the 2020 Lancet Report is a history of ACT contributions to our modern understanding of aging and brain health. Highlighted below are some of the most significant findings about what’s helpful and what’s not.

PRESCRIPTIONS FOR PREVENTION

- **HEARING LOSS**
 - People who get their heart rate up, or strengthen or stretch their muscles, for at least 15 minutes 3 times per week may be about 40% less likely to develop dementia than those who move their body less frequently, suggests a 2006 study led by Larson. “ACT was the first study to show the benefits of habitual exercise,” says Larson. “And it didn’t take much exercise to see the reduction in risk. It’s really just about avoiding no exercise. This finding has held up over time.” Larson EB et al. Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older

- **EXERCISE & FITNESS**
 - When a VA Puget Sound team scored the physical performance of the study’s participants—based on fitness in walking, standing up, balancing, and grip strength—they found that those with low scores were roughly 3 times more likely to develop dementia and Alzheimer’s disease during a 6-year follow up period than those who were more physically fit. The 2006 study suggests that the first signs of dementia in older people may be changes in physical function, which often appear before noticeable mental decline. Wong L et al. Performance-based physical function and future dementia in older people

- **VITAMIN SUPPLEMENTS & NUTRITION**
 - More exercise and activity research is on the horizon. Modern activity monitor technology now allows researchers to gather accurate data on sedentary activity, light exercise, and even circadian rhythms and sleep time from participants in the ACT Activity Monitor (ACT-AM) Study. A new goal of ACT-AM: search the “24-hour cycles” of participants for elements of daily activity tied to risk or resilience to dementia. Amidst the SARS-CoV-2 pandemic, Dori Rosenberg, PhD, MPH, leader of ACT-AM, is considering the investigation of how trends of isolation have affected the 24-hour activities of seniors. “With these new measurements, I think the ACT study is well positioned to help identify the key features of exercise that are beneficial to cognitive health,” said Marilyn Albert, PhD of John’s Hopkins University in her keynote at the 2020 ACT Symposium. “Is the benefit just from aerobic activity? How much activity makes a difference, and at what age? I think ACT can help us communicate to the public about the factors critically important to brain health.”

**The ACT study has repeatedly refuted connections between antioxidant supplements and brain health benefits. In 2008, a team led by UW School of Pharmacy’s Shelly Gray, PharmD, MS looked into the use of vitamins E and C, which were thought to be neuroprotective thanks to their antioxidant effects. They found no link to suggest that supplementation of E and C, whether taken alone or together, reduced the risk of dementia. Gray S et al. Antioxidant Vitamin Supplement Use and Risk of Dementia or Alzheimer’s Disease in Older Adults

- **Findings from the Kame Project, an ACT-associated effort that followed the community population investigated the effect of hearing loss on brain health. Larson worked with UW Otolaryngology’s George Gates, MD for many years on hearing loss research. In 2011, they discovered that hearing loss caused by dysfunction of the auditory processing centers in the brain is a precursor to Alzheimer’s disease-type dementia. They recommended that doctors consider referring older patients with hearing loss for neurological evaluation. Gates GA et al. Central auditory dysfunction as a harbinger of Alzheimer dementia

- **The Kame Project, an ACT-associated effort that followed the brain health of Japanese Americans in King County, showed that those who drank fruit or vegetable juices at least three times a week might be less likely to develop Alzheimer’s disease than those who drank such juices less often. However, these brain benefits were not observed in those who only took antioxidant-rich vitamin supplements (vitamins E, C, and beta-carotene). The study suggested that supplements may lack some neuroprotective chemical present in the juice, suggesting that supplements don't necessarily capture all of the benefits one can gain from including common, healthy foods in their diet. Dai Q et al. Fruit and vegetable juices and Alzheimer’s disease: the Kame Project

- **The report on the record in the 2020 Lancet Report is a history of ACT contributions to our modern understanding of brain health, aging, and disease that is relevant to public health policy. The fruits of that labor are now on the record in the Lancet Commission 2020 Report on Dementia Prevention, Intervention, and Care. Created by an international team of researchers, including UW’s Eric Larson and former ADRC leader Linda Teri, PhD, the report is a comprehensive synthesis of the current science of preventing dementia. It provides policy makers, doctors, researchers, and the general public with evidence-based strategies for reducing dementia risk, and the authors recognize the barriers that many people face in accessing the vital components that support brain health at every age. The report suggests that 40% of all dementia cases worldwide may be prevented by addressing a group of risk factors: high blood pressure, obesity, hearing loss, late-life depression, diabetes, physical inactivity, smoking, social isolation, lower levels of education, alcohol consumption over 14 drinks a week, traumatic brain injury, and air pollution. “It’s not a single thing that’s going to lead to late-life dementia,” says Eric Larson. “In the report, we emphasized this idea of the life course, with elements ranging from early life to late life that influence risk.” Fortunately, existing public health interventions and personal lifestyle changes can directly address these risks. Some help preserve the mind by reducing damage to brain cells from pathology or inflammation, some help by constructing a cognitive “buffer” that keeps the mind functional in spite of the presence of disease in the brain; or, a combination of both fortuitous pathways. Behind the list of preventable risk factors in the 2020 Lancet Report is a history of ACT contributions to our modern understanding of aging and brain health. Highlighted below are some of the most significant findings about what’s helpful and what’s not.

PRESCRIPTIONS FOR PREVENTION

- **HEARING LOSS**
 - People who get their heart rate up, or strengthen or stretch their muscles, for at least 15 minutes 3 times per week may be about 40% less likely to develop dementia than those who move their body less frequently, suggests a 2006 study led by Larson. “ACT was the first study to show the benefits of habitual exercise,” says Larson. “And it didn’t take much exercise to see the reduction in risk. It’s really just about avoiding no exercise. This finding has held up over time.” Larson EB et al. Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older

- **EXERCISE & FITNESS**
 - When a VA Puget Sound team scored the physical performance of the study’s participants—based on fitness in walking, standing up, balancing, and grip strength—they found that those with low scores were roughly 3 times more likely to develop dementia and Alzheimer’s disease during a 6-year follow up period than those who were more physically fit. The 2006 study suggests that the first signs of dementia in older people may be changes in physical function, which often appear before noticeable mental decline. Wong L et al. Performance-based physical function and future dementia in older people

- **VITAMIN SUPPLEMENTS & NUTRITION**
 - More exercise and activity research is on the horizon. Modern activity monitor technology now allows researchers to gather accurate data on sedentary activity, light exercise, and even circadian rhythms and sleep time from participants in the ACT Activity Monitor (ACT-AM) Study. A new goal of ACT-AM: search the “24-hour cycles” of participants for elements of daily activity tied to risk or resilience to dementia. Amidst the SARS-CoV-2 pandemic, Dori Rosenberg, PhD, MPH, leader of ACT-AM, is considering the investigation of how trends of isolation have affected the 24-hour activities of seniors. “With these new measurements, I think the ACT study is well positioned to help identify the key features of exercise that are beneficial to cognitive health,” said Marilyn Albert, PhD of John’s Hopkins University in her keynote at the 2020 ACT Symposium. “Is the benefit just from aerobic activity? How much activity makes a difference, and at what age? I think ACT can help us communicate to the public about the factors critically important to brain health.”

**The ACT study has repeatedly refuted connections between antioxidant supplements and brain health benefits. In 2008, a team led by UW School of Pharmacy’s Shelly Gray, PharmD, MS looked into the use of vitamins E and C, which were thought to be neuroprotective thanks to their antioxidant effects. They found no link to suggest that supplementation of E and C, whether taken alone or together, reduced the risk of dementia. Gray S et al. Antioxidant Vitamin Supplement Use and Risk of Dementia or Alzheimer’s Disease in Older Adults

- **Findings from the Kame Project, an ACT-associated effort that followed the community population investigated the effect of hearing loss on brain health. Larson worked with UW Otolaryngology’s George Gates, MD for many years on hearing loss research. In 2011, they discovered that hearing loss caused by dysfunction of the auditory processing centers in the brain is a precursor to Alzheimer’s disease-type dementia. They recommended that doctors consider referring older patients with hearing loss for neurological evaluation. Gates GA et al. Central auditory dysfunction as a harbinger of Alzheimer dementia**
• Researchers in the new EyeACT project think of the eyes as an “under explored window to the brain.” ACT’s unique access to participants’ ophthalmology records allows researchers to examine the link between eye disorders, corrective surgeries, and dementia risk. The team recently found that individuals with diabetic retinopathy, a deterioration of eyesight caused by diabetes, have an increased risk of microscopic strokes in the brain. Lee CS et al. Ophthalmology-Based Neuropathology Risk Factors: Diabetic Retinopathy is Associated with Deep Microinfarcts in a Community-Based Autopsy Study

• Cataract surgery, a quick outpatient procedure, prevents blindness, and it may also benefit the brain. At the 2020 Alzheimer’s Association International Conference, UW Medicine’s Cecilia S. Lee, MS, MD reported emerging findings that cataract surgery is associated with decreased risk of dementia, suggesting a benefit to addressing cataracts as early as possible. Lee CS et al. Cataract surgery is associated with reduced risk for Alzheimer’s disease. AAN 2020 presentation

• When a 2007 study showed that the use of non-steroidal anti-inflammatory drugs (NSAIDs), such as aspirin, could help prevent dementia, NSAIDs and dementia became a hot research topic with over thirty observational studies coming out in the following years. Most of these studies confirmed that NSAIDs seemed to lower dementia risk, but a handful of studies raised questions. The VA Geriatric Research Education and Clinical Center’s John C. S. Breitner, MD sought to clear up the confusion with one of the best resources available—a wealth of ACT study medication data that can be often traced back 10 to 15 years for each participant. He and his colleagues found that a history of sustained NSAID usage was associated with an increased risk of dementia and Alzheimer’s disease in elderly individuals, calling the drug’s status as a common preventative treatment into question. Breitner JC et al. Risk of dementia and AD with prior exposure to NSAIDs in an elderly community-based cohort

• To Larson, ACT’s most important finding concerning medication use emerged from a large study led by Gray in 2015. The team recently found that individuals with diabetic retinopathy, a deterioration of eyesight caused by diabetes, have an increased risk of microscopic strokes in the brain. Lee CS et al. Ophthalmology-Based Neuropathology Risk Factors: Diabetic Retinopathy is Associated with Deep Microinfarcts in a Community-Based Autopsy Study

• The science of TBI and dementia is complicated. To learn more, the ACT study collaborates with the Allen Brain Atlas’ Aging, Dementia, and TBI Project to better understand the long-term implications of traumatic brain injury. “So far, we haven’t found any signal of a significant link between one TBI with loss of consciousness and Alzheimer’s disease,” says C. Dirk Keene, MD, PhD, Lead of the ADRC Precision Neuropathology Core. “It’s important to keep in mind that the ACT study enrolls people who make it to the age of 65 without developing dementia. The bottom line is that people who reach 65, and who have had a serious whack to the head earlier in life, have the same risk of Alzheimer’s disease as someone without a TBI. I think that’s good news. However, we could be missing something in all that data, and we are still working on analyzing other measures.” Edlow BL et al. Multimodal Characterization of the Late Effects of Traumatic Brain Injury: A Methodological Overview of the Late Effects of Traumatic Brain Injury Project

• Examination of brains from research participants led to the first finding of a link between heavy cigarette smoking and reduced Lewy Body related neuropathology; supporting previous observational studies that showed a link between cigarette smoking and a reduced risk of Parkinson’s disease. The study found no relationship between smoking and Alzheimer’s pathology in postmortem brain tissue. Still, the Lancet Commission Report lists stopping smoking cigarettes as one of the most significant ways to help prevent the clinical syndrome of dementia, as well as cardiovascular disease. Tsuang D et al. Association between lifetime cigarette smoking and Lewy body accumulation

