Non-pharmacological Treatment of MCI and Dementia

Kristoffer Rhoads, PhD

Clinical Neuropsychologist Associate Professor, Department of Neurology Memory and Brain Wellness Center Harborview Medical Center/University of Washington School of Medicine

UW Project ECHO Dementia May 10th, 2024

Objectives

1) Increase awareness of risk factors for cognitive impairment and dementia and risk reduction through improved management.

2) Identify lifestyle interventions (i.e., exercise, diet, cognitive stimulation) that have impact on cognition and neurological disease processes, from prodromal phases to early dementia.

3) Identify local, state, regional and national programs and services to improve the quality of life for individuals and families living with dementia.

Treatment Targets

Prevention and Non-Pharmacological Interventions

- Treatment of Modifiable Risk Factors
 - Cardiovascular
 - Sedentary lifestyle
 - Sleep
 - Substances
- Cardiovascular Exercise
- Cognitive Activation and Rehabilitation
- Dietary Interventions
- Stress / Distress Management
- Community Engagement / Socialization

Lancet Commission 2020 Update

Risk factors for dementia

An update to the Lancet Commission on Dementia prevention, intervention, and care presents a life-course model showing that 12 potentially modifiable risk factors account for around 40% of worldwide dementias

Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lanatt Commission. The Lanatt 2020.

THE LANCET

The best science for better live

Midlife Risk Factor Modification - Hypertension

	Participants with dementia or cognitive impairment/total No.						
Study	Blood pressure lowering group	Control group	Absolute risk reduction (95% CI), %	Odds ratio (95% CI)	Favors blood pressure lowering	Favors control	Weight, %
PROGRESS, ²³ 2003	276/3051	334/3054	1.89 (0.39 to 3.39)	0.81 (0.68 to 0.96)			9.1
SCOPE, ²⁴ 2003	113/2477	125/2460	0.52 (-0.68 to 1.71)	0.89 (0.69 to 1.16)			4.5
HYVET-COG, ⁶ 2008	485/1687	486/1649	0.72 (-2.36 to 3.81)	0.97 (0.83 to 1.12)			10.7
PRoFESS, ²⁶ 2008	795/7531	832/7518	0.51 (-0.48 to 1.50)	0.95 (0.86 to 1.05)			16.5
TRANSCEND, ⁷ 2011 ^a	454/2642	412/2589	-1.27 (-3.28 to 0.74)	1.10 (0.95 to 1.27)			— 11.0
ON TARGET (Dual), ⁷ 2011	1240/7461	657/3801	0.67 (-0.80 to 2.13)	0.95 (0.86 to 1.06)			16.3
ON TARGET (ARB), ⁷ 2011	1279/7566	657/3801	0.38 (-1.09 to 1.85)	0.97 (0.88 to 1.08)			16.4
SPRINT MIND, ¹² 2019	287/4278	353/4285	1.53 (0.42 to 2.64)	0.80 (0.68 to 0.94)			9.6
HOPE-3, ¹³ 2019	584/811	612/815	3.08 (-1.20 to 7.37)	0.85 (0.68 to 1.06)			6.0
Test for overall effect: $z = -2.28$ Heterogeneity: $\tau^2 = 0.00$; $\chi^2 = 1$	3; P = .02 2.60; P = .13; I ² = 36.19	%	0.71 (0.19 to 1.2)	0.93 (0.88 to 0.99)	\diamond		
				0.65	1		1.3

Odds ratio (95% CI)

SPRINT-MIND

- Aggressive treatment of blood pressure (SBP<120)
 - Decreased risk MCI
 - Fewer white matter lesions
 - Total brain volume and
 - No difference in stroke types (2021)

SPRINT MIND, JAMA. 2019, 2021

Exercise and Physical Activity and Dementia

- Over 90 meta-analyses in the last 5 years
- Highest quality/most consistent evidence
- Likely multiple mechanisms of action (Wilckens et al., 2021, Hippocampus)
- Likely beneficial in multiple domains
 - Cognition (processing speed, EF>memory) (Wang et al., 2020, Aging)
 - Physical function/mobility/falls (Lai et al., 2019, AM J Phys Med Rehabil)
 - Sleep (O'Caoimh et al., 2019)
 - Neuropsychiatric symptoms (Watt, et al, 2021, BMJ)
- Likely most beneficial in combination with other NPTs
- Pooled effects highest for delaying onset>MCI>dementia
 - Group > individual
 - Across settings, including home-based (de Almeida, 2020, Gerontologist)

