

1

Trimming Trees and its Impacts on the

Urban Forest

Wally Koli

Sahar Pesaran Afsharian

Ben Hillam

Geography 569 GIS Workshop
Group 3 – Capstone Project
August 22, 2014

Project Sponsor

Seattle City Light
David Bayard (Arborist)

2

Table of Contents

 Recommended Course of Action 4

 Introduction 4

 Design & Methods 7

 Canopy Estimation 7

 Inequity & MCE Analysis 13

 Results

 Canopy Estimation 26

 Inequity & MCE Analysis 27

 Limitations and Combined Results 29

 Future Implementation 31

 Discussion 32

 Business Case 32

List of Figures

 Figure 1 Social Ecological Systems Table 6

 Figure 2 Percent Canopy Process 8

 Figure 3 Get Selected Canopy Cover Tool Diagram 10

 Figure 4 Calculate Net Impact Diagram 12

 Figure 5 SCL Get Selected Canopy Cover GUI 12

 Figure 6 SCL Calculate Canopy Net Impact GUI 12

 Figure 7 Threshold Metrix 14

 Figure 8 MCE Workflow 17

 Figure 9 main 4 Criteria z-Scores 19

 Figure 10 Additional Criteria 20

3

 Figure 11 Final Criteria for Index 21

 Figure 12 Inequity With & Without Weights 25

 Figure 13 Example Result From Height Dataset 27

 Figure 14 Comparing the Two Method Results 31

List of Tables

 Table 1 Nine Selected Criteria 14

 Table 2 Inequity Index 22

 Table 3 Criteria Change 23

 Table 4 Criteria Times 24

 Table 5 Results from Percent Canopy Dataset 28

 Table 6 Results from Height Derived Dataset 26

 Table 7 Financial Metrics 33

 Table 8 Summary Statistics 33

 Table 9 Pollutants 34

 Table 10 Economic Benefits 34

Appendix A 38

4

Recommended Course of Action

 Through the course of defining a new method to estimate the amount of canopy that might

possibly be remove from routine tree trimming by Seattle City Light we learned a lot of valuable lessons

and have gained insight on how our methods can be used in the future. The methods and tool provided

from this project can be implemented with more current data to get a more accurate estimation of total

canopy cover. Also, by evaluating the inequity that exists throughout the greater Seattle area in relation

to susceptibility to canopy loss we have established a base in which areas of concern can be identified.

We recommend that Seattle City Light use these design, methods, and results to build from. First by

obtaining more accurate data by recording trimming, using more robust tree inventory data to create

samples to extrapolate from, and a GIS to manage all the data in relation to all this analysis.

Introduction

 The world’s population continues to migrate to urban locations and as a result an increased

emphasis has been placed on maintaining, creating, and protecting urban forests. The urban forest and

trees in general have been shown to benefit not only the biophysical but the economic and social

systems they are a part of. The construction of city infrastructure to sustain its populations has left a

large impact on the urban forests. As knowledge about the positive impacts of the urban forest and its

ability to assist in sustaining healthy cities grows, more pressure is placed on city officials to maintain the

urban forest and provide the necessary services to its residents. In regards to the services that the

urban forest and tree canopy provide forester Dan Northrop (2013) stated, “It is becoming increasingly

clear with each passing day that these services are critical to the health and well-being of our expanding

urban population. In light of these findings, the conservation and restoration of these urban and

interface forests must now be seen as a fundamental goal of any viable public works program or land-

use planning process.” (pp. 1) At the forefront of cities with this fundamental initiative is Seattle,

Washington.

5

 Seattle City Light (SCL) is a public utility that provides the electrical power to Seattle and a few

other cities north/south of its boundaries. It is the 10th largest public utility in the country. SCL is

committed to not only providing power in a safe and efficient manner, but they strive to also manage

the vegetation that their utility network impacts (Bayard, 2014). Seattle is a city that prides themselves

on their iconic green status and embraces its status as the “Emerald City” (Mapes and Mayor, 2014).

SCL is aware of the amount of trees that are removed and planted across its service area every year.

Although the amount of trees that are planted and removed each year is accounted for SCL does much

more that impacts the tree canopy throughout its service area. SCL trims over 100,000 trees on a 4-year

cycle. This activity accounts for a lot of the work that the department does on a regular basis but is non-

existent in any analysis of the impacts that the department has on the city, people, environment, and

overall aesthetics of the urban forest found within its service area. David Bayard, arborist for SCL, is our

sponsor for this project. He has expressed the concern that SCL’s vegetation management has in

regards to the impacts of the entire tree trimming to allow for clearance of their high-voltage power

lines. It is important to look at the picture as a whole to understand all the possible negative and

positive influences that SCL has on the community it serves. Figure 1 gives an overview of all the socio-

ecological systems that are involved in relation to SCL’s impact on the urban forest. More generally it

discusses the impacts of tree canopy for SCL and its surrounding systems. Understanding the impact

that tree trimming for utilities helps fill any void in SCL’s view of their entire system. To better

understand the impacts that trees have on the systems around it, it is critical to not focus on one aspect

of it. Professor Coder in his article about community tree canopy loss stated, “If you cannot see the

whole picture (and its integral parts) in a community, then you understand community changes it only

through a biased and limited sampling of areas . . . The more compartmentalized you are within your

community, the less effective you can be in understanding natural resource changes like trees impacting

whole community life.” (2011, pp 1). SCL is trying to look at the total impact they have