• To Larson, ACT’s most important finding concerning medication use emerged from a large study led by Gray in 2015. The team recently found that individuals with diabetic retinopathy, a deterioration of eyesight caused by diabetes, have an increased risk of microscopic strokes in the brain. Lee CS et al. Ophthalmology-Based Neuropathology Risk Factors: Diabetic Retinopathy is Associated with Deep Microinfarcts in a Community-Based Autopsy Study

• A 2016 study led by ACT co-PI Paul Crane examined the relationship between TBI with a loss of consciousness and neuropathology in ACT and other longitudinal cohort studies of aging. The team found that this severity of TBI is linked to greater risk for Lewy body accumulation, as well as the progression of Parkinson’s disease and associated movement abnormalities, but they were surprised to find that the TBI link did not extend to Alzheimer’s disease. “These conditions are very common by the end of life, so we had enough power with our large population to find an Alzheimer’s story and we didn’t,” says Crane. “We found no association at all between head injury during life and Alzheimer-type dementia or the plaques and tangles of Alzheimer disease in the brain. It is a pretty strong negative study and contrary to what the field has found.” Crane PK et al. Association of Traumatic Brain Injury With Late-Life Neurodegenerative Conditions and Neuropathologic Findings

• Using self-reported data from ACT participants, Kristen Dams-O’Connor, PhD, Director of the Brain Injury Research Center of Mount Sinai, and ADRC collaborators were the first to show that traumatic brain injury (TBI) with a loss of consciousness increases the chance of another TBI later in life. This study’s discovery of the risk of repeated injury supported the need to monitor older adults who sustain head trauma. Today, we know that preventing blows to the head is important, as repetition of injury seems to compound the risk of dementia. Much of our knowledge in this area comes from non-ACT work led by ADRC member Elaine Peskind, MD who uses cerebrospinal fluid and brain imaging to study the link between repeated mild TBI, neurodegeneration, and dementia in American veterans. Dams-O’Connor K et al. Risk for late-life re-injury, dementia and death among individuals with traumatic brain injury: a population-based study

• A 2010 ADRC study of the ACT population became the first to show a link between smoking and oxidative damage to the brain, a type of cellular damage caused by reactive oxygen sources that is linked to Alzheimer’s disease and vascular brain injury. The use of antioxidant supplements does not seem to change oxidative brain damage caused by smoking, vascular injury, or Alzheimer’s disease, suggesting that such supplements do not compensate for the risks that smoking poses to the brain. Sonnen JA et al. Free radical damage to cerebral cortex in Alzheimer’s disease, microvascular brain injury, and smoking

• A 2011 study of the ACT population found that diabetes, a chronic disease characterized by high blood sugar levels, was one of the top cardiovascular diseases in ACT participants. The team recently found the first link between diabetes and a major eye disease, diabetic retinopathy. Lee CS et al. Diabetes and Cataract: The First Link

• A 2010 ADRC study of the ACT population became the first to show a link between smoking and oxidative damage to the brain, a type of cellular damage caused by reactive oxygen sources that is linked to Alzheimer’s disease and vascular brain injury. The use of antioxidant supplements does not seem to change oxidative brain damage caused by smoking, vascular injury, or Alzheimer’s disease, suggesting that such supplements do not compensate for the risks that smoking poses to the brain. Sonnen JA et al. Free radical damage to cerebral cortex in Alzheimer’s disease, microvascular brain injury, and smoking
High blood pressure can put strain on the heart, and it seems that it may put a strain on the brain as well. A 2007 finding showed that high systolic blood pressure—the first and largest number you’re shown when your blood pressure is taken—was associated with a greater risk of dementia in people aged 65 to 74. Li G et al. Age-Varying Association Between Blood Pressure and Risk of Dementia in Those Aged 65 and Older: A Community-Based Prospective Cohort Study

Two years later, a new association between high systolic blood pressure and cerebrovascular damage in untreated older adults aged 65 to 80 suggested that controlling high blood pressure with antihypertensives may reduce dementia risk by minimizing microvascular injury to the brain. “ACT is one of the first studies to demonstrate the association of vascular pathology to dementia risk, including Alzheimer’s disease,” says Larson. “Over the years, that information has encouraged people to control their blood pressure, avoid smoking, increase exercise, and do other things that reduce vascular risk that have also turned out to be valuable for brain health.” Wang LY et al. Blood pressure and brain injury in older adults: findings from a community-based autopsy study.

Cholesterol comes in two varieties: “good” and “bad.” Specifically, “good” HDL cholesterol can lower your risk for heart disease and stroke, while “bad” non-HDL cholesterol raises these risks. In 2017, ACT researchers took advantage of the consistently collected cholesterol data obtained from patient visits to investigate how “good” and “bad” cholesterol might impact the brain. The study was the first to look at differences in neuropathological outcomes based on a snapshot of cholesterol levels at age 70. This led to the finding that higher levels of non-HDL cholesterol at this age were associated with Lewy Body pathology in the brain at autopsy. However, they found no association between HDL or non-HDL cholesterol and Alzheimer’s disease pathology. Betcher B et al. Association between Cholesterol Exposure and Neuropathological Findings: The ACT Study

In 2018, a team led by UW School of Pharmacy’s Zachary Marcum, PhD found that levels of “bad”, non-HDL cholesterol produced a “U-shaped” Alzheimer’s risk relationship in patients aged 60 to 79, where both higher and lower levels of non-HDL cholesterol led to heightened risk. The study found no association between “good” HDL cholesterol and Alzheimer’s-type dementia. Marcum Z. et al. Serum Cholesterol and Incident Alzheimer’s Disease: Findings from the Adult Changes in Thought Study

ACT’s frequent linking of heart health to brain health hints at a potentially powerful route to preventing dementia. Current epidemiological studies show that the ages of onset for Alzheimer’s disease have pushed out about five years later than the generation 30 years ago experienced, and UW bio-statistics’ Ellen Wijsman, PhD, Lead of the ADRC’s Data Management and Statistics Core, thinks that gains to public heart health over that time might be pushing that trend. “The difference in the cardiovascular risk prevention profiles of those generations has made huge changes in overall health and has extended life expectancy,” says Wijsman. “It’s possible that the delayed onset of Alzheimer’s that we’re seeing is coming from the benefits of cardiovascular risk prevention.”

Diabetes is a known risk factor for Alzheimer’s disease that jeopardizes the ability of the body to maintain safe, stable levels of blood sugar. In 2013, Crane led a study published in the New England Journal of Medicine that looked at blood sugar levels and dementia risk among ACT participants that found an association between higher blood sugar levels and Alzheimer’s disease in people with and without diabetes, suggesting that lowering blood sugar to safe levels through diet, exercise, or medical treatment, might lower the risk of Alzheimer’s disease. Crane PK et al. Glucose levels and risk of dementia

Crane has just recently expanded off of this 2013 study with new, not yet published, research presented at the 2020 ACT Symposium that further solidifies his previous findings. His team has verified that the link between high blood sugar and dementia is consistent among people with different levels of cholesterol and classes of cholesterol medications.

ACT research conducted in the early 2000’s pointed to early-life experiences having old-age consequences for the risk of dementia. Researchers hunted down birth records, census records, and other public records of their participants to find early-life data. When the data was compared to the rates of dementia in those participants later on, the researchers found that having more siblings, growing up in a non-suburban neighborhood, living in a household size of seven or more, and having a father employed in manual labor were all linked to the development of Alzheimer’s disease later in life. This early research raised awareness about the connections between socioeconomic status and the risk of developing Alzheimer’s disease. “Early life socioeconomic wellbeing probably lays down brain reserve,” says Larson, “so that when you get into the late part of life, you have more reserve to draw on before you develop cognitive decline that impairs function.” Moceri VM. Early-Life Risk Factors and the Development of Alzheimer’s Disease

Socioeconomic deprivation and racial discrimination lead to worse outcomes in physical and mental health. Over the past 34 years, King County’s socioeconomic and racial diversity has grown, and the ACT study is taking action to achieve a pool of participants that better represents our local population. This year, the study aims to increase its active cohort from 2,000 to 3,000 people, add 2 clinics serving socioeconomically diverse areas, and adopt a recruitment outreach plan that emphasizes racial diversity. With a more representative population, ACT discoveries of risk, resilience, and precision medicine will better serve and include all of Seattle’s vibrant communities.

Larson and UCSF Memory and Aging Center’s Kristine Yaffe, MD are spearheading the new Systematic Multi-Domain Alzheimer’s Risk Reduction Trial (SMARTR) as another key part of ACT’s efforts to make this needed change. SMARTR directly oversamples from the racial and ethnic communities that are underrepresented in the ACT study of today. The goal is to see how lifestyle changes might be implemented to address the dementia risk factors that ACT has helped illuminate. SMARTR will test the effect of coaching interventions in preventing cognitive decline in a group of 200 older individuals. The personalized coaching will be focused on tackling the specific dementia risk factors present for each participant. Backed by decades of ACT contributions, SMARTR’s prescription for dementia prevention is an track to bring brain-healthy changes into all King County neighborhoods.

In 1991, ACT research found that more years of education predicted a higher score on the Mini Mental State Examination, a common test used to screen Alzheimer’s dementia. Later in 2002, UW School of Public Health’s Walter Kukull, PhD led a team that found that attaining a higher level of education was linked to a lower risk of dementia. Subjects who had more than 15 years of education were at nearly half the risk of subjects with less than 12 years of education. These studies brought to light a difficulty in interpreting results about education and dementia risk. Cognitive screening tests are likely to have a favorable bias towards highly educated people. Education might support the health of neural connections that ultimately preserve a person’s test-taking ability, or it might engender cognitive flexibility or strategies that help them to perform well on tests despite the development of thinking and memory impairments in daily life. These studies remind researchers to consider that observed positive effects of education might reflect a failure of cognitive tests to detect early signs of dementia in highly educated participants. Kukull WA et al. Dementia and Alzheimer Disease Incidence: A Prospective Cohort Study

After following 2,168 non-demented elderly participants for six years, a 2005 study found that lower level of education was associated with a rapid pattern of cognitive decline in individuals with two copies of the APOE4 allele, a genetic variant that increases Alzheimer’s risk. The researchers did not discover such a connection in people with only one copy of the risky genetic variant. The study, published in 2005, showed that lower levels of education could be particularly risky in people already genetically at-risk for Alzheimer’s disease. Shadlen M et al. Education modifies the effect of apolipoprotein epsilon 4 on cognitive decline.
Genetic linkage analysis, combing through use new computing technology to run Wijsman’s job was crucial. She would her.” “Genius, that one,” notes Marie Walters. “I world of mathematics and computers, as George Martin, the Dean’s office stepped Schellenberg prepared to scour subjects’ BUILDING THE MOLECULAR GENETICS TEAM With Bird ready to do the sleuthing necessary to find more families, and Schellenberg prepared to scour subjects’ DNA for clues, they still needed someone to find the answers in the treasure trove of genetic information. At the prodding of George Martin, the Dean’s office stepped in to help and ultimately provided funding for the ADRC to recruit a young scientist from Stanford University, Ellen Wijsman. PhD. She was a statistical geneticist who was uniquely equipped to operate in the worlds of mathematics and computers, as well as in population and disease genetics. “Genius, that one,” notes Marie Walters. “I mean, I was in awe whenever I was with her.” Wijsman’s job was crucial. She would use new computing technology to run genetic linkage analysis, coming through thousands of Schellenberg’s genotypes in search of strong correlations between the inheritance of DNA regions and the development of Alzheimer’s disease. The UW ADRC’s pioneering project was on the right track, with the right team in place. Bird examined patients and diagnosed Alzheimer’s, and ensured quality clinical data, with help from Ellen Nemens, who obtained blood samples and helped evaluate and maintain contact with families; Gerard Schellenberg, molecular biologist, handled the DNA work of generating genotypes; and statistical geneticist technician Ellen Wijsman developed computational statistical methods to analyze all the data collected from the research and search for genetic linkages to Alzheimer’s disease. Technicians in the ADRC’s Cell and Tissue Bank grew and maintained white blood cells—the source of DNA—from living patients’ samples; and neuropathologist S. Mark Sumi, MD, the first leader of the Autopsy Core, along with others in UW Department of Pathology, studied the brain tissues from deceased participants. Also connected to the effort were people such as Eric Larson, MD, MPH, Associate Professor of Medicine in the UW Department of Medicine, who ran the ADRC’s registry of patients living with familial and sporadic (non-familial) Alzheimer’s who consented for eventual brain autopsy, complemented by a data bank of the clinical information on the subjects. This resource enabled work on many ADRC research questions. For example, Murray Raskind, MD, Associate Professor in the UW Department of Psychiatry and Behavior Sciences, soon to be joined by Elaine Peskind, MD, studied whether neurochemicals found in cerebrospinal fluid samples were different between familial and sporadic Alzheimer’s patients. Though the ADRC team were among the first in their fields to dive into Alzheimer’s from the genetic angle, they were not the only ones looking for an Alzheimer’s gene.