Exercise and Physical Activity

- Should be recommended to adults with normal cognition to reduce the risk of cognitive decline.
 - Quality of evidence: moderate
 - Strength of the recommendation: strong
- May be recommended to adults with MCI to reduce the risk of cognitive decline.
 - Quality of evidence: low
 - Strength of the recommendation: conditional
- 150 min of moderate-intensity or 75 min vigorous-intensity /week
 - Double for additional health benefits
- Aerobic activity = 10+ minutes' duration
- Poor mobility = balance and fall prevention on 3+ days/week
- Muscle-strengthening = major muscle groups on 2+ days/week
- Limitations = as physically active as abilities and conditions allow

RISK REDUCTION

OF COGNITIVE DECLINE

Physical Activity Moderates Aβ Associated Cognitive Decline and Cortical Thinning

How to Implement

- Help with scheduling and structure
- Create accountability
 - Classes
 - Exercise partner(s)
 - PT/Trainer
 - Exercise Diaries
 - FitBit/exercise trackers
 - Check in calls
- Program for variability and engagement
- Graduated, well-paced incremental increases
- Motivational interviewing/enhancement

UW Memory and Brain Wellness Activity Diary

Patient Label Here

At today's visit, we agreed that your physical exercise goal is ______ minutes of activity _____ times a week with a target heart rate between ______beats per minute.

To help achieve this goal, we agreed to start with _____ times a week for at least _____minutes and that you will keep track of your average heart rate when you exercise.

Please make an entry for each physical activity or thing you do. Bring this with you to your next appointment

Example

1/9/22	8 a.m.	Rowing	10 min	Heart rate of 110
1/10/22	9 a.m.	Treadmill	60 min	125
1/13/22	2 p.m.	Gardening	60 min	107

Month/day/ year	Time	Activity	Time Spent	Heart Rate
			5	
			A	

Cognitive Training and Stimulation

					-
Older adults	10	2.5	Critically Issue		
Papp et al (2009)	10	3.5	Critically low		0
Metternich et al (2010)	4-5	0	Critically low		9) ()
Martin et al (2011)	2-11	6	Critically low -	0.4/ (-0.44 to 1.3	8)
Gross et al (2012)	35	6-5	Critically low		0
Hindin et al (2012)	25	3.5	Critically low)
Karr et al (2014)	15	8-5	Critically low	0·26 (0·10 to 0·4	2)
Kelly et al (2014)	2-7	9	Critically low	0-38 (0-05 to 0-72	!)
Lampit et al (2014)	51	12.5	Moderate)
Toril et al (2014)	20	6	Critically low		5)
Shao et al (2015)	6-10	6	Critically low	0·31 (0·05 to 0·57)
Melby-Lervåg et al (2016)	17	1	Critically low	0·13 (-0·02 to 0·2	8)
Wang et al (2016)	8	8-5	Critically low	0-38 (0-12 to 0-64	4)
Weicker et al (2016)	10-20	6.5	Critically low	0-38 (0-14 to 0-6	2)
Chiu et al (2017)	6-22	7	Low	0.32 (0.16 to 0.4	3)
Mewborn et al (2017)	48	9	Moderate))
Smart et al (2017)	8	7.5	Critically low))
Tetlow et al (2017)	3-14	4	Critically low	0.16 (-0.11 to 0.4	3)
Bhome et al 2018)	10	8	Low	0 13 (0 01 to 0 2)
Gates et al (2019a)	2-4	12.5	Low —	0.64 (-0.56 to 1.8	5)
Mild cognitive impairmer	nt .				
Sherman et al (2017)	26	8	Low	0.45 (0.16 to 0.7)	5)
Martin et al (2011)	2-3	6	Critically low	0.60 (0.00 to 1.1	a)
Wang et al (2014)	3-6	8	Critically low	0-32 (-0-04 to 0-	(9)
Hill et al (2017)	17	12	Moderate	0-35 (0-20 to 0-50	0
Mewborn et al (2017)	12	9	Moderate		'n
Gates et al (2019b)	2-5	12.5	Low	0.41 (-0.22 to 1.0	1
Dementia	2.5	12.5	2011		Tigung 7
Huntley et al (2015)	2	11.5	Moderate	0.28 (-0.12 to 0.6	8) meta-a
Kurz et al (2011)	5	6	Critically low	0.26 (0.02 to 0.0	objectiv
K012 et al (2011)	5=12	105	Critically low		outcom
Woods et al (2012)	14	10.5	Moderate		oriente
Folloarta at al (2015)	2-1/	11-5	Moderate		adults
Forkerts et al (2017)	2-3	10-5	LOW Critically		o) cogniti
Kim et al (2017)	11	7	Critically low	0-44 (0-28 to 0-6	D) K repres
Alves et al (2013)	2-3	12	Low	0.09 (-0.36 to 0.5	(4) analysis
Karr et al (2014)	10	8.5	Critically low	0.20 (-0.07 to 0.4	/) several e
Huntley et al (2015)	3	11.5	Moderate —	0·22 (-0·74 to 1·1	8) outcom
Song et al (2016)	3-6	2.5	Critically low	0·33 (0·14 to 0·55) was crea
Folkerts et al (2017)	2	10.5	Low	1.16 (0.53 to 1.79) range of
Hill et al (2017)	11	12	Moderate	0·26 (0·01 to 0·5	.) to the e
Bahar-Fuchs et al (2019)	26	14	Moderate		AMSTA
 Cognitive training 					Tool to
 Cognitive stimulation 					Reviews
Mixed cognition-orien	ted treatm	ents	-0.5		Adapte
			En	urs control Favours intervention	by pern