6

Social-Ecological Systems Table | Goal: Assessment of the Impact of Canopy loss on the City of Seattle.
Fo

ca
l S

ca
le

(S
ys

te
m

)
A

b
o

ve
 F

o
ca

l S
ca

le
 (

Ex
tr

a-
sy

st
em

ef

fe
ct

s)
Fi

n
er

 S
ca

le
 (

A
ge

n
ts

)

SocialGeographically Biophysical Economic

Impacts on carbon
sequestration capability, flood

control, ability to reduce
pollution, impacts on green
house absorption- climate

change
(Jones et al. 2013; Rowntree

2008)

Trees reduce heating and
cooling costs, improve air
quality and cleansing, help

increase consumer patronage,
boosts occupancy rates of
offices. (Center for Urban
Horticulture UW College of

Forest Resources)

Urban forests increase property
values, provide cultural services

to communities. (Jones et. Al
2013, Rowntree 2008)

The urban forest plays a role in
saving more than 12.2 million
dollars annually by removing

pollution, from carbon storage,
and reducing energy costs in
residential building (Ciecko,

Tenneson, Dilley, and Wolf 2012)

Human Values: less canopy
impacts on outdoor activity i.e. to
walk outdoors in parks becomes
less desirable, outdoors becomes
less inviting i.e because of crime

Trees reduce wind speeds
and reduce noise levels

adding to the livability of
urban environments.

Emotional Impacts, costs to
community health, loss of

canopy cover, may increase
blood pressure, breathing and

related health problems
(Dunlap and Jones

2002)

Trees Provide social
connectivity, in

addition to contributing to
aesthetics, public health and
well-being, property values,

and community stability
(Tyrva¨inen et al. 2003; Wolf

2004)

K
in

g
C

o
u

n
ty

Se
at

tl
e

C
it

y
Li

gh
t

Se
rv

ic
e

A
re

a
C

an
o

p
y

Lo
ss

 A
t

C
en

su
s

B
lo

ck
 L

ev
el

Well placed trees can
convert streets, parking

and walls into
more aesthetically

pleasing environments.
(Dan Burden May, 2006)

Figure 1 Social Ecological Systems Table

on the community not simply one aspect of it. The difficulty is that the ability to analyze the amount of

trimming as an aggregate across the entire service area is difficult.

 For this project we will be looking at methods to estimate the amount of tree canopy that is

impacted by SCL’s trimming of trees. Our objectives include designing a model that will serve as a

starting point for analyzing canopy loss due to trimming. Along with estimating the amount of canopy

loss we will be looking at social inequality in relation to these activities. For SCL to fully understand the

impacts that its actions have on the community it will be important to incorporate what has been

7

previously unaccounted for, trimming a lot of trees. Our design, methods, and analysis were all focused

around helping SCL include canopy loss due to trimming into their method for evaluating the net impact

they have on the different systems in their service area.

Design & Methods

 There have been various studies conducted the tees, tree canopy, and the effects they have on

the natural, social, and economic environment surrounding them. There are many foresters, arborists,

scientists, etc. that have identified methods to assign a value to a tree. There have also been multiple

studies that look at the benefits of trees as far as home values, health, ecosystem services, aesthetic

quality, etc. However when it comes to evaluating the value of a tree that has been trimmed, this has

been done on an individual tree basis (Hoyer, 2013). For our project and to assist in fulfilling our

sponsor’s requests we have designed a project to look at trimming trees at a much larger scale. We are

also interested in looking at the social equity involved in the areas located within SCL’s service area. We

have designed two approaches.

Canopy Estimation

 The first major obstacle in designing a method for evaluating the quantity of tree canopy

impacted by SCL trimming for their feeders was obtaining data to represent the tree canopy. The

percent canopy cover from the USGS 2011 layer was used in our first approach at evaluating the amount

of canopy that SCL feeders affect. Figure 2 shows the model used to calculate the amount of canopy

that could reside within a critical distance of each feeder. The percent canopy layer is a Digital

Elevation Model (DEM) that contains a value for the percentage of canopy in each cell. This value must

be converted to an integer to convert it to a vector data polygon layer. Once the percent canopy layer is

converted to a polygon the area can be calculate for each grid. From the calculated area now a total

area of canopy per grid can be derived by using the value, in our case the field was named “gridcode”

8

Percentage
Canopy DEM

OH_Feeders
Identify
Nearest
Feeder

Total Canopy
w/Feeder ID

Dissolve on
Feeder

Total Canopy
Possible per

Feeder

Convert to
Integer

Convert to
Polygon

Convert DEM to Polygon

% Canopy
Polygon

Calculate
Area Sq. Ft.