TIMELINE

Faculty and colleagues publish what becomes the most highly referenced paper in ADRC history, with 2,998 citations as of fall 2020. The study shows that 3 different Alzheimer’s-causing mutations are associated with significantly elevated concentrations of amyloid beta in blood plasma. The finding suggests that all of these mutations result in Alzheimer’s through a common pathway.

1996

1998

1999

The ADRC website launches, making it easier to learn about and get involved with Alzheimer’s research. Murray Raskind succeeds George Martin as Director, bringing a focus on clinical trials and traumatic brain injury’s effect on cognition.

ADRC researchers identify a mutation in the Tau gene and published the first report of a genetic cause of the neurodegenerative disease frontotemporal degeneration.

ADRC researchers create the first transgenic mouse with a presenilin-1 mutation, opening up a new avenue for investigating the biology of the Alzheimer’s-causing gene in a living organism. They demonstrate that the genetic change causes overactivation of neuronal receptors and subsequent neurodegeneration.

In 1985, researchers George Glenner, MD of University of San Diego, and Colin Masters, MD of University of Melbourne, isolated the plaques seen in the brains of people with Alzheimer’s disease and found that they were made of amyloid beta protein. “So, researchers started looking for the gene that coded for amyloid beta,” said Bird. “It turned out to be on chromosome 21, the same chromosome that is present in excess in Down’s syndrome.” This finding explained a curious connection between Down’s syndrome and Alzheimer’s disease. For years, scientists had known that virtually all individuals with Down’s syndrome eventually develop the hallmark plaques and tangles of Alzheimer’s disease by age 40, and some, but not all, later develop dementia. As word of the finding spread, other researchers looked at the find with Alzheimer’s disease and indeed came out with results showing a genetic linkage to chromosome 21. The team at the UW ADRC followed suit in search of this linkage to chromosome 21 in their families. “We were looking for any joint inheritance of the disease with a single genetic marker, and we were using the developing gene mapping resources of the Human Genome Project,” says Wijsman. “Others were building maps and figuring out where these markers were. As they mapped those markers, our team would use them for linkage analysis to query each little region of the genome in search of a link to disease.”

But the science didn’t happen overnight. Bird set a high bar for enrolling patient families into the study, holding on to the same standard of requiring confidence that at least two patients per family had proven Alzheimer’s disease, based on autopsy and tissue analysis.

The genotyping was another tall order. In 1988, the technology allowed Schellenberg to genotype about 1,000 genetic markers in a week—but there were many medical pedigrees to work through. Covering the genome to the best of their ability meant that each individual needed genotyping for nearly 200 genetic markers and look at genotypes for one genetic marker at a time for each individual. Running linkage analysis on each one of those markers, one at a time, for their entire study population, added up to a huge computational challenge. “Back when I was getting started at the ADRC, I had a single PC that was completely inadequate. It had one Central Processing Unit, and one processor. It was slow, and some of our analyses took six months,” says Wijsman, who is now Lead of the ADRC Data Management and Statistics Core. “I was borrowing computer time from anyone I could find that could spare patients up into groups based on how they differed in clinical presentation. Wijsman wanted to focus on the early-onset cases, based on the availability of detailed medical data about the very first signs of disease and nature of symptoms. She split the cases up according to an under-appreciated variable at the time—how old they were the last time their family reported that they were clinically normal.”

London researchers would identify the elusive mutation in the APP gene, located on chromosome 21, in 1991 and showed that it was the cause of Alzheimer’s disease in two families in England and America. In the years leading up to this finding, the scientific community at large surmised that all cases of familial Alzheimer’s disease would be caused by this single gene on chromosome 21, but fortunately, some researchers at the UW ADRC were not so certain.

A SHARPER FOCUS

While many in the scientific community were rallying around the easy link between chromosome 21 and Alzheimer’s disease, Ellen Wijsman was ready with a healthy dose of skepticism. “As a population geneticist, you’re aware of how much genetic diversity probably exists underneath the biological hood of one disease category,” says Wijsman. “When I started studying Alzheimer’s and working with Tom and Jerry, I very quickly became convinced that there had to be more than one gene for familial Alzheimer’s disease—that this was going to be more complicated than the field thought it would be.”

The slow pace of research ended up being a blessing in disguise—she had the time and bandwidth to think critically. “It took a long time to generate the genotype data, so I had a lot of time to think about our study design,” says Wijsman. She crunched the numbers and found that it would take years to run statistical tests and look at genotypes for one genetic marker at a time for each case. Additionally, Wijsman realized that there were multiple different Alzheimer’s genes in their study population, then they would compete for attention in the linkage analysis, it would be difficult if not impossible to get a signal for one genetic disease factor. “I sat down and started assessing the drawbacks of trying to do everything at all once, versus recognizing that there may be more than one gene and being prepared for that possibility,” says Wijsman.

Confronting these realities, Wijsman called a meeting and made her case. “It was very obvious to me that we really needed to change our study design,” she said. She made an argument to start dividing the patients up into groups based on how they differed in clinical presentation. Wijsman wanted to focus on the early-onset cases, based on the availability of detailed medical data about the very first signs of disease and nature of symptoms. She split the cases up according to an under-appreciated variable at the time—how old they were the last time their family reported that they were clinically normal.’
As it turned out, focusing on age-of-onset was a useful way to differentiate between the disease's familial forms. When they divided the patients up by age of symptom onset, they found that the late-onset families didn't seem to follow any strong pattern of inheritance.

“I saw that the later-onset families didn't always have a parent with Alzheimer's and then a bunch of adult children with it as well,” says Wijsman. For the early-onset families, however, it looked like the offspring of a parent with Alzheimer's had been born with a 50/50 chance of inheriting Alzheimer's. The team reasoned that first focusing on the genetically straightforward early-onset population would help them to interpret the data.

“While everybody else in the field was looking at all of their families at the same time, we started focusing in on these subpopulations and really using the data as efficiently as possible,” says Wijsman.

The team moved their research in a pioneering direction. In 1990, Bird published a paper that shared the team’s insights with the world. Bird plotted age-of-onset data for 31 familial cases out on a graph. It showed three distinct clusters - families with onset before age 50, families with onset after age 60, and families with variable ages of onset. For example, the Volga German families showed onsets between the ages of 40 - 75. It was not only useful, but actually critical, to group patients by the age they started showing symptoms.

“No genes had been discovered at that time in 1990, but I said, ‘I bet that there are at least three genes for Alzheimer’s disease,’” says Bird. “This statement went against the grain of accepted wisdom in the Alzheimer’s research field at the time.”

[“Bird” was the one who opened the door to using age-of-onset [as a key differentiating variable] in our Alzheimer's research study,” says Wijsman. “Everybody else followed eventually, because we were successful, and they weren't.”]

“DO-IT-YOURSELF GENOMIC SCIENCE”

The team was hoping that by focusing on subpopulations of early-onset cases, they would have “cleaner” data that would give them a higher chance of success. It was, as Schellenberg remembers, the age of “do-it-yourself” genomic science. “Nowadays, you can view the whole genome sequence online, but back then, the genes were not mapped, and the sequences were not available,” he says. “They got a lucky break in that regard thanks to James L. Weber, Ph.D., a collaborator who was working on the Human Genome Project and amassing DNA markers. A UW laboratory technician named Elaine Loomis went to Weber's lab to pick out points of interest in the human genome, run the genotypes from the DNA markers, and send those numerical representations of the genetic code to Wijsman for linkage analysis. Then, Schellenberg would use the results to generate a score of the data significance for each individual family group. Schellenberg knew that their effort to narrow down the location of a familial Alzheimer’s genetic abnormality to a single chromosome had no real guarantee of success, never mind finding its specific gene.

At the end of one long night, Schellenberg processed the one last genotype sent over from Weber’s lab. “And I’m sitting there feeding data into my database and printing it out,” said Schellenberg. “And I started to see big, positive numbers for a linkage to chromosome 14, and I was like, ‘Oh my God!’… That was my ‘aha’ moment. I had figured that our genetic approach was going to work someday, but the fact that it worked on those early-onset families blew me away.” They were the closest to discovering a gene than they had been since they started in 1986. In 1992, the UW ADRC published the linkage of a familial Alzheimer's disease-causing gene to chromosome 14. While this finding did not involve the Volga German family samples, the finding was a big step forward. “I really credit a lot of our success to Tom Bird,” says Schellenberg. Wijsman agrees: “Before the center was even funded, [Bird] was looking at early-onset Alzheimer's families. >>> Next page

His finding of those three clusters of ages of onset, and his suggestion that those represent different biological diseases, focused us on the early-onset families and got us in a place to find the linkage to chromosome 14. I credit those decisions as being partly why we made the progress we did make early on,” says Wijsman. The team’s choice to look at their data in a more selective way helped make success a reality.

AT THE CROSSROADS

At this point, the ADRC linkage study had opened the door to actually identifying the Alzheimer’s genetic risk factor on chromosome 14, kicking up some scientific competition over who could find it first. A group of scientists at Harvard University and Massachusetts General Hospital followed up on the ADRC’s findings and beat them to the identification of the disease gene in several families in 1995. The Harvard team named the gene “presenilin-1” (PSEN1) because the newly identified mutation in this gene nearly always led to dementia in people’s 40s, at much younger ages than for the other genetic variants of Alzheimer’s disease.

Despite the disappointment of not finding the PSEN1 mutation first, the ADRC’s linkage of the mutation to DNA on chromosome 14 allowed for the Alzheimer’s research field to come to terms with larger, looming challenges. “Our finding really disturbed people because it showed that the genetics weren’t going to be simple – that there would be more than one gene for familial Alzheimer’s,” says Bird. “The field wanted it to be simple, and everyone was disappointed that it wasn’t going to be.” Steering in a direction that would characterize the next two decades of ADRC research, the early molecular genetics team embraced the emerging complexities of Alzheimer’s disease. In a landmark paper published in 1999, Evidence for Etiologic Heterogeneity in Alzheimer's Disease, the team had suggested that there are multiple different genetic mutations behind familial Alzheimer's disease. They posited that while some families carry a mutation on chromosome 21, there would be other familial Alzheimer's mutations to discover still. The paper went beyond genetic mutations to introduce the influential idea of ‘heterogeneity’ in Alzheimer's disease, or the concept that several different genetic and environmental factors, such as toxins, trauma, or viruses, may act separately, or in combination, to result in a cognitive syndrome linked to the pathology of amyloid plaques and tau tangles. Genetic factors may act differently in the context of an individual’s own biology and health issues, explaining the variability in the symptoms and ages of onset in familial cases, as well as the sporadic, later-onset forms of Alzheimer’s disease.