results of investigating itive gnitionnent in older d without irment number of cluded in the iew reported es within each in, a composite k denotes the mber of at contributed imate. Surement ystematic tore 16). avelin et al,51 f Springer

How to Implement

- Engaging in a variety of activities that challenge memory, language, spatial reasoning, attention, etc.
 - Tasks emphasizing processing speed may most helpful (Rebok et al, 2014, JAGS)
- The difficulty should be adjustable to gently but consistently push your skills (without being too frustrating or discouraging)
- Activities done as a group or with a partner
- Activities that involve new learning (i.e., a new card game, language, instrument, lecture series)
- At least a hour a day of things that keep your mind active, like reading, socializing, games
- Some pre-packaged, computerized brain games include:
 - Posit Science / Brain HQ <u>https://www.brainhq.com/</u>
 - Lumosity <u>https://www.lumosity.com/</u>
 - AARP Brain Games <u>https://stayingsharp.aarp.org/about/brain-health/games/</u>

Crossword Study

- Participants: 107 participants with MCI
- Intervention: 78 weeks of Lumosity games or crossword puzzles
 - 12 weeks training + 6 booster sessions
- Results:
 - Cognition worsened slightly for games and improved for crosswords at week 78
 - Functional Activities Questionnaire score worsened more with games than crosswords
 - Crossword group had less hippocampal atrophy

Cognitive Rehabilitation

- Restitution vs. Compensation
- Internal vs External Strategies
 - Encoding
 - Mnemonic
 - Chaining (forward/backward)
 - Chunking
 - Errorless learning
 - Storage
 - PQRST
 - Spaced retrieval
 - Retrieval
 - Cues/prompts
 - Recognition strategies

Memory Rehabilitation - Combined

- Compensatory System
 - Mediset
 - Pill reminders/alarms
 - Tracking Sheet
 - Incorporate other tools/techniques
 - Calendar
 - Errorless learning
 - Location of practice