from %

% Canopy With
Area Polygon

SCL Get Selected Canopy Cover (%)

Workflow

Input DEM and
Feature Class*

Create
Feeder
Buffer

Feeders Buffered

Select
Canopy
Within

Clearance

Selected
Canopy

Calculate
Total Area
per Feeder

Calculate Area Canopy Per Feeder

Join Canopy
Area to
Feeder

DEM or Feature

Class

Process, Calculation

or Tool

Final Result

Feature Class

(Layer)

Flow (Direction)

Group of

Pertinent

Layers,

Processes, or

Variables

Legend

*Data Sources:

2011 Percent Canopy DEM – USFS - http://www.mrlc.gov/nlcd11_data.php

OH_Feeders and Street Network – Seattle City Light – Contact David Bayard (Arborist)

Figure 2 Percent Canopy Process

containing the value, multiplied by the total area. With the feeders layer, “OH_Feeders” Figure 2, a

buffer is created for the input clearance distance by the user. For our study we looked only at a 10 Ft.

clearance distance from the high-voltage lines. Once the amount of canopy is calculated and the

clearance buffer is created the canopy grids which intersect the clearance buffer are selected for further

analysis. With the selected canopy we can now identify the feeder line that it is nearest too, calculate

the total canopy per feeder, and obtain a total canopy grid layer with the total area of canopy per

feeder. We joined this result table to the “OH_Feeders” to get the result layer that is only has the area

per feeder from qualified areas that intersected the feeder (Figure 2). The actual feature classes are

named differently in the file geodatabase, but in Table 1 in Appendix A it outlines the file geodatabase

with its associated name and description.

 Our second and more detailed approach at analyzing the amount of canopy that could possibly

have to be trimmed by SCL workers involved creating two Python script tools. The purpose for creating

two script tools is that we can provide an easy user interface for users to simply add their own layers to

9

run the analysis on. To get a more accurate representation of trees that would fall within the clearance

distance of the feeder we obtained LIDAR data from the Puget Sound LIDAR Consortium (PSLC). The

data consists of a 6 ft. resolution base and top surface height DEM for the Puget Sound region from

2000 (PSLC, 2014). Figure 3 below shows the python script design for accomplishing the first task in

using the PSLC data, getting the selected canopy cells.

 As seen in Figure 3 there is a lot more involved in evaluating the 2000 height data. To begin

with the base DEM is subtracted from the top surface DEM using the minus tool in ArcToolbox. This

creates a result DEM that now has the height of each cell from the ground. After the height DEM is

created the DEM must be converted to an integer value so that it can be converted into a vector

polygon layer. We multiplied the value (height) by 10000 using the “Times” tool to preserve the decimal

places up to 6 locations. Once all of this is converted to a polygon then the value is converted back to a

double with its accurate height in feet above the ground. On the bottom portion of Figure 3 the second

step in this analysis is using the feeders layer “OH_Feeders” and the street work layer “Street_Network”

to calculate which type of road the feeder would run along. We need to know the type of road the

feeder coincides with because if it is an arterial road than the height used to evaluate the high-voltage

power is 45.5 ft. If the feeder is along a non-arterial road than the height used is 40.5 ft. Figure 1 in

Appendix A shows the pole and line heights used to derive these heights for each pole. We split the

feeder layer into individual segments and identified the nearest street with the near tool in ArcToolbox.

Primary arterial roads were identified with a “1” in their “FEACODE” attribute column. All feeders

nearest to a street with “FEACODE = 1” were classified as an arterial feeder while the remainder were

classified as non-arterial. We used our height polygon to select grids that were within 10 ft. of each type

of feeder. A feeder is always trimmed 15 feet above and then whatever the desired distance input by

the user laterally and below. Using the height qualifiers we further refine our selection of valid height

10

Base DEM
(Last Return)

Top Surface
DEM

(First Return)

LIDAR 2000 DEM*

Subtract
Base from

Top Surface

Surface Height
DEM

OH_Feeders & Street
Network

Feature Classes*

OH_Feeders

Street_Network

Split Feeders
to Segments

Calculate
Nearest
Street

Add Street
Type to
Feeders

Identify Feeder/Street Association

OH_Feeders
With Street Type

Buffer
Arterial
Feeders

Buffer Non-
arterial
Feeders

OH_Feeders
Buffer for Arterial

Streets

OH_Feeders
Buffer for Non-
arterial Streets

Select
Height

(35.5 – 60.5 ft.)