For example, the ADRC team noticed that the Volga German families in their study showed wider variability in the ages of onset than other family groups. Some people developed symptoms at the age of 40 while others did not until age 72. The types of cognitive symptoms and duration of illness also differed from person to person.
In the landmark 1989 paper, the authors suggested that the distinct manifestation of familial Alzheimer’s involves factors beyond the gene — even in cases in which a genetic factor was so strong that virtually all people with that mutation would someday develop dementia. This phenomenon of varying levels of resilience energized the idea that it is just as important to study the factors that counter disease pathology in the brain as it is to study the factors that cause it.

ADRC scientists of this early era honed in on the idea that each person has a different combination of biological and environmental factors that influence risk and resilience to neurodegenerative diseases and dementia. This concept of “biological heterogeneity,” from a genetic perspective, was the central theme of the original ADRC — and the researchers soon discovered that the genetics of Alzheimer’s disease would be more complicated than anyone expected. Now, in 2020, the newly renewed ADRC continues a thematic focus on biological heterogeneity, using new tools such as pluripotent stem cells. These in-vivo models allow researchers to probe the mechanisms of genetic variations in the context of an individual patient’s biology and identify therapeutic drug targets.

ADRC researchers now study genes whose variants may contribute some level of risk or resilience to Alzheimer’s. UBC SORL, MSUT2, and APOE, as well as newly identified risk factors of frontotemporal degeneration and ALS. In this light, the story of the early ADRC embodies the evolution of the field — from a view of Alzheimer’s disease as a single gene phenomenon, to a condition that varies across individuals involving many different underlying factors that converge at cognitive trouble, and ultimately, will require different treatments.

COLLABORATION LEADS TO DISCOVERY

In 1994, the team was still looking for the genetic cause of Alzheimer’s disease in the affected Volga German families. Schellenberg and Wijsman had ruled out the amyloid gene on chromosome 21 and the presenilin gene on chromosome 14. The data suggested that the Volga German families carried a third, as-yet undiscovered gene for Alzheimer’s disease — a gene that had been flying under the researchers’ radar. Eager to bring new energy to the Volga German family mystery, Schellenberg asked Ephrat Levy-Lahad, an up-and-coming post-doctoral researcher in the medical genetics program, to head the project. Under Schellenberg’s guidance, Levy-Lahad, in charge of digging through the data for a correlation between DNA and disease. They started making progress immediately.

“I remember Ellen [Wijsman] came to me with the news,” says Bird. “She said, ‘We’ve got it — a linkage in these families.’ [Their disease gene] is linked to the long arm of chromosome 1. It’s pointing to a new gene for Alzheimer’s disease. We’ve got to report this.” They wrote up a paper and Science started reviewing it.

After seven years of trying, genetic linkage studies on these Volga German families had finally led the group to an area on chromosome 1, but they had still not identified the gene itself. “We couldn’t look it up — nobody knew what genes were in that particular region,” says Schellenberg.

Levy-Lahad refers to the technology that they used at the time as “prehistoric.” “Genetics has undergone a total revolution since then. Today we have the whole human genome, we know where all the genes are, and we can sequence them in a week,” says Levy-Lahad. “_telling my graduate students today about the technologies we used to sequence genes back then would almost be like describing how we used to have to mine our own salt or gather our own coals._

Mapping out the different genes within that region on chromosome 1, at the time, required yeast artificial chromosomes, called “YAC” clones, which are human-engineered DNA molecules used to clone DNA sequences in yeast cells. This technology would allow the researchers to run many experiments on their DNA sequence of interest. Fortunately, Marilyn Olson, PhD, now Professor of Genome Sciences and of Medicine, had arrived at the UW in 1992 and created an impressive YAC clone library, now at the ADRC’s disposal.

The team also had help organizing the YACs that they would need to cover the linked region on chromosome 1, thanks to Chang-En Yu, PhD, a researcher who still works as Research Associate Professor in the Division of Gerontology & Geriatric Medicine at the VA.

Levy-Lahad got to work. “We had to take these YACs and start sequencing them to try and figure out which genes were there,” she says. “At first, we were going through them, one by one, just like we had been doing for the chromosome 14 gene.” It took sixty YACs to cover the candidate region on chromosome 1; finding the genetic mutation would be akin to searching for a needle in a haystack.

At that moment it was external collaboration became a rung on the ladder of scientific discovery, with a call from Wilma Wasco, PhD, and Rudolph Tanzi, PhD, who had both worked with the Harvard team that followed the ADRC’s lead to identify the mutation in the presenilin-1 gene on chromosome 14 in their group of early-onset families. In spite of the previous competition, they collaborated with the ADRC team and gave them a clue that would prove critical in their probe into the genetics of the Volga German families: Wasco and Tanzi, who had recently found a genetic fragment with a sequence highly similar to the presenilin-1 gene located on chromosome 14. The fragment was a “homolog,” or a genetic cousin of the chromosome 14 gene. The similarity between the two gene sequences suggested that the proteins they encode may have similar functions that could be relevant to Alzheimer’s disease. The implication of Tanzi’s message was that, perhaps, searching for this homolog in the Volga German family DNA may lead the ADRC team to the mutation site.

It was far-fetched. The ADRC team was skeptical. “The significance of the homolog was just that there was something specific to look for,” says Levy-Lahad. “If you would have asked Jerry and I, we would have said that the chances looked really slim.” She searched the YACs in the chromosome 1 region for the homolog gene, and, remarkably, she found it. The homolog was right there, hiding away in the DNA sequence region that the team had pinpointed as the likely site of the Alzheimer’s variant in the Volga German family members.” That was like a sledgehammer to the forehead, “ Levy-Lahad told medical reporters at the time. “It went from being a ho-hum project to... this is the gene.”

Schellenberg calls the subsequent search to find the gene in the Volga German families “a slam dunk.” He still remembers the moment of discovery, when Levy-Lahad and Loomis were looking at the genetic sequencing data that came out on giant X-ray films, which measured about 14 by 18 inches. “I saw them holding this thing and going into the lab, laughing and giggling and smiling,” he says. “They wouldn’t tell me, but I knew they had the gene.”

“I’ve seen so much of an element of luck in these things,” says Levy-Lahad. “I was working 18-hour days to find this gene, and it could have been a project of a few years if there wasn’t that homolog.”

The team finished the job within a few days, with help from David Galas, PhD and colleagues at Darwin Molecular, a biotech firm in Bothell, Washington. They were able to sequence the gene from the Volga German family members and, critically, confirm that the mutation was not only present in the gene in affected family members and absent in unaffected members.”The genetics all fit together so nicely,” says Schellenberg. “It was incredibly rapid.”

A small genetic change had proven responsible for the Volga German families’ history of Alzheimer’s disease: a single mutation, N141I, within the gene that was named “presenilin-2” for its similar biological structure to the presenilin-1 gene. The ADRC researchers described the discovery in the August 18, 1995 issue of the journal Science, and received coverage in Science Magazine.

The team toasted their achievement. Their decade-long effort had paid off in the discovery of a new Alzheimer’s gene mutation, fulfilling the aim set out in the original 1985 ADRC application to identify important genetic factors. “The VA didn’t allow alcohol in the parking lot,” said Levy-Lahad. “So we took our bottle of champagne and celebrated in the garage.” The popping of the cork didn’t bring the same tumbling cheer as the ADRC researchers, and received coverage in Science Magazine.

> This article is continued on Page 45
Celebrating the Stories of ADRC Research Participants

Stuart Du Pen

Stuart Du Pen, a retired anesthesiologist, lives on the Olympic Peninsula with Anna, his wife of 30 years. After receiving a diagnosis of Alzheimer's disease in 2017, the couple decided to involve the ADRC study and take opportunities to participate in other studies. As medical professionals, they are both familiar with end of life situations, when people often talk about leaving a legacy or donating organs. "Developing the science forward into the future for others is a kind of legacy that both of us really want for him," says Anna Du Pen, who works as an oncology nurse.

For Du Pen, participation in research goes along with lifelong interest in helping others through medicine. "I want to do everything I can to help others who come along into this diagnosis," he says. "I think the least we can do is work together—the researchers and the people living with the disease—to find the answer. It's also about surviving challenges, which, he says, is in his blood. Du Pen is the grandson of a man who survived the sinking of the Titanic, the only one of his group of 5 seamen to live. He went on to serve in World War II as a Captain in the US Navy.

Getting to the ADRC at Harborview takes commitment for the Du Pen couple, who travel two and a half hours each way. Anna says that the ADRC staff make their participation possible, especially research coordinator Yeung Tutterrow. "She understands that it is the ADRC staff who make their participation possible, especially the ADRC staff, as they put me through various tests and exercises," she said. "So, if I can help the researchers in some little way I will".

Adapting to new challenges, Du Pen keeps his mind active with games like Quarkle, doing the laundry and housework, and caring for a new puppy. He maintains a vegetable patch in a raised garden bed and enjoys watching birds. The couple feels lucky to live close to family, including nine grandchildren. If you ask whether the diagnosis of Alzheimer's disease changed his marriage in any way, Du Pen will tell you, "We're probably closer now than we've ever been in the past. And we were close before." •

Vivian Lee

Vivian Lee was the first African American student admitted to the 4-year Bachelor of Nursing program at the UW in 1955, as well as the first African American registered nurse hired at the Seattle VA hospital. She went on to be a trail blazer in nurse practitioner training and public health for low-income communities of color. As a leader in the U.S. Public Health Service for 28 years, she implemented women's health research projects and clinics in the Pacific Northwest.

Lee, 82, has been volunteering in ADRC research for over 20 years. "I wanted to volunteer, even before my mother developed Alzheimer's symptoms at age 89," says Lee. "I just felt the need for more women of color, especially African American women, to be involved in medical research." She suggests that the ADRC could increase the diversity of the research cohort by setting up study sites in central or southern areas of Seattle, such as Columbia City and Beacon Hill.

Lee takes after her mother, Alvarita Little. Alvarita grew up in a southeastern Texas farming community, receiving education in a school for African American children that did not provide access to high school. She would later pursue social work and become a community service leader in Seattle. She gained support from the community to fund and establish three girl's clubs, including the Alvarita Little Center 1969, now home to the FWCA GirlsFirst Program.

As her mother aged, Lee and her husband moved next door to support her. So, Lee noticed when Alvarita forgot how to make her famous Texas-style potato salad and faltered in managing her budget. Yet, clever, resilient and resourceful, she was able to score normally on cognitive tests, escaping a diagnosis of Alzheimer's again and again. It would be a long time until a doctor finally agreed with Lee that Alvarita needed dementia care.

It is her mother's long-delayed opportunities to access needed resources that shape Lee's vision for Alzheimer's research. "I hope for earlier diagnosis, and I hope that primary care physicians will become more astute at looking for symptoms and referring families to proper care," Lee says she hopes to follow in her mother's footsteps in one more way: "I hope I will be a super-ager too." •

Carolyn Chapel

Carolyn Chapel's journey to ADRC research participation is a family story. Both her mother and her mother's sister had an atypical form of Alzheimer's. They experienced difficulties getting a diagnosis, partly because they retained their verbal abilities. After her mother died of pancreatic cancer, Chapel fulfilled a wish and gave the UW the most precious gift there could be: her mother's brain.