Meditation and the Brain

Study	Intervention	n	Mean age \pm SD	Experience with meditation	Loci with increased cortical thickness	Interpretation
Lazar et al. (2005)	Various	20	38.2	9.1 ± 7.1 years, 6.2 ± 4 h per week	Anterior insula, parts of frontal lobe, auditory cortex in temporal lobe	Somato-sensory, auditory, and interceptive processes
Pagnoni and Cekic (2007)	Zen	13	37.2 ± 6.9	>3 years per day	Putamen	Attention
Holzel et al. (2008)	Vipassana	20	34.1 ± 4.7	8.6 years, 2 h daily	Anterior insula, right hippocampus, left inferior temporal gyrus	Anterior insula – awareness of internal experience
Vestergaard-Poulsen et al. (2009)	Tibetan buddhism	10	55±6.2	16.5 ± 5.1 years	Medulla oblongata, anterior cerebellum, superior, and inferior frontal gyrus	Breath control, resistance to stress, attention, calmness
Luders et al. (2009)	Various	22	53 ± 11.5	$24\pm12\mathrm{years}$	Orbito-frontal cortex, right talamus, left inferior temporal gyrus	Regulation of emotions and sensory functions
Grant et al. (2010)	Zen	17	37.6 ± 10.9	>1000 h	Anterior cingulate cortex, secondary somato-sensory cortex	Anterior cingulate cortex – adaptive control of behavior
Holzel et al. (2011)	MBSR	16	39±4	0	Left hippocampus, posterior cingulate cortex, temporo-parietal junction, cerebellum	Learning, memory, regulation of emotions, empathy
Luders et al. (2013b)	Various	50	51.4 ± 12.8	20 years	Hippocampus, especially subiculum	Subiculum – regulation of stress
Grant et al. (2013)	Zen	18	37.1 ± 10.9	>1000 h	Cingulo-fronto-parietal network	Attention

n, number of subjects, SD, standard deviation, MBSR, mindfulness-based stress reduction, IBMT, integrative body mind training.

Marciniak et al., 2014

Mindfulness Meditation and MCI

	ated ANOVA					
	Group effect	Time effect	Interaction			
Metrics	F1, 34 (P-value)	F _{1, 34} (P-value)	F1, 34 (P-value)			
Neurocognitive measures						
MMSE	0.925 (0.343)	0.006 (0.940)	0.090 (0.766)			
RAVLT	5.938 (0.020)	17.092 (<0.001)	1.239 (0.273)			
Delayed						
re call						
RAVLT	0.371 (0.546)	2.387 (0.132)	4.545 (0.040)			
Recognition	1					
Block design	2.502 (0.123)	4.278 (0.046) 🔺	0.807 (0.375)			
Temporal netwo	rk metrics					
E_{glb}^{t}	3.401 (0.074)	0.001 (0.970)	6.429 (0.016)			
E'_{loc}	0.005 (0.953)	6.405 (0.016) 🔺	0.088 (0.768)			
Note: Significant effects ($P < 0.05$) were highlighted by the bold text ¹ indicates MIND < CTRL; ^A indicates Pre- < Post-intervention.						

Fam, et al, 2020, Psychiatry Clin Neurosci

Meditation and Alzheimer's

- 8 week meditation program
 - Relaxation (music) control
- Sample size = 15
 - Normal control (7)
 - MCI (5)
 - AD (3)
- Improved blood flow to the brain
 - Prefrontal and auditory cortex
- Reduced blood flow to the parietal lobes
- Improved cognition
 - Verbal fluency, divided/working attention, declarative memory

Diet and Dementia Risk

Alzheimer's & Dementia 11 (2015) 1007-1014

Featured Articles

MIND diet associated with reduced incidence of Alzheimer's disease

Martha Clare Morris^{a,*}, Christy C. Tangney^b, Yamin Wang^a, Frank M. Sacks^c, David A. Bennett^{d,e}. Neelum T. Aggarwal^{d,e}

- N = 923
- Age 58-98
- 4.5 years
- DASH + Mediterranean
 - One glass of wine
- 53% reduction in incidence

Lifestyle Interventions

Caffeine

- Central nervous system stimulant
- Mid-life use associated with 65% reduced AD risk
 - 3-5 cups?!
 - Suppresses both beta- and gamma –secretase
- Support in animal models
- Unknown benefit as a treatment

Zhang et al, PLOS, 2021

Sleep and Dementia Risk

• Bidirectional relationship between sleep and AD

Aβ Clearance Increased During Sleep

- Cerebrospinal fluid (CSF) flow in asleep (left) and awake (right) brain
- Sleeping mice cleared twice as much $A\beta$ from their brains as conscious mice

Xie et al, Science, 2013

Wang & Holtzman, Neuropsychopharmacology, 2020

RCTs of effect of psychosocial interventions versus controls for agitation in dementia