Select
Height

(30.5 – 55.5 Ft)

Surface Height
Within Buffer of

Tall Poles

Surface Height
Within Buffer of

Short Poles

Union Two
Result

Heights

All Valid
Surface
Heights

Delete
Duplicates

Qualified
SufaceArea

Times Value
by 100000

Convert to
Integer

Convert to
Polygon

Convert DEM to Polygon

Surface Height
Polygon

Convert
Heights Back

to Double

Result Surface
Height Polygon

SCL Get Selected Canopy Cover Tool

Workflow

DEM or Feature

Class

Process, Calculation

or Tool

Final Result

Feature Class

(Layer)

Flow (Direction)

Group of

Pertinent

Layers,

Processes, or

Variables

Legend

*Data Sources:

2000 LIDAR Base and Top Surface rasters – Puget Sound LIDAR Consortium - http://pugetsoundlidar.ess.washington.edu/lidardata/restricted/projects/2000-05lowerpugetsound.html

OH_Feeders and Street Network – Seattle City Light – Contact David Bayard (Arborist)

Figure 3 Get Selected Canopy Cover Tool Diagram

grid cells. The results are joined together, duplicates are removed, and we are left with our final

qualifying height grid cells. Once all the qualifying areas are determined identified the next python

Figure 4 Calculate Net Impact Diagram

11

script tool calculates the area of each and all the feeders that might have canopy that would be

trimmed. Figure 4 shows the second Python script tool workflow. It simply takes the qualified height

grid, clips it to the input clearance distance the user inputs and calculates the amount of canopy for each

feeder. The results are joined back to the feeder layer and dissolved to come up with the final resulting

feeder layer that has the total area of canopy that would fall within the clearance distance and therefore

need to be removed.

 To assist user in implementing these two Python scripts a tool box was used to store the tools.

There are two Python script tools that have Graphical User Interfaces (GUI) for users to input data.

Figure 4 shows the interface and inputs to run the first tool. The user has to put in a base height raster

DEM, a top surface raster DEM, a feeder feature class, a streets feature class, the desired clearance they

want to use to do their evaluation, and output locations for the resulting layer. Figure 5 is the GUI for

the SCL Calculate Canopy Net Impact Python tool. It takes the result qualified canopy height feature

class from the SCL Get Selected Canopy Cover Tool, the feeder feature class, a desired clearance input

(needs to be the same for both tools to get consistent results), and a folder or geodatabase location to

save the results into. It is important to note that all the inputs should have the same spatial reference,

the DEMs should have a value of “gridcode” and the streets need to have a “FEACODE” in the attribute

table to help produce consistent and more accurate results.

12

Figure 5 SCL Get Selected Canopy Cover GUI

Figure 6 SCL Calculate Canopy Net Impact GUI

13

Inequity & MCE Analysis

Urban forests provide important ecological benefits by modifying urban climate, improving air

quality, storing and sequestering carbon, saving energy, decreasing storm water runoff, and increasing

biodiversity and providing wildlife habitat. Urban forests also provide social benefits to urban residents

such as improving urban aesthetics and reduction of stress, crime and traffic speed. Uneven distribution

of urban forest across a city and its residents can create inequality (Akbari et al.2001; Nowak et al.

2006).

In this research project, we studied the level of inequity and social justice to determine socioeconomic

status by tract and observed this distribution across the study area and determined vulnerable census

tracts regarding to inequity index. Purposes of the index is to assist SCL identifying areas of concern to

make more informed and effective decisions in regard to future trimming regimes, tree removing, tree

planting and utility maintenance. For this analysis, we employed multi-criteria evaluation analysis (MCE)

and developed an inequity index with nine most important criteria. These criteria were driven and

selected from multiple potential alignments in the threshold matrix and documents provided by our

sponsor. The threshold matrix includes potential variables representing biophysical, economic and social

aspects at three different scales (King county, Seattle City Light service area and a census

tract/neighborhood). These thresholds can be seen in Figure 7. The study relies on the 2010 census data

at tract level in Seattle City Light service area. By intersecting the King county census tract with buffered

feeders (100 ft. buffer for overhead feeders), 168 census tracts were exported to evaluate their inequity

levels.

The selected input variables are combination of four major criteria, namely race, income, population

and percent canopy cover and five minor criteria, namely numbers of tree removed, numbers of tree

planted, percent of green space, proximity to industrial centers, and proximity to hospitals. Table 1

shows the list of selected criteria.

14

Figure 7 Threshold Matrix

 Table 1 Nine Selected Criteria

15

Race: Trees improve the quality of life for all urban residents. The benefits of urban tree canopy

cover are distributed equally among white and non-white residents. Race is a common indicator of

inequality in urban environmental studies. For race we used percentage of minority/non-white

population. Greater values indicate higher priority.

Income: Trees improve the quality of life for all urban residents. The benefits of urban tree

canopy cover are distributed equally among residents with all income levels. Studies have shown that

median household income and wealth are directly related to neighborhood tree cover. Income defines

the possibility of spending money towards planting tree. The spent money on planting can be either in

form of direct investment or taxes paid to the city. Unlike the other variables used, lower values of

median household income indicate higher priority.

Population: Planting more trees/trimming less will improve environmental quality and provide

public benefits and it shows higher impact in highly populated areas. Population includes all people,

male and female, child and adult, living in a tract as defined by the U.S. Census Bureau. Greater values

indicate higher priority.