As a retired educator and President of the Substitute Teacher's Organization in the Edmonds School District, she is proud of all the procedures she helped institute upon returning to the workplace after raising two children. But she is also proud of her mother.

Chapel remembers the moment when the research team showed her the report on her mother's donated brain. "Seeing her brain image made me proud of her," says Chapel. "I said out loud when I read it, 'Mother, you did so well with what you had.' It was very moving to me because I hadn't realized how well she had done with this great amount of damage."

Attuned to her family history of Alzheimer's disease, Chapel decided to join the ADRC study. "I am optimistic that there will be discoveries for future generations," she said. "So, if I can help the researchers in some little way, I will." Chapel has had good experiences with the ADRC, remaining committed even as her own symptoms of Alzheimer's affect her. "The research study team has always treated me like I was special person and seemed to enjoy having me as they put me through various tests and exercises."

A correct diagnosis from the UW MBWC clinic gave her the information needed to make important life changes. She stopped driving, moved with her husband Roy into an assisted living facility, and accessed community resources.

She points to MBWC neuropsychologist Kristoffer Rhoads, PhD, who gave a talk about sleep and brain health. This motivated her to get tested for sleep apnea, which led her to use an apnea machine every night. "I'm still plugging along with it, and I don't need to take naps as much as I had to in the past," she says. "All in all, I'm sleeping better at night." •

Dixie Wilson

Participating in ADRC research is just one of the many gifts of time, effort, and funds that Dixie Wilson has given to the UW, her alma mater. Upon returning to the Seattle area over two decades ago after a career in sales and marketing, Wilson began to volunteer in community service roles at UW Medicine, Seattle Children’s, and other organizations. Her support for Alzheimer's disease started in 2001, when she joined the UW Friends of Alzheimer's Research, a group dedicated to supporting the ADRC.

She soon stepped into a leadership role as a board member, chaired the UW Friends of Alzheimer's Research Petite Wine Auction. From there, she and her husband established the Steven G. and Dixie Y. Wilson Endowment for the ADRC, a fund that supports research to better detect early signs of Alzheimer's. Wilson's specific interest in Alzheimer's disease comes from her family's experience. Her father was one of five siblings who developed the condition. At a fundraising function, the Wilson's met Thomas Bird, MD, a leader at the ADRC. "When I told him a little bit about my family history, he asked me if I'd ever be interested in participating in research. I took his card, and when my dad passed away, I reached out to Dr. Bird. That's how I got started."

Beyond concerns about her family history, Wilson's passion is larger than herself. "I also have an overreaching need to do whatever I can to eradicate the disease, and I am in the position to contribute and speak up. Back when my family was dealing with Alzheimer's, no one was talking about it. Alzheimer's was not something that was openly discussed. The stigma around it really bothered me, and I wanted to do what I could to try to put a voice to the common experience." Wilson continues to provide insights and support to the UW Medicine Strategic Initiatives Committee and the UW Medicine Scholarship and Student Support Committee. Alzheimer's takes center stage in her advocacy, because she knows the investment will pay off. "I do believe that in short order, we are going to have drugs in the pipeline that might be able to ward off the disease for some of us." •
A big tangled knot" is how Linda Teri, PhD, has long thought about the daily life challenges of both the person living with dementia and the care partner. This simple visual describes her approach to helping those dealing with behavioral issues, such as agitation, depression, and sleep disturbances, as well as social factors that worsen or improve challenging home situations. Teri, now Professor Emerita in the UW School of Nursing, served in the past as Director of the former UW Geriatric Family Services Clinic, faculty in the UW Department of Psychiatric and Behavioral Sciences, and ADRC leader in medical and caregiver education for over twenty years. "I've always been interested in taking the knot and pulling it apart," she says. "If you pull a few strands out, it's still a knot, but maybe it's less tangled. What strings can we pull from this amorphous, scary tangle of challenges that will actually help people?"

ADRC-affiliated researchers have a history of pulling on those "strings." In the early 1980s Murray Raskind, MD, ADRC, worked with Teri and McCurry on testing behavioral therapies and teaching skills to alleviate depression and anxiety. Through the 1980s and 1990s, the study of behaviors in the Alzheimer's field was outside the mainstream. Teri remembers the attitude of other researchers that dementia was a cognitive disorder, so behaviors were simply epiphenomena, or by-products of a disease process: "Why bother studying them?" "We were still the only group with a non-pharmacological focus on dementia behaviors," said Teri. "At the same time, families were being told there was nothing they could do about their loved one's behaviors, except to give medications with side effects and limited benefits." It was this under-recognized human need that motivated her to identify the most effective strategies for caregivers to improve their home situation.

Teri began her research career at the early ADRC tracking the kinds of behavioral problems affecting research participants and their care partners who came through the Clinical Core. She soon ran into a research roadblock: there were no good measures of behavior, no scoring systems for caregiver reports about their loved one's behaviors. "This lack of objective measures limited researchers' ability to define observable types of behaviors, rate severity level, compare groups of patients, and ultimately detect declines or meaningful improvements during an intervention or treatment study. As a psychologist, Teri also wanted a way to understand how the caregiver's response can affect the emotional state and behavior of a person living with dementia.

DOING THE ABCs

In the early years of the ADRC, Teri and Susan McCurry, now a research professor and vice chair of research at the UW School of Nursing, drew from social learning theories in psychology to create a framework for understanding the behavioral changes that occur in individuals with dementia. They called it the ABCs, where a Behavior is determined by its Activator and its Consequences. With this formula, caregivers can "get active" to change the behavior by either changing the situation that triggered it or the event that follows it. The team found that common "activators" and "consequences" of behaviors revolved around caregiver communication styles, such as arguing or holding unrealistic expectations about loved one's ability to remember or perform tasks, which can produce a vicious cycle of worsening interpersonal conflict.

NIH funding in 1993 made possible the first application of the ABCs to a behavioral intervention designed to reduce physical disability and behavioral problems in patients with Alzheimer's disease. A group of ADRC-affiliated investigators, including Teri, McCurry, Logsdon, Eric Larson, MD, MPH, and Wayne McCormick, MD, joined together to conduct Reducing Disabilities in Alzheimer's Disease (RDAD). Rather than focusing on one area of impairment, RDAD tested the first-ever integrated mix of medical, behavioral, and psychosocial interventions, such as exercise. This first study enrolled patients in the Alzheimer's Disease Patient Registry, a group of Group Health Cooperative members willing to participate in research, created by Larson and Kokal in 1986 to better understand Alzheimer's disease in the wider community. Over time, RDAD evolved into its present-day form: a home-based exercise program, combined with caregiver training in problem-solving strategies, practical communication, and pleasant events that can improve the lives of cognitively impaired participants and their caregivers. "I cannot stress how much this program has helped me. It saved our family's sanity," an RDAD participant named Tom told the team. Tom had joined the study to get better support and guidance in caring for his father, an African American man living severe dementia and depression. At the end of the intervention, Tom and his father were exercising together four days a week, and his father was now strong enough to get off and on the toilet by himself. Tom reported that using the ABCs helped him solve some of his most vexing caregiving problems. After Tom worked to identify and modify the activators for his father's habit of undressing at family functions, he was soon able to react calmly, redirect, and assist his father back into clothes.

Studies of RDAD show that the home-based intervention increases physical activity and reduces stress for people living with dementia and their care partners. It has since evolved through various iterations, thanks mostly to funding from the National Institute on Aging, but also state contracts to train Areas Agencies on Aging senior home care staff in Washington, Oregon, and across the country. In 1999, Teri received a 5-year Pioneer Award from the Alzheimer's Association to take ABC behavioral management approaches that they had been testing in families living at home and bring them into assisted living settings. >> Next page

35 - Legacies
The team launched Staff Training in Assisted Living Residencies (STAR), the first program to address the challenges of providing care to residents with dementia in assisted living. "STAR was a game changer," says Teri. At the time, there were no training or education programs for staff in assisted living care facilities who interacted with people living with dementia, and often depression and anxiety, every day.

As a staff training program, STAR required hands-on work by ADRC team members. Piruz Huda, RN then working as a psychiatric health provider and research study consultant, helped develop the manual and video training components, distributed through the ADRC, used in assisted living facilities. As a STAR trainer, he engaged care staff in role-playing and discussions. "When people describe to me what hasn't worked, I like to work with them to teach them some simple skills, and find a way that does work," Huda said at the time in 1999. "To see their appreciation, that they feel better working with the resident, and especially that the resident feels better, is very rewarding." This and future work resulted in publications that showed STAR improved resident outcomes, reduced dementia-related problems, and improved staff skills and job satisfaction.

ADAPTATIONS

Today, many different versions of RDAD, STAR, and STAR-Caregivers (STAR adapted for family caregivers) are part of a group of popular validated non-pharmacological interventions, known collectively as Seattle Protocols, widely adopted in homes, clinics, and facilities throughout the country and world.

"I've never felt like I owned these interventions. My goal was always to give it away, to get it into the hands of the people who needed it," says Teri, who left her role in the ADRC in 2009 to expand RDAD at the UW School of Nursing. She is now focused on helping other researchers to adapt these ABC-based programs for those who may need them the most.

Inspired by the effectiveness of RDAD, Karen J. Fredriksen Goldsen, PhD, Professor at the UW School of Social Work, teamed up with Teri to design and integrate specific components of the intervention to address the unique needs of the aging LGBTQ population and evaluate its effectiveness in an ongoing clinical trial named the Innovations in Dementia Empowerment and Action (IDEA) Study. In this six-week cognitive behavioral intervention program, a care partner and a person living with dementia are matched up with a coach, who helps both the caregiver and the person experiencing symptoms to develop strategies to solve problems that may arise. The intervention is being offered in Seattle, San Francisco, and Los Angeles.

STAR-Caregivers is undergoing similarly robust expansions and improvements. Currently, UW School of Public Health’s Robert Penfold, PhD is working with Teri and McCurry to pilot a less expensive, shorter, virtual version with patients and caregivers at Kaiser Permanente Washington. This effort, STAR Caregivers: Virtual Training and Follow-up, is a NIA funded clinical trial to improve the coach, who helps both the caregiver and the person experiencing symptoms to develop strategies to solve problems that may arise. The intervention is being offered in Seattle, San Francisco, and Los Angeles.

STAR-Caregivers is undergoing similarly robust expansions and improvements. Currently, UW School of Public Health’s Robert Penfold, PhD is working with Teri and McCurry to pilot a less expensive, shorter, virtual version with patients and caregivers at Kaiser Permanente Washington. This effort, STAR Caregivers: Virtual Training and Follow-up, is a NIA funded clinical trial to improve the

ADRC receives a 5-year NIA funding renewal of about $15 million, enabling new research including projects to map new genes involved with late-onset Alzheimer's disease and modify the age of onset, and work to characterize cerebrospinal fluid proteins in geriatric dementias.

STAR-Caregivers is undergoing similarly robust expansions and improvements. Currently, UW School of Public Health’s Robert Penfold, PhD is working with Teri and McCurry to pilot a less expensive, shorter, virtual version with patients and caregivers at Kaiser Permanente Washington. This effort, STAR Caregivers: Virtual Training and Follow-up, is a NIA funded clinical trial to improve the

TIMELINE

2004

ADRC makes a push to promote caregiver self-advocacy, drawing from the National Family Caregivers Association. They make caregiving and self-care key topics of the 19th ADRC Public Forum.