Therapeutic touch	
Woods et al (2009)427	
Restlessness (vs control)	_ _
Restlessness (vs placebo)	_ _
Training family caregivers in behavioural management for people with dementia living at home	
Gormley et al (2001) ⁴²⁸	_ _
Light therapy	
Ancoli–Israel et al (2003) ^{4/9}	
Ancoli-Israel et al (2003)429	→
Dowling et al (2007)*50	
pm light	
Dowling et al (2007) ⁴³⁰	
am light	
Burns et al (2009) ⁴³¹	- - +
Burns et al (2009) ⁴³¹	
 Dementia care mapping	
Chenoweth et al (2009) ⁴³²	
Chenoweth et al (2009) ⁴³²	•
Change and Commonication skins	_
Chemoweth et al (2009) ³²	
Chehoweth et al (2009)***	-
Deudon et al (2009) ⁵⁵⁵	-
Deudon et al (2009) ⁴⁵⁵	 ◆
McCallion et al (1999) ⁴⁵⁴	•
McCallion et al (1999) ⁴⁵⁴	-
McCallion et al (1999) ⁴⁵⁴	
Physical aggression	
McCallion et al (1999) ⁴³⁴	
Physical aggression	+
McCallion et al (1999) ⁴³⁴	
Verbal aggression	
McCallion et al (1999) ⁴³⁴	
Verbal aggression	- -
McCallion et al (1999) ⁴³⁴	
Physical non-aggression	+
McCallion et al (1999) ⁴³⁴	
Physical non-aggression	+•
Music therapy with a specific protocol	
Lin et al (2011) ⁴³⁵	
Sung et al (2012) ⁴³⁶	⊢ •−
Activities	
Kolanowski et al (2011) ⁴³⁷	
Matched to interests	_
Matched to functional level	- •
Matched to both	
-8 -6 -4	
°°°°, ~°°	\rightarrow
-■- Long-term effect Interventions worsen agi -● Short-term effect	tation Interventions improve agitation

The Lancet DOI: (10.1016/S0140-6736(17)31363-6) Copyright © 2017 Elsevier Ltd <u>Terms and Conditions</u>

Effect of psychological treatment versus treatment as usual on depression

Study or subgroup	Experimental	Experimental		Control		Mean difference IV, fixed (95% CI)	SMD IV, fixed (95% CI)
	Mean (SD)	N	Mean (SD)	N			
Burgener et al (2008) ⁴⁷⁴	3.3 (2.9)	19	4.3 (3.4)	14	7.4	e	-0·31 (-1·01 to 0·38)
Burns et al (2005) ⁴⁷⁵	5.4(2.6)	20	5.5 (3.1)	20	9.3	_	-0·03 (-0·65 to 0·59)
Spector et al (2012) ⁴⁷⁶	10.38 (5.835)	21	16.72 (7.283)	18	8.0	_	-0.95 (-1.62 to -0.28)
Stanley et al (2012) ⁴⁷⁷	8.2 (2.86)	11	7.8 (5.95)	15	5.9	_	0.08 (-0.70 to 0.86)
Tappen et al (2009) ⁴⁷⁸	15.13 (9.54)	15	19.13 (7.37)	15	6.8	_	-0.46 (-1.18 to 0.27)
Waldorff et al (2012) ⁴⁷⁹	5.05 (4.61)	130	5.77 (5.07)	141	62.7	- B +	-0·15 (-0·39 to 0·09)
Total (95% CI)		216		223	100.0	\blacklozenge	-0·22 (-0·41 to -0·03)
Heterogeneity: $\chi^2 = 6.33$, df	=5 (p=0.28); l ² =2	1%				-1 -0.5 0 0.5 1	
Test for overall effect: $Z = 2$.	30(p=0.02)					$\longleftarrow \longrightarrow$	

Favours treatment Favours usual care

Multimodal Interventions

- FINGER
- 1260 people for 2 years
 - Nutritional guidance, exercise
 - Cognitive training/social activities
 - Improvement of metabolic/vascular RF
 - Control group: 13 pep talks

• Adherence: 12% dropout rate

- Results: All 3 cog domains improved over placebo: global, executive function, processing speed (p < 0.05)
 - Those >70, or with MMSE <26 improved more

The Importance of Lifestyle

- Combining multiple healthy lifestyle factors may be more impactful for reducing dementia risk
 - Healthy diet
 - Moderate to vigorous physical activity
 - Light to moderate alcohol intake
 - Smoking
 - Cognitive stimulation
- 4 or 5 = 59% lower risk
- 2 or 3 = 39% lower risk
- May offset genetic risk