Percent canopy: In order to determine if uneven distribution of canopy cover exists across tracts,

we used the percent canopy cover as a function of socioeconomic variables to be able to compare

canopy between tracts and all other criteria. Unlike the other variables used, lower percent canopy

cover indicates higher priority.

Number of trees removed: The sum of number of trees removed by tract is used to measure the

need for planting. Areas with higher values are prioritized for more tree canopy/planting. Tracts without

tree removed are left zero. Greater values indicate higher priority.

Number of trees planted: The sum of number of trees planted by tract is used to measure the need for

planting. Areas with lower values are prioritized for more tree canopy/planting. Tracts without tree

16

planted data were imputed by average number of trees planted in the city of Seattle area. Unlike the

other variables used, lower number of trees planted indicates higher priority.

Green spaces: The rational for tree canopy/planting in and around existing green spaces is

similar to the reasoning behind the number of tree planted variable. Planting trees in the area with less

green spaces improve the inequity. Parks and wetlands data were merged together and normalized by

tract area. Lower values indicate higher priority for tree canopy/tree planting.

Proximity industrial: Trees improve air quality directly and indirectly by reducing ambient air

temperatures, removing air pollutants and by reducing the energy demand from cooling buildings

(Akbari et al.2001; Nowak et al. 2006). Distance of industrial centers is used as an indicator

measurement of air pollution. Lower values indicate higher priority for tree canopy/planting.

Proximity to hospital: Several studies have shown a positive relationship between patients’ recovery in

hospitals and proximity to trees and green space in urban areas. Lower values indicate higher priority for

tree canopy/planting.

Data for this analysis come from a variety of sources, such as the King County GIS center, the

City of Seattle (WAGDA) and Puget Sound Regional Council. Pre-processing includes clipping, merging,

spatial join, intersecting was done to develop data for analysis. A workflow diagram showing pre-

processing steps is shown in Figure 8.

17

Figure 8 MCE Workflow

Statistical Analysis Methods

To run multi-criteria analysis with so many variables of different units, we first checked for

distribution normality. The distribution of total population, income and percent canopy cover across

tracts are normal. However, most of the variable distributions were positively skewed. To make analysis

more reasonable and be able to compare and combine different indicator categories easier, we used z-

scores to standardize all variables which are raw scores converted to standard deviation units. The

standardized variables can then rank and weight relative to their importance. To convert data to

standard units for each criterion, z-score were calculated by the following formula:

X= a raw value to be standardized

µ= mean

σ= standard deviation

18

Some z-scores are multiplied by (-1) when a higher value means a lower priority, namely

income, percentage of canopy cover, percentage of green spaces, number of trees planted, proximity to

industrial centers and hospitals. In order to address inequity concerns, a tract with low income

represents higher priority for having trees and tree canopy while a tract with a high income would

reflect a lower priority tract. Similarly, an area with high green space percentage would reflect a lower

priority tract.

We calculated the percentage of minority/non-white population by subtracting the percentage

of white population from 100%. We selected the tree removed/planted since 2003 and the planted

trees in fair, good and excellent condition. Wetlands and parks are identified and combined as green

spaces. From two different sources manufacturing and industrial centers data were downloaded and

combined to be a single shapefile as the industrial centers. We created columns for each variable in

ArcMap that count each variable at the tract level.

We used intersect tool as a GIS tool to identify the number/amount of features of interest in

each tract and we calculated the sum of number/area of a feature of interest in each tract by using

summary statistic tool. Next, we joined the output tables of the summary statistic with the tract10

shapefile by tarct-ID. There were four criteria used in the intersect analysis: percent of canopy, number

of tree removed, number of tree planted, and percent of green spaces.

Near Analysis as a GIS analysis method is used to calculate the distance of each tract from a

feature of interest. There were two criteria used in the near analysis: proximity to industrial centers and

proximity to hospitals. Figure 9-11 show the distribution of each criteria based on z-score.

19

Figure 9 Main 4 Criteria z-Scores

20

Figure 10 Additional Criteria

21

Figure 11 Final Criteria for Index

Rank:

Once all of the variables have been converted to standard units, they were assigned a rank risk

of inequity from 1-5 based on z-score ranges. A value of 1 represents the lowest risk and 5 represent the

highest risk.

The highest risk (rank 5) tracts are tracts with highest minority percentage, lowest income,

highest total population, lowest canopy cover percentage, less green space, highest number of tree

removed, lowest number of tree planted, closest to industrial and hospitals. This decision was based on

the concept of inequity and social justice.

22

Weight:

We ordered criteria based on relative importance of criteria. We then manually defined weights

for the criteria out of 100 to only show the important criteria from SCL perspective. We applied four

different methods including sum ranking, reciprocal ranking, rating and pairwise comparison methods to

achieve the accurate weights. Table2 shows the all results of different weighting methods.