With consultation from ADRC’s Rebecca Logsdon, the WA Department of Social and Health Services starts a project to develop dementia caregiving programs, as well as consultation and counseling services in order to reduce caregiver distress and improve quality of life for individuals with dementia and their caregivers.

The ACT Study publishes a groundbreaking study which suggests that regular exercise can prevent or slow the onset of dementia in the elderly. Read more on Page 21.

2005

ADRC faculty join the new Center in investigating the cognitive impairments seen in Parkinson’s disease. Several UW ADRC faculty join the new Center in investigating the cognitive impairments seen in Parkinson’s disease. Several UW

2006

The ADRC celebrates research participants by giving "The Research Longevity Award" to the oldest research volunteer who is 103 years old. "The Above-and-Beyond Award" goes to the person who has had the most lumbar punctures (spinal taps) for the biomarker studies; this award went to a volunteer who had seven. "The Research Perseverance Award" went to two people who had each participated for twenty-two years in ADRC research.

2007

Former and current ADRC faculty and staff successfully launch the Alzheimer's Disease Genetics Consortium, an initiative to bring genetics data from Alzheimer's Centers around the country together to run large-scale association studies in search of new genes influencing late-onset Alzheimer’s disease.

ADRC’s Jing Zhang, Elaine Peskind, and colleagues make a major step on the path toward early and accurate diagnosis of several neurodegenerative brain diseases. Using an advanced analytical technique, they have identified proteins in the human cerebrospinal fluid that may serve as biomarkers for Alzheimer's and Parkinson’s diseases and Dementia with Lewy Bodies.

2009

The ADRC receives a 5-year NIA funding renewal of about $15 million, enabling new research including projects to map new genes involved with late-onset Alzheimer’s disease and modify the age of onset, and work to characterize cerebrospinal fluid proteins in geriatric dementias.

ADRC’s Jing Zhang, Elaine Peskind, and colleagues make a major step on the path toward early and accurate diagnosis of several neurodegenerative brain diseases. Using an advanced analytical technique, they have identified proteins in the human cerebrospinal fluid that may serve as biomarkers for Alzheimer’s and Parkinson’s diseases and Dementia with Lewy Bodies.

2010

NIA funds the Pacific Northwest Udall Center for the study of Parkinson’s disease. Several UW ADRC faculty join the new Center in investigating the cognitive impairments seen in Parkinson’s disease. Several UW ADRC faculty join the new Center in investigating the cognitive impairments seen in Parkinson’s disease. Several UW

37

36 • Legacies

As Teri reflects on the widened landscape of behavioral interventions and culturally-tailored caregiver resources that exist today, she points to a sign of their positive impact. “One encouraging thing I’ve seen over the years is that the idea there’s ‘nothing you can do’ has become less common, while the idea that caregivers can learn helpful behavioral skills has become much more common.”

Despite the relatively increased availability of resources, dementia caregiving will always present some form of the “tangled knot of challenges,” as Teri calls it. “I expect in many ways that the emotional burden for caregivers hasn’t changed from 20 years ago and is probably as intense as ever,” she says. For this reason, the ADRC team continues to honor and build on the long-reaching legacy of the Center’s past foundational work in non-pharmacological interventions. The ADRC, in partnership with the Memory and Brain Wellness Center (MBWC) clinic, serves as a point of referral to the IDEA Study and STAR-Caregivers and spreads the word about these and other opportunities to the general public and ADRC research participants. The MBWC regularly offers a free program, Powerful Tools for Caregivers, as well as many community wellness talks and workshops.

Infused with the MBWC’s emphasis on resilience and mindfulness, these resources help people learn new habits to take care of their own selves while they care for a loved one. At heart, the Center shares Teri’s enduring goal: to support and empower family caregivers to examine their own tangle of physical and emotional challenges, pulling on the loosening threads, until things get a little easier. •
Are Females at a Higher Risk of Alzheimer’s Disease?

Back when the Alzheimer’s research field was in its infancy, researchers were working to understand the scope of the disease’s consequences for public health. Prevalence studies took “Alzheimer’s censuses,” which showed a higher number of females living with Alzheimer’s disease than males, igniting the widespread idea that females are at higher risk. Other researchers thought that more females may be affected because they tend to live longer than males, and the risk of disease increases with age. The complex problem sparked curiosity among researchers, leading to efforts to crack what is now an age-old question: how does biological sex affect dementia risk? Haydeh Payami, PhD, Professor of Neurology and Genetics at the University of Alabama, prior research scientist at Oregon and Health Sciences University’s Alzheimer’s Disease Center, and collaborator with the UW ADRC, waded into this scientific debate in 1996 with a study examining two familial Alzheimer’s disease kindreds. She found that the females in these families were more likely to develop Alzheimer’s with age, and that they tended to develop the disease at a younger age than the males.

Payami investigated the trend further, looking specifically at the risk tied to APOE e4, one of three key alleles (variants) of the APOE gene, the strongest known risk factor other than age for late-onset Alzheimer’s disease in European populations. Her research showed that males had no significant added risk from carrying a single copy of APOE e4, but that females did. The study suggested that this sex-based APOE e4 effect might be a factor that put females at a higher risk for Alzheimer’s disease than males.

In 1997, an influential meta-analysis out of Boston University School of Medicine, supported the UW ADRC’s findings. The team crunched the numbers on thousands of Alzheimer’s disease cases and controls pooled from clinical studies with volunteer participants, producing an analysis that established a sex difference in APOE e4’s influence in these participants, showing that females with one APOE e4 allele have a fourfold higher odds of Alzheimer’s disease than male carriers. “That paper fairly firmly settled the field’s acceptance of the hypothesis that sex effects were interacting with APOE genotype effects to put women at greater risk,” says ADRC’s Ellen Wijsman, PhD, Professor of Biostatistics, who collaborated on Payami’s papers in 1996. For a time, she notes, the study largely put the debate to rest. This paper ended with a caution about the generalizability of the results to risk in the population at large, and the need for prospective cohort studies to provide estimates of absolute risk of Alzheimer’s disease.

In 2017, the possibility of elevated female risk was called back into question. New data sources became available thanks to the Framingham and Rotterdam studies, two long-running longitudinal cohort studies that continuously recruit, in mid-life, and follow groups of individuals as they age. Whereas clinical studies select for demographics more likely to volunteer for research, these cohort-based longitudinal studies take participants earlier and at random from a larger community—resulting in a less biased, more complete picture of risks to individuals.

“Alzheimer’s censuses,” which showed more females living with Alzheimer’s than males, were an early contributor to the idea that females were more likely to develop Alzheimer’s with age than males. In 1997, an influential meta-analysis showed that females were at a higher risk of Alzheimer’s disease than males, igniting research into the factors at play in the trajectory of a person’s cognitive wellbeing. Guided by a framework of biological heterogeneity, ADRC scientists will continue to work to make sense of these risk profiles and progress the science towards precision medicine treatments that benefit the brains of each sex and the wide variety of biological factors therein. •
By Franklin Faust

Ellen Wijsman will admit that she doesn’t have all the answers, but she might just have all the right questions. As Professor of Biostatistics in the UW School of Public Health and UW Division of Medical Genetics/Department of Medicine in the School of Medicine, she has a healthy skepticism for new scientific discoveries about Alzheimer’s disease. If something doesn’t add up during a science talk — whether it’s an unsubstantiated assumption, a subtle methods glitch that complicates the interpretation of the science, or a study population too small to detect a robust correlation between a hypothetical risk factor and disease — Wijsman speaks up, asks questions, and ultimately improves understanding by exposing logical flaws and offering solutions. The moment her voice fills the room at a presentation, ADRC researchers turn in their seats, anticipating an incisive reality check.

Wijsman focuses on using statistical analysis for defining the inheritance patterns of Alzheimer’s disease and identifying connections between a risk factor and disease in distinct population groups. In other words, she uses mathematical models to find meaningful patterns and insights into disease risk hidden within massive amounts of medical data.

In the lab, as in meetings, her reputation for scientific rigor and high standards proceeds her. “In our lab, she is famous for saying, ‘Nice result — now can you make it go away?’” she always encourages us to double check assumptions and think through their implications,” says Nicola Chapman, PhD, a research scientist in Wijsman’s laboratory who has worked with her for 25 years. “She has definitely nurtured in me a deep skepticism of surprising results, which in the end results in better science.”

By repeatedly holding herself and others to a gold standard, Wijsman brings out the best in those around her.

She first arrived at the UW ADRC in 1987 to fill the role of liaison between statistics and genetics on an ambitious project to identify genes involved in familial Alzheimer’s disease. For 15 years, Wijsman has served as Lead of the ADRC’s Data Management and Statistics Core (DMS), directing data support for many ADRC projects and providing assistance with statistical analyses to junior researchers. Her retirement from this position marks the end of 33 years of direct involvement with our Center. As she moves on to a modest collaboration and consultation, she leaves behind a large pair of boots to fill. Her work as a mentor, teacher, and scientist has advanced scientific discovery and elevated the careers of those around her in a way that continues to help our Center thrive.

PROFILE: Ellen Wijsman

HIGH STANDARDS

The scientific integrity of a study, and credibility of its findings, starts with a good plan. A study design is a research road map that plans out how the data generated for a study can be effectively analyzed and interpreted. Without a solid framework, researchers cannot answer the questions about links between genes, health, and disease that they were inspired by in the first place.

Wijsman’s passion for refining study designs has helped a countless number of researchers to course-correct their plans for successful interpretation of data. Whether it’s her real-time feedback on scientific presentations, fielding of investigators’ project pitches as the manager of the ADRC’s DMS Core, or feedback on grant proposals made to the many review panels she has served on, such as the Center for Inherited Disease Research Access Committee, Wijsman has consistently given her colleagues strong feedback when she sees a better path to answering their research questions. “She’ll tell you your approach to the study is wrong, and she’ll tell you why it’s not appropriate. She’ll be critical, and then she’ll give you alternatives,” says Elizabeth Blue, PhD, Associate Professor of UW Medical Genetics, and one of Wijsman’s long-time collaborators. “She’s not telling you not to do it. She’s telling you how to do it better. And she’s usually right. She’s always got her eye on the ball.”

Wijsman’s many years of criticism and constructive feedback have had a tremendous impact on the field, one research plan at a time.

In fact, the ADRC’s first genetics project benefited from Wijsman’s eye for good study design, as it led to a new recognition of the genetic complexity of familial Alzheimer’s disease. She took a critical eye to the Center’s familial Alzheimer’s disease dataset and found differences in the patterns of inheritance from parent to child, particularly in the ages at which people developed dementia. Wijsman intuited that the search for a single Alzheimer’s gene was overly simplistic. She suspected that varying patterns of genetics and biology seen in different populations all converge on the similar syndrome of Alzheimer’s-type dementia, a phenomenon termed genetic heterogeneity.

She urged the team to use age-of-onset data to group families into subsets, which made it possible to detect the genetic signals they were looking for and find the distinct genetic variants that underlie Alzheimer’s disease in individual families. In that first project, Wijsman set the course for the early achievements in identifying single gene causes of Alzheimer’s disease and frontotemporal degeneration. “Wijsman was indispensable to the breakthroughs in the genetics of Mendelian Alzheimer’s disease that established us as a successful Center,” says Thomas Grabowski, MD, ADRC Director.