Figure HRs of AD according to the combination of healthy lifestyle factors in the prospective cohort studies

Number of healthy lifestyle factors	N	% of AD				Haz	ard ratio (95% Cl
0–1 healthy factor							
CHAP 0-1	322	24.4					1.00 (1.00, 1.00)
MAP 0-1	123	31.7					1.00 (1.00, 1.00)
2–3 healthy factors					T		
CHAP 2-3	1,073	15.4					0.58 (0.37, 0.93)
MAP 2-3	507	26.4		-	<u> </u>		0.66 (0.46, 0.94)
Combined (p for heterogeneity = 0	.7)			-			0.63 (0.47, 0.84)
4–5 healthy factors							
CHAP 4–5	450	8.1	-	—			0.33 (0.18, 0.61)
MAP 4-5	290	19.3	,				0.43 (0.28, 0.66)
Combined (p for heterogeneity = 0	.5)						0.40 (0.28, 0.56)
		0 10	0.25	0.50	1 00	2.00	
		0.10	0.25	0.50	1.00	2.00	
			Ha	zard ratio)		

Model adjusted for age, sex, race, education, APOE eA, and prevalence of cardiovascular disease (including heart disease or stroke). A random-effects metaanalysis was used to combine cohort-specific results. AD = Alzheimer dementia; CHAP = Chicago Health and Aging Project; CI = confidence interval; HR = hazard ratio; MAP = Rush Memory and Aging Project; N = number of participants in each group.

Healthy Action to Benefit

- 10 day brain camp for individuals with MCI, and study partner
 - amnestic MCI (additional cognitive domains okay)
- 5 components
 - physical activity (yoga)
 - brain fitness
 - memory compensation training
 - support group
 - wellness education
- 6 month booster session
- aim: delay or prevent progression to dementia

ADAPT Program

- Applied Daily Activities to Promote Thinking
- Six sessions, taper design
- Multimodal treatment
 - Exercise
 - Meditation
 - Support groups
 - Cognitive rehabilitation
 - Education

Time	Activity
8:45 – 9 AM	Arrival, Check-In
9–9:15 AM	Welcome Mindfulness Meditation
9:15 – 10:15 AM	Staying in Motion
10:15 – 11:15 AM	Calendar Training
11:15 - 12:15 AM	Support Groups
12:15 – 12:30 PM	Mindfulness Meditation Closing

ADAPT Calendar Training

Home System

Personal System (Pencil and Paper or Electronic)

Programs and Services

- Support groups/educational events
- Dementia Friendly Communities
- Momentia
 - Zoo/Garden walks
 - Alzheimer's cafes
 - Arts events
- Dementia Friends

• Intergenerational programs

Socialization and Community Engagment

UW Memory and Brain Wellness Center Memory Hub

- Outreach center in partnership with Frye Art Museum
 - Dementia-Friendly Community, Collaboration, and Statewide Impact

https://https://thememoryhub.org/

Resources

- WHO Dementia Risk Reduction Guidelines
 - <u>https://www.who.int/publications/i/item/9789241550543</u>
- Alzheimer's Association
 - Taking Action workbook: <u>http://www.alz.org/mnnd/documents/15_ALZ_Taking_Action_Workbook.pdf</u>
 - Living Well workbook: <u>http://www.alz.org/mnnd/documents/15_ALZ_Living_Well_Workbook_Web.pdf</u>
- Mindfulness Northwest
 - <u>http://www.mindfulnessnorthwest.com/</u>
- Momentia Seattle
 - <u>www.momentiaseattle.org</u>
- UW Memory Hub
 - <u>https://https://thememoryhub.org/</u>

Contact Information

Memory and Brain Wellness Center

https://depts.washington.edu/mbwc/ Harborview Medical Center 325 9th Ave., 3rd Floor West Clinic Seattle, WA 98104 Phone 206-744-3045 Fax 206-744-5030 krhoads@uw.edu

HARBORVIEW MEDICAL CENTER

Thank you for your attention!

Questions?