Table 2: Inequity Index

In Rank method, criteria first arranged in straight rank order 1 to 5 where the rank 1 shows the

most important, 2 next important, and 5 the least important one. There are different methods to drive

weights after ranking such as rank sum, rank reciprocal, rank exponential. In this research project, rank

sum and reciprocal methods were used. To produce the inverse rank values in rank sum method each

criterion’s rank subtracted from the sum of ranks and then summed with 1:

Inverse Rank = n-rj+1

23

Each criterion’s rank was reversed to produce the reciprocal rank values in rank reciprocal:

Reciprocal Rank = 1/r

Then the weight for a criterion in rank sum and rank reciprocal methods was calculated by

dividing the inverse/ reciprocal rank of that criterion by the total score of all criteria and multiplied 100.

In Rate method, each criterion is assigned a rank 0 to 100 based on a relative scale of importance and

number 100 was assigned to the variables with the highest importance (race and income) and number

10 to the variables with the least importance(proximity to hospitals). The weight for a criterion was then

calculated by dividing the rank of that criterion by the total score of all criteria.

In Pairwise comparison method, we created a ratio matrix where every criterion was compared

with every other and each cell was given a criterion representing the most important. For two criteria of

equal importance we put both criteria in the corresponding cell. Table 3 shows the matrix. Next, for

each criterion we counted the number of cells containing the criterion flag letter (Table4) and for

weighting out of 100 we solved the obtained equation.

Table 3 Criteria Change

24

Table 4 Criteria Times

100=8x+8x+6x+6x+4x+3x+3x+3x -> x=2.439

Between results of all examined weighting methods, we chose the Rating method because its

result is the closest to desired weights outlined by our sponsor.

Once all of the variables have been weighted, we calculated a score for each criterion by following

formula:

Ranki × Weighti = Scorei

Each tract receives a total score by summing all criteria scores:

 ∑
 n= number of criteria

After calculating a final score for each tract unit, a final inequity ranking map was generated

(Figure 12).

25

 Figure 12 Inequity With & Without Weights

26

Results

Canopy Estimation

 The results for area within a 10 Ft. clearance distance of each individual and all feeders were in

square feet. The amount of canopy is much larger looking at our first approach using the 2011 USGS

percent canopy cover dataset (Table 5). Table 5 shows that there was over487.58 million square ft. of

Table 5 Results from Percent Canopy Dataset

canopy found within SCL’s service layer in 2011. The model produces an estimate of over 4,000 acres of

tree canopy that might possible fall within the clearance distance of the overhead feeders. The results

for the 2000 LIDAR height data were much less in comparison to the percent canopy (Table 6). The

Table 6 Results from Height Derived Dataset

total amount of canopy residing within a 10 Ft. clearance is 46.32 acres. The average per feeder is

indicated and shows how much impact the feeders may have across the entire service area.

 Running the two models also produces results at the overall focal scale of our project. Figure 13

shows the results look like at a much finer scale. The dark green cells are canopy that within the

clearance height for an arterial road which is 35.5 ft. and 60.5 ft. The light green cells or portions of cells

are where the cell intersected with the 10 ft. clearance laterally but did not fall within the clearance of

the feeder. For this sample area in the north eastern portion of SCL’s service area there is a total area of

over 16,000 square ft. of canopy found within the clearance distance of the feeder.

Area Total Area Sq. Ft.
(Million)

Total Area Acres

SCL Service Area 2558.56 58736.59

Canopy 487.58 11193.25

Possible Canopy Impacted from Feeders 197.69 4538.25

Summary Statisitcs SCL Service Area & Canopy: 2011 USFS Percent

Canopy within 10 Ft. Clearance Total Square Ft. Average Per Feeder Sq. Ft Total Acres Average Per Feeder Acres
All Feeders in Service Area 2018359.91 11872.71 46.34 0.27

Canopy & SCL Feeder Results: 2000 LIDAR Height

27

 Figure 13 Example Result from Height Dataset

Inequity & MCE Analysis

The comprehensive inequity map represents a combined score based on these weighted criteria

where the tract receiving the highest score (with red color) will be recommended for considering as at

most risk of inequity area. To ensure the assigned weights are sensible, we developed a scenario (zero

scenario) in which we considered all criteria to have equal importance, Therefore we attributed the

same weight out of 100 and compared the result map (Figure 13) with inequity ranking map (Figure 13)

of the basic scenario (scenario 1) where each variable were assigned proportional weights relative to

their importance.

28

Discussion

Our study found significant spatial patterns of 9 criteria. We found significant clusters of both

minority (percent non-white) and income. In the north region of study area (SCL service area) the

minority is average, in the center is lowest and in south and south east is the highest. Income closely

follows this race pattern. In income map we can see the highest income area lies on shorelines mainly

where the property values are high and minority is lower. As we go to the south and south east part, the

median income decreases and it correlates to higher minority. Northern side shows the average income

that corresponds to average minority. In total population map, we have less specific trend but the most

notable point is that at industrial neighborhood the population is the lowest. The canopy coverage map

clearly shows the higher coverage at northern side, medium coverage in center and in the south part

and lowest in south east. By visually comparing these four maps as our four main criteria, we conclude

that most vulnerable areas for inequity are in south east of study area. The green space map shows

mainly a uniform distribution of green spaces across the study area. In number of removed trees map

we can see that in north and south more trees are removed but in the center fewer trees have been

removed.