Over thirty years later, Wijsman now plays an important role in sorting out the genetic puzzle of late-onset sporadic Alzheimer’s disease through her work in the Alzheimer’s Disease Sequencing Project (ADSP), a massive scientific effort to tease out the genetic factors influencing the more common form of Alzheimer’s disease. Researchers think that the patterns of disease inheritance in late-onset Alzheimer’s disease family pedigrees are more complicated than for early-onset because the development of the late-onset disease may be influenced by multiple genetic variants and environmental factors. To have a chance at understanding this complex pattern of genes and disease, statistical analyses require a large sample size—more genetic data from more people. One problem is that statistical testing for complex genetic relationships in big populations with massive amounts of genomic data requires long computer processing times, making it more difficult to carry out the analyses. Wijsman has been a leader in trying to make these analyses work.

“In our lab, she is famous for saying, ‘Nice result—now can you make it go away?’ She always encourages us to double check assumptions and think through their implications.”

“Ellen is developing novel solutions to real world problems that the whole field is going to have,” says Blue. “Her guiding question is: ‘How can we make a resource for other people so that they don’t have to spend 2 years doing the work that we had to do?’” While building statistical tools to analyze the ADSP’s massive and complex genetic data sets, Wijsman found a blind spot. There was a gap between the data collected and the analyses that needed to be performed to find genetic variants that increase disease risk. “We couldn’t see the differences in the genetic variants between the Alzheimer’s cases and the controls,” says Blue. “But Dr. Wijsman made it happen. She worked the way she handled the follow-up study so that we could have the data we needed to move forward.” Wijsman’s diligence led to the ADSP’s addition of a “Discovery Extension Phase” that gives researchers the data they need to progress in the search for genetic variants that increase the risk for late-onset Alzheimer’s disease. Over more than thirty years of research on both early-onset and late-onset forms of Alzheimer’s disease, Wijsman’s laser-focus on identifying problems in research and addressing them with new theories and ideas has pushed the field forward time and again.

Developing some of those statistical analysis tools took decades of dedication, largely stemming from the struggles Wijsman faced in her early years at the ADRC. “The data analysis was very challenging in those early years,” she says. “The challenge drove my interest in the development of a methodology that would eventually allow computations to be done in practical amounts of time.”

Wijsman collaborated with Elizabeth Thompson, PhD, Professor Emerita in the UW Statistics department, and Adjunct Professor Emerita in UW Genome Sciences and UW Biostatistics, to develop new statistical tools that could better model complex genetic traits and make analysis more manageable. Some of their first projects leveraged the heart disease research family pedigrees of Arno Motulsky, MD, a founder of the field of medical genetics whose work originally attracted Wijsman to move to the UW. Over the next 27 years, through waves of new genetic and computational technologies, Thompson and Wijsman continued to build new tools, such as software and lines of code that have given researchers more power. Their innovations allow for detection of genotyping errors in pedigrees, statistically sound assignment to individuals who lack data in large pedigrees, and an improved ability to use data from multiple points in the DNA at once, to name a few examples. With the tools to leverage new genetic technologies, Wijsman and Thompson’s colleagues have been able to investigate questions about complex interactions of genetic and environmental risk factors in human diseases that were previously out of reach.

“Dr. Wijsman embraced the interface of statistics and neurogenetics, and that has propelled the field of neurodegenerative disease. She is an inspiring example of how enabling a true interdisciplinary commitment can be,” says Grabowski. Through the career-long collaboration, Wijsman linked Thompson’s statistical expertise to the expertise of medical geneticists and neurogeneticists researchers at the ADRC. “Working with Ellen let me bring statistical models and computational methods to address real biological problems,” says Thompson. “She taught me the importance of collaborating closely with experiments and understanding some of the mysteries behind Alzheimer’s disease, heart disease, prostate cancer, and alcoholism, finding new genetic and environmental factors that may increase the risk of these conditions.”
A MENTOR’S DEDICATION TO TRAINING THE NEXT GENERATION

When Wijsman arrived at the University of Washington, the institution did not have a structure in place to train new statistical geneticists. “What was lacking was training of the next generation of statistical geneticists,” says Thompson. To help ensure the future of their field, Wijsman and Thompson started a training track of statistical genetics courses in UW Biostatistics and Statistics Departments. They worked for decades to instruct new generations of researchers. “Her training in quantitative and population genetics, and also her great ability and enthusiasm for it, connected people on the medical side to the broader statistical genetics world. She continually strives to bring those worlds together,” says Thompson. At a scientific crossroads, Wijsman has provided statisticians a bridge to explore medical questions and has helped medical geneticists use mathematical models to draw conclusions from real-life data about disease risk. People trained and instructed by Wijsman have gone on to use statistical analyses to find genetic variants and epidemiological risk factors that influence susceptibilities to a wide variety of human diseases.

Wijsman’s past students remember her capstone course in statistical genetics as a fundamental part of their training, without which their education would not be complete. “Ellen taught her students the value of being a statistician in solving real scientific problems. I think Ellen must have been a role model for so many of them,” says Thompson. France Gagnon, MSc, PhD, Research Professor and Associate Dean at University of Toronto’s Dalla Lana School of Public Health, whose research leverages modern molecular technologies and analytic approaches to identify genetic influencers of heart disease, recalls that Wijsman brought to the classroom. “She spends more time preparing for class than most people in her class probably spend learning the material. She is passionate about statistical genetics and it shows in the way she teaches,” says Gagnon. Wijsman’s teaching record shows her commitment to lifting up and challenging others in her field to improve.

Wijsman’s passion for statistical genetics and skill in teaching its fundamentals and application to medical questions shined in the laboratory as much as the classroom. “Ellen was really my most influential mentor that I’ve had in my career,” says Veera Sieh, MD, PhD, Associate Professor in the Departments of Population Health Science & Policy and Genetics & Genomic Sciences at the Icahn School of Medicine at Mount Sinai. Under Wijsman’s guidance, Sieh worked to search for the genetic players in a fatal dementia complex that affects the Chamorro people of the island of Guam as well as other Pacific Island populations. “She was such a good role model for scientific integrity as well as personal integrity. Some of the most lasting lessons that I learned about how to conduct myself as a scientist and that it meant to be a scientist and a researcher to maintain a balance while maintaining a high-level career, I learned from just modeling Ellen,” says Sieh. As Wijsman asked hard questions of her lab mates, she kept an open door for trainees to ask their own. “I felt like nothing was off limits and that she would be willing to answer my questions honestly,” says Sieh. Sieh also consistently participates in a trainee-mentor lunch with the International Genetic Epidemiology Society (IGES), a society in which Wijsman served as President in 2005, where trainees come and ask questions shined in the laboratory as much as the classroom. “Ellen was really my most influential mentor that I’ve had in my career,” says Veera Sieh, MD, PhD, Associate Professor in the Departments of Population Health Science & Policy and Genetics & Genomic Sciences at the Icahn School of Medicine at Mount Sinai. Under Wijsman’s guidance, Sieh worked to search for the genetic players in a fatal dementia complex that affects the Chamorro people of the island of Guam as well as other Pacific Island populations. “She was such a good role model for scientific integrity as well as personal integrity. Some of the most lasting lessons that I learned about how to conduct myself as a scientist and that it meant to be a scientist and a researcher to maintain a balance while maintaining a high-level career, I learned from just modeling Ellen,” says Sieh. As Wijsman asked hard questions of her lab mates, she kept an open door for trainees to ask their own. “I felt like nothing was off limits and that she would be willing to answer my questions honestly,” says Sieh. Sieh also consistently participates in a trainee-mentor lunch with the International Genetic Epidemiology Society (IGES), a society in which Wijsman served as President in 2005, where trainees come and ask questions.

The effect of Wijsman’s exemplary training did not stop with the researchers she trained, for those people have internalized her approach to mentorship. Gagnon largely credits her emulation of Wijsman’s teaching style for the Graduate Teaching Award that she received from the University of Toronto in 2014. “My trainees commented that they felt comfortable, that they were able to ask lots of questions, and that I helped them grow as an independent scientist,” she says. “When I saw that, I said, ‘Wow, that’s Ellen Wijsman there.’” Wijsman’s personal guidance fostered her mentees’ curiosities and helped them grow into their lab coats, and they now carry that same spirit in working with their own scientists-in-training.

Thomas Montine becomes ADRC Director. Under his leadership, the Center becomes the first ADRC in the country to focus on a precision medicine approach. Montine unites the ACT study and the ADRC through common work in neuropathology, allowing ADRC expertise to make even more scientific use of each ACT participant’s donated brain.

A new ADRC Satellite Core, led by Dedra Buchwald, is founded to examine the risks and consequences of vascular brain injury in surviving participants of the Cerebrovascular Disease and its Consequences in American Indians Study.

42 • Legacies

43
Kimiko Domoto-Reilly is site Principal Investigator.

The NIA commits $3.73 million to the ACT Imaging Records project, allowing researchers to gather existing MRI scan data from the ACT study’s well-characterized cohort of older adults. The project will illuminate how patterns of brain atrophy, as shown on MRI, relate to a person’s underlying disease pathology and type of symptoms. The findings could help researchers distinguish between different disease subtypes and diagnose with precision. The leaders of this new effort are Eric Larson, Christine Mac Donald, and Paul Crane.

The NIA commits $1.4 billion.

The MBWC holds the first FTD Education Day, offering resources, support, and a showcase for people affected by frontotemporal degeneration, the leading cause of dementia under 60 years of age. The event included a showcase of art created by persons living with FTD.

The new initiatives reflect the work of community health representatives, and Native health care providers. The resources reflect the work of Partnerships for Native Health’s Meghan Trump and her team recently uncovered evidence that age-related changes in the way presenilin-2 generates transcripts (the instructions for making proteins) may be involved in later onset Alzheimer’s risk in the general population. Now, an ADRC Development Project is deploying the newest genetic technology to expand the understanding of presenilin-1 and 2 variants in different forms of both familial and sporadic late-onset Alzheimer’s disease, which may reveal new functions for these genetic factors. The researchers see this project as a possible first step on the path to a new treatment involving genetic factors.

The NIA has awarded ADRCs $400 million increase in Alzheimer’s research funding for Alzheimer’s research. A $400 million increase in Alzheimer’s research funding was soon signed into law, increasing NIH federal funding to nearly $4 billion.

The MBWC partners with Seattle Parks & Recreation to start the Garden Discovery Walks, a free program for people with memory loss or dementia, and their partners, to explore a public garden and enjoy light exercise and time spent in nature.

Jeffrey Iliff joins the ADRC to focus on neurodegeneration, the glymphatic system, and traumatic brain injury research. He becomes Associate Director for Research at the VISN 20 Mental Illness Research, Education, and Clinical Center at VA Puget Sound Health Care System.
A RECIPE FOR TODAY’S SUCCESS

The ADRC today faces challenges inherent to an ambitious project, yet they pale in comparison to the strong headwinds confronting the Center's first project. Recall that the NIA of 1985 initially rejected the idea of an ADRC focused on Alzheimer's disease genetics—until Bird presented an evidence-based research rationale. Today, the ADRC swims with the current as a national leader in Alzheimer's research, thanks in part to continuous, reliable federal funding. Still, the solution for a successful project lies in a strongly collaborative team who, together, have the right mix of expertise in several disciplines, a common dedication to a project that may take years, and unyielding persistence, positivity, patience, and open-mindedness in the face of roadblocks and delays.

Indeed, when asked to reflect on the success seeded during the early years of the ADRC, Founding Director George Martin brings it back to the people. “Our group successes all came from individual contributions. And collectively, it makes a big difference,” he says. “The genetics research of Tom Bird, Jerry Schellenberg, and Ellen Wijsman were key—as well as the successes of the post-docs and many others. They made the science and Center of today possible.”