References/Resources

- de Almeida SIL, Gomes da Silva M, Marques ASPD. Home-Based Physical Activity Programs for People With Dementia: Systematic Review and Meta-Analysis. Gerontologist. 2020 Nov 23;60(8):600-608.
- Fam J, Sun Y, Qi P, Lau RC, Feng L, Kua EH, Mahendran R. Mindfulness practice alters brain connectivity in community-living elders with mild cognitive impairment. Psychiatry Clin Neurosci. 2020 Apr;74(4):257-262.
- Hughes D, Judge C, Murphy R, et al. Association of Blood Pressure Lowering With Incident Dementia or Cognitive Impairment: A Systematic Review and Metaanalysis. JAMA. 2020;323(19):1934–1944.
- Lai CH, Chen HC, Liou TH, Li W, Chen SC. Exercise Interventions for Individuals With Neurological Disorders: A Systematic Review of Systematic Reviews. Am J Phys Med Rehabil. 2019 Oct;98(10):921-930.
- Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, Brayne C, Burns A, Cohen-Mansfield J, Cooper C, Costafreda SG, Dias A, Fox N, Gitlin LN, Howard R, Kales HC, Kivimäki M, Larson EB, Ogunniyi A, Orgeta V, Ritchie K, Rockwood K, Sampson EL, Samus Q, Schneider LS, Selbæk G, Teri L, Mukadam N. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020 Aug 8;396(10248):413-446.
- Newberg et al., (2010). Meditation effects on cognitive function and cerebral blood flow in subjects with memory loss: a preliminary study. J. Alzheimers Dis. 2010. 20, 517–526.
- Ngandu T, Lehtisalo J, Solomon A, Levälahti E, Ahtiluoto S, Antikainen R, Bäckman L, Hänninen T, Jula A, Laatikainen T, Lindström J, Mangialasche F, Paajanen T, Pajala S, Peltonen M, Rauramaa R, Stigsdotter-Neely A, Strandberg T, Tuomilehto J, Soininen H, Kivipelto M. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet. 2015 Jun 6;385(9984):2255-63.
- O'Caoimh R, Mannion H, Sezgin D, O'Donovan MR, Liew A, Molloy DW. Non-pharmacological treatments for sleep disturbance in mild cognitive impairment and dementia: A systematic review and meta-analysis. Maturitas. 2019 Sep;127:82-94.
- SPRINT MIND Investigators for the SPRINT Research Group, Williamson JD, Pajewski NM, Auchus AP, Bryan RN, Chelune G, Cheung AK, Cleveland ML, Coker LH, Crowe MG, Cushman WC, Cutler JA, Davatzikos C, Desiderio L, Erus G, Fine LJ, Gaussoin SA, Harris D, Hsieh MK, Johnson KC, Kimmel PL, Tamura MK, Launer LJ, Lerner AJ, Lewis CE, Martindale-Adams J, Moy CS, Nasrallah IM, Nichols LO, Oparil S, Ogrocki PK, Rahman M, Rapp SR, Reboussin DM, Rocco MV, Sachs BC, Sink KM, Still CH, Supiano MA, Snyder JK, Wadley VG, Walker J, Weiner DE, Whelton PK, Wilson VM, Woolard N, Wright JT Jr, Wright CB. Effect of Intensive vs Standard Blood Pressure Control on Probable Dementia: A Randomized Clinical Trial. JAMA. 2019 Feb 12;321(6):553-561.
- Wang, X., Wang, H., Ye, Z., Ding, G., Li, F., Ma, J., & Hua, W. (2020). The neurocognitive and BDNF changes of multicomponent exercise for community-dwelling older adults with mild cognitive impairment or dementia: a systematic review and meta-analysis. *Aging*, *12*(6), 4907–4917.
- Watt JA, Goodarzi Z, Veroniki AA, Nincic V, Khan PA, Ghassemi M, Lai Y, Treister V, Thompson Y, Schneider R, Tricco AC, Straus SE. Comparative efficacy of interventions for reducing symptoms of depression in people with dementia: systematic review and network meta-analysis. BMJ. 2021 Mar 24;372:n532.
- WHO. Risk reduction of cognitive decline and dementia: WHO guidelines. Geneva: World Health Organization, 2019
- Wilckens KA, Stillman CM, Waiwood AM, Kang C, Leckie RL, Peven JC, Foust JE, Fraundorf SH, Erickson KI. Exercise interventions preserve hippocampal volume: A meta-analysis. Hippocampus. 2021 Mar;31(3):335-347.