It is important to note that we only had data available for city of Seattle number of trees planted. Thus

we Imputed non-data tracts to the average.

Comparing the removed and plant trees map we can find areas where more trees have been

removed and less trees have been planted or the other way around.

The proximity to industrial centers and hospitals clearly show the distance in miles from industrial

centers and hospitals.

By comparing scenario 0 and scenario 1 (maps 4a and 4b respectively) we can see that some of

the tracts in north and some in southeast will not change and yet have the highest risk of inequity. It

also shows that considering weighting can potentially change the outcome.

29

Sensitivity:

A sensitivity analysis is a method to show and understand the stability and robustness of the

criteria and weights. For this project, we performed a sensitivity analysis to see the effects on the overall

results by changes in key variables. For this study, we developed five scenarios (table5).

The MCE analysis first tests the combined effects of the criteria on the response. Then sensitivity

analysis eliminates the four most important predictors one by one: without_Race (scenario 2),

without_Income (scenario 3), without_Population (scenario 4) and without_Canopy (scenario 5) and it

retains the four most important predictors and eliminates weakest predictors (scenario 6). Table 7

shows the all scenarios. A separate multi-criteria analysis is applied to the scenarios. After weighting the

criteria by rating method, a score was calculated. The inequity score was provided as sum of all scores.

The results of all six scenarios for each tract can been seen in appendix A.

The results of sensitivity analysis shows that chosen criteria are correct, however, weighting

process in sensitivity analysis that we employed was not necessarily accurate thus there are no

significant changes in outcome results was observed.

Table 7 Sensitivity

Limitations and Combined Results

30

Over the course of these 8 weeks in which we have been working on this project we have

established methods, designs, and results that can serve as a basis for continued future implementation.

One of the most important things that we have realized from our analysis is the many assumptions and

limitations in our design. We can look at these limitations and understand what course of action should

be taken in the future reduce the impacts of these limitations. Although the model results are imperfect

they serve as a starting point for analyzing trimmed canopy at a larger scale.

 In our first approach we looked at the percent canopy dataset. The results were substantially

larger than those from the 2000 height data. The results found in Table 5 are actually an

overestimation of the amount of canopy that would actual fall within the clearance distance and thus be

removed. These results represent the max amount of canopy that possibly could be trimmed because of

its proximity to the actual feeder line. These numbers are used in the business case outlined below

simple to show an example of how having these quantities could help identify even more so the impact

that trimming trees has on the social, economic, and biophysical systems found within SCL’s service

area. Because the data set is a percentage of canopy cover per area grid we don’t know exactly where

that canopy geographically is located. For this reason it is only a max amount of canopy that might have

to be removed.

 As seen in Figure 13 using the 2000 LIDAR derived height data produces more accurate results.

The main limitation of this process is the fact that the data is 14 years old. The results are more

accurate geographically. We know that that canopy cell is located in that location at a height that would

put its branches in areas that needs to be trimmed. In the sense that we can get an accurate location

and at least semi-accurate area of canopy the method is far superior to looking at merely the percent

canopy. In the future when more current height or LIDAR data becomes available it can be run through

this process to get more accurate results in the sense that the more current the data the more closely it

represents reality. The other limitation that is of importance is that we are only looking at canopy from

31

the top looking down. The results produces are in sq. ft., acres, etc. The most effective way to measure

the value of canopy would be to calculate the volume or tonnage. Another possible future

implementation would be to incorporate the bottom height of the canopy so that it would be possible

to get closer to estimating a volume of canopy that is actually taken out of the system.

 The design that we have implemented allows for looking at the amount of canopy and the social

equity involved in SCL’s service area. Figure 14 shows a sample of the Inequity Index results in

comparison to the estimation of quantity of canopy. The results are fascinating and actually display

 Figure 14 Comparing the Two Method Results

SCL trimming impacts doing well in regards to inequity. It is interesting to note that the areas

with the highest inequity index scores are spread across the SCL service area more than those with

32

lower inequity. It is apparent by the percentages and quantities of area of canopy that is within a 10 ft.

clearance distance in relation to the amount of canopy within those tracts that SCL would not remove

large volumes of quantity in the highest area of inequity based on our index. The reverse is true for the

area with the lowest inequity. Although these results might not be that accurate or telling because of

the previous implementations mentions, they represent a structure in which you can use better data to

analyze two different aspects of SCL maintenance work on trees to protect the power they provide to so

many people.

Future Implementation

 To our knowledge no one has conducted any analysis for evaluating the quantities of trimmed

trees from utilities at the scale we attempted to for this project. We suggest for SCL to seek to obtain

more current canopy data to apply to the design that we have tested. Our conceptual design,

modelling, and representations hopefully will serve as a base where others can build from in more fully

understanding the net impact that SCL has on the urban forest that also serves the people within SCL’s

service are in so many intangible ways.