Wijsman describes the successful structure of the genetics linkage team as a “three-legged stool.” “Tom [Bird] brought the clinical expertise, Jerry [Schellenberg] brought the molecular expertise, and I brought the statistical genetics expertise. We would sit down, listen to each other, talk things through, and make our decisions by equal vote,” she says. “I think George Martin was certainly a part of creating that environment that guaranteed that people would truly work together.” Besides the personnel, the Directorship of the ADRC has a special role to play in any successful project. Wijsman credits some of the first Center projects’ success to its Founding Director. As historical documents and testimony from colleagues show, Martin provided not only a vision of focusing on genetics but also an environment conducive to tackling questions that bridge basic science and medicine. His framework involved strategic inclusion of researchers with diverse skill sets and expertise in different disciplines, all united by an interest in Alzheimer’s disease. Martin explains it best in the 1984 ADRC application to the NIA: “A major impact of the proposed ADRC will be to galvanize a subset of the geneticists and molecular biologists to channel their energies towards the elucidation of the pathogenesis of familial forms of Dementia of the Alzheimer’s Type. Another major impact will be to bring together investigators and practitioners from a wide variety of disciplines. This has, in fact, been accelerating rapidly as a result of preparations for this application and has been a source of considerable satisfaction to clinicians and basic scientists.”

The ADRC Director must oversee the federally mandated effort to build a rich data resource for the entire field, maintain a cohort of research participants suitable to inform current hypotheses, connect to the public and medical community, educate young investigators, and bring together investigators and practitioners from a wide variety of disciplines. This has, in fact, been accelerating rapidly as a result of the strong headwinds confronting the project.

“A major impact of the proposed ADRC will be to galvanize a subset of the geneticists and molecular biologists to channel their energies towards the elucidation of the pathogenesis of familial forms of Dementia of the Alzheimer’s Type. Another major impact will be to bring together investigators and practitioners from a wide variety of disciplines. This has, in fact, been accelerating rapidly as a result of preparations for this application and has been a source of considerable satisfaction to clinicians and basic scientists.”

The ADRC today faces challenges inherent to an ambitious project, yet they pale in comparison to the strong headwinds confronting the Center's first project. Recall that the NIA of 1985 initially rejected the idea of an ADRC focused on Alzheimer's disease genetics—until Bird presented an evidence-based research rationale. Today, the ADRC swims with the current as a national leader in Alzheimer's research, thanks in part to continuous, reliable federal funding. Still, the solution for a successful project lies in a strongly collaborative team who, together, have the right mix of expertise in several disciplines, a common dedication to a project that may take years, and unyielding persistence, positivity, patience, and open-mindedness in the face of roadblocks and delays.

Indeed, when asked to reflect on the success seeded during the early years of the ADRC, Founding Director George Martin brings it back to the people. “Our group successes all came from individual contributions. And collectively, it makes a big difference," he says. “The genetics research of Tom Bird, Jerry Schellenberg, and Ellen Wijsman were key—as well as the successes of the post-docs and many others. They made the science and Center of today possible.”

Wijsman describes the successful structure of the genetics linkage team as a “three-legged stool.” “Tom [Bird] brought the clinical expertise, Jerry [Schellenberg] brought the molecular expertise, and I brought the statistical genetics expertise. We would sit down, listen to each other, talk things through, and make our decisions by equal vote,” she says. “I think George Martin was certainly a part of creating that environment that guaranteed that people would truly work together.” Besides the personnel, the Directorship of the ADRC has a special role to play in any successful project. Wijsman credits some of the first Center projects’ success to its Founding Director. As historical documents and testimony from colleagues show, Martin provided not only a vision of focusing on genetics but also an environment conducive to tackling questions that bridge basic science and medicine. His framework involved strategic inclusion of researchers with diverse skill sets and expertise in different disciplines, all united by an interest in Alzheimer’s disease. Martin explains it best in the 1984 ADRC application to the NIA: “A major impact of the proposed ADRC will be to galvanize a subset of the geneticists and molecular biologists to channel their energies towards the elucidation of the pathogenesis of familial forms of Dementia of the Alzheimer’s Type. Another major impact will be to bring together investigators and practitioners from a wide variety of disciplines. This has, in fact, been accelerating rapidly as a result of preparations for this application and has been a source of considerable satisfaction to clinicians and basic scientists.”

The ADRC Director must oversee the federally mandated effort to build a rich data resource for the entire field, maintain a cohort of research participants suitable to inform current hypotheses, connect to the public and medical community, educate young investigators, and bring together investigators and practitioners from a wide variety of disciplines. This has, in fact, been accelerating rapidly as a result of the strong headwinds confronting the project.

“A major impact of the proposed ADRC will be to galvanize a subset of the geneticists and molecular biologists to channel their energies towards the elucidation of the pathogenesis of familial forms of Dementia of the Alzheimer’s Type. Another major impact will be to bring together investigators and practitioners from a wide variety of disciplines. This has, in fact, been accelerating rapidly as a result of preparations for this application and has been a source of considerable satisfaction to clinicians and basic scientists.”

The ADRC today faces challenges inherent to an ambitious project, yet they pale in comparison to the strong headwinds confronting the Center's first project. Recall that the NIA of 1985 initially rejected the idea of an ADRC focused on Alzheimer's disease genetics—until Bird presented an evidence-based research rationale. Today, the ADRC swims with the current as a national leader in Alzheimer's research, thanks in part to continuous, reliable federal funding. Still, the solution for a successful project lies in a strongly collaborative team who, together, have the right mix of expertise in several disciplines, a common dedication to a project that may take years, and unyielding persistence, positivity, patience, and open-mindedness in the face of roadblocks and delays.

Indeed, when asked to reflect on the success seeded during the early years of the ADRC, Founding Director George Martin brings it back to the people. “Our group successes all came from individual contributions. And collectively, it makes a big difference,” he says. “The genetics research of Tom Bird, Jerry Schellenberg, and Ellen Wijsman were key—as well as the successes of the post-docs and many others. They made the science and Center of today possible.”

Wijsman describes the successful structure of the genetics linkage team as a “three-legged stool.” “Tom [Bird] brought the clinical expertise, Jerry [Schellenberg] brought the molecular expertise, and I brought the statistical genetics expertise. We would sit down, listen to each other, talk things through, and make our decisions by equal vote,” she says. “I think George Martin was certainly a part of creating that environment that guaranteed that people would truly work together.” Besides the personnel, the Directorship of the ADRC has a special role to play in any successful project. Wijsman credits some of the first Center projects’ success to its Founding Director. As historical documents and testimony from colleagues show, Martin provided not only a vision of focusing on genetics but also an environment conducive to tackling questions that bridge basic science and medicine. His framework involved strategic inclusion of researchers with diverse skill sets and expertise in different disciplines, all united by an interest in Alzheimer’s disease. Martin explains it best in the 1984 ADRC application to the NIA: “A major impact of the proposed ADRC will be to galvanize a subset of the geneticists and molecular biologists to channel their energies towards the elucidation of the pathogenesis of familial forms of Dementia of the Alzheimer’s Type. Another major impact will be to bring together investigators and practitioners from a wide variety of disciplines. This has, in fact, been accelerating rapidly as a result of preparations for this application and has been a source of considerable satisfaction to clinicians and basic scientists.”

The ADRC Director must oversee the federally mandated effort to build a rich data resource for the entire field, maintain a cohort of research participants suitable to inform current hypotheses, connect to the public and medical community, educate young investigators, and bring together investigators and practitioners from a wide variety of disciplines. This has, in fact, been accelerating rapidly as a result of the strong headwinds confronting the project.

“A major impact of the proposed ADRC will be to galvanize a subset of the geneticists and molecular biologists to channel their energies towards the elucidation of the pathogenesis of familial forms of Dementia of the Alzheimer’s Type. Another major impact will be to bring together investigators and practitioners from a wide variety of disciplines. This has, in fact, been accelerating rapidly as a result of preparations for this application and has been a source of considerable satisfaction to clinicians and basic scientists.”
The Memory Hub: A Space for Dementia-Friendly Community, Collaboration, and Impact is announced. Bringing together people, programs and partners, the new MBWC initiative on First Hill will operate as a vibrant dementia-focused programs and events venue, collaborative workspace and training center. This project is spearheaded by MBWC’s Marigrace Becker and made possible by a leading gift from the Richard M. and Maude Ferry Charitable Foundation. Learn more at depts.washington.edu/mbwc.

The Weill Neurohub, a consortium of UCB, UCSF, UW Medicine, launches with projects in cell biology, big data, neuroimaging, and neural engineering that require combined strengths of these three public institutions. Three of the five inaugural projects have an Alzheimer’s disease focus. UW researchers include, Suman Jayadev, Jessica Young, Bing Brunton, C. Dirk Keene, and Thomas Grabowski.

Amidst the new challenges and restrictions of the SARS-CoV-2 pandemic, the MBWC, in partnership with the ADRC, creates virtual adaptations of educational programs and expands video offerings. Learn more at depts.washington.edu/mbwc. In October, Carolyn Parsey and colleagues publish a study about the effects of the pandemic on older adults, including policy implications: Caring for Washington’s older adults in the COVID-19 pandemic: Interviews with organization leaders about the state of social and healthcare services, funded by the UW Population Health Initiative’s COVID-19 Economic Recovery Research Grant.

The ADRC, in partnership with the Memory and Brain Wellness Center, is gearing up to launch several new studies of potential therapeutics and treatments, under the leadership of Charles Bernick, Director of Clinical Trials. “Many patients are interested in participating in research, and we want there to be an appropriate clinical trial or study opportunity for everyone we encounter,” says Thomas Grabowski, ADRC Director.

The MBWC Clinic launches the UW Project ECHO Dementia (Extension for Community Healthcare Outcomes) program, a learning model in which front line care providers in WA State learn from each other in a virtual conference room format, with input from experts in memory loss and dementia. The ECHO Dementia team is led by Kristoffer Illovs, Nancy Isnberg, and Allyson Schelter. Learn more at depts.washington.edu/mbwc.

The Allen Institute, UW Medicine, ADRC, and Kaiser Permanente launch a massive new Alzheimer’s research collaboration. Supported by $40.5 million in funding over the next 5 years, the project will investigate the basic function of brain cells at the earliest stages of Alzheimer’s disease in order to find new biological clues and cellular mechanisms to inspire future research. C. Dirk Keene and Ed Lein are leaders of this endeavor.

The MBWC Clinic launches the UW Project ECHO Dementia (Extension for Community Healthcare Outcomes) program, a learning model in which front line care providers in WA State learn from each other in a virtual conference room format, with input from experts in memory loss and dementia. The ECHO Dementia team is led by Kristoffer Illovs, Nancy Isnberg, and Allyson Schelter. Learn more at depts.washington.edu/mbwc.

The ADRC launches the new Research Education Component for the training of scientists in the Alzheimer’s disease research field. The project is led by Jeffrey Iliff and Brian Kraemer. Learn more at uwadrc.org.

The MBWC Clinic launches the UW Project ECHO Dementia (Extension for Community Healthcare Outcomes) program, a learning model in which front line care providers in WA State learn from each other in a virtual conference room format, with input from experts in memory loss and dementia. The ECHO Dementia team is led by Kristoffer Illovs, Nancy Isnberg, and Allyson Schelter. Learn more at depts.washington.edu/mbwc.

The ADRC receives a $15 million funding renewal for the upcoming 5 years. New Cores and Core Leads are listed on Page 2. This pattern of continuous NIA support speaks to the unique, intergenerational presence of scientific expertise and organizational leadership that has made the Center successful over the past 35 years—and that our current researchers, clinical specialists, and directors have the privilege of continuing into the future.