Business Case

Project Name: Seattle City Light

Project Purpose: Our sponsor is the Seattle City Light vegetation management department that

is responsible for over 1,700 miles of lines running through eight cities and Unincorporated King County,

and 657 miles of transmission right-of-way spread across five counties. Part of the Vegetation

Management unit’s task is to trim trees and bushes off of the feeder lines to ensure interrupted power

supply to their customers. Since the Seattle City Light trims large volumes of vegetation each year; and

given the ecosystem services that urban tree canopy provides, Seattle City Light has commission our

team to gauge the impact of its activities.

33

Project Scope Summary: To achieve our goal of assessing the overall impact of Seattle City Light’s

activities, our team is required to provide the following documents:

 Socio Ecological Systems Table

 Socio Ecological Systems Map

 Threshold Matrix

 Maps (including a Story Map on ArcGIS Online)

Basis of Our Financial Analysis

Our financial analysis is based on the metrics presented in a similar study called: Measuring

Urban Green-High Resolution mapping of Chicago’s tree canopy and Financial Valuation of

Corresponding Environmental Services by Christopher Kowal.

Acres of UTC Pollutant Pounds Removed

1 Ozone (O3) 25.53

1 Sulfur Dioxide (SO2) 11.24

1 Nitrogen Dioxide 11.87

1 ParticulateMater <10

micrometers (PM10)

28.21

1 Carbon Monoxide(CO) 2.05

Table 7 Financial Metrics

We used the metrics of that study to compute the Potential Air Pollution Removal of Canopy Impacted

from feeders.

Summary Statistics SCL SERVICE AREA & CANOPY: 2011 USGS PERCENT CANOPY COVER

 Area Total Area Sq. Ft. Total Area in Acres

SCL Service Area 2558555857.03 58736.59

34

Canopy 487577846.85 11193.25

Possible Canopy impacted from feeders 197686150.46 4538.25

Table 8 Summary Statistics

Potential Air Pollution Removal of Canopy Impacted From Feeders

Pollutant Lbs Removed Multiplier Dollar Value

Ozone (O3) 115868.5 3.375 391,056.18

Sulphur Dioxide (SO2) 51049.8 0.825 42116.08

Nitrogen Dioxide

(NO2)

53885.84 3.375 181,864

Particulate Matter <

10 micrometers

(PM10

128022.62 2.25 288050.89

Carbon Monoxide

(CO)

9318.02 0.475 4426.06

Total 358,144.78 N/A 907513.21

Table 9 Pollutants

Despite the fact that the activities of Seattle City Light are justified to ensure reliable supply of electrical

power, it is important to show the functional and monetary value of the removed canopy.

Economic Benefits Summary

Annual Service Annual Economic Benefit

Air pollution Removal $907,484.77

Carbon Sequestration $6,079.97

Storm Water Savings $2,662,275.77

Total Annual Savings $3,575,840.51

Table 10 Economic Benefits

35

Analysis

Based on our geospatial analysis and financial valuation of the trimming activities of Seattle City Light,

we have reached the following conclusions: We would recommend Seattle City Light to invest to address

the following issues:

 Social Inequity-in terms of UTC distribution within its jurisdiction and

 Ecosystems Services that the UTC provides- SCL should at least adopt best practices in its canopy

trimming activities. From our financial valuation, it became apparent that UTC has value in

terms of the ecosystem services it provides; these intangible benefits include but are not limited

to Water Shed Benefits, Interception Capacity, Energy Benefits-Shading, Transpiration, Wind

Speed Reduction; Variations in Energy Benefits, Air Quality Benefits.

36

Literature Cited

Akbari H., M. Pomerantz, and H. Taha. 2001. Cool surfaces and shade trees to reduce energy use and

improve air quality in urban areas. Solar Energy, 70 (3): 295-310

Bayard, David. 2014. Seattle City Light’s Vegetation Management. Presented to Seattle City meeting,

Seattle, Washington, July.

Ciecko, Lisa., Tenneson, Karis., Dilley, Jada., and Kathleen Wolf. 2012. “Seattle’s Forest Ecosystem Values

Analysis of the Structure, Function, and Economic Benefits. Accessed August 10, 2014

http://www.fs.fed.us/pnw/research/gcra/pdfs/FEVSeattlePublicReport-20120830-final.pdf

Coder, Kim D., 2011. Community Tree Canopy Loss: Calculations & Perceptions. Community Forestry

Series. Warnell School of Forestry and Natural Resources the University of Georgia. July.

Davis, Kimberly L., and Robert E. Jones. 2014. “Modeling Environmental Concern for Urban Tree

Protection Using Biophysical and Social Psychological Indicators. Society & Natural Resources: An

International Journal, 27:4, 362 – 388, DOI 10.1080/08941920.2013.861555

Hoyer, Eric H. 2013. Infrastructure and Eminent Domain – Appraising Trees When Damaged or Removed

For Utilities or Roadways. The Council Quarterly Issue 4, pp 2 - 3. Florida Urban Forestry Council.

Kaplan, Rachel. “The Social Values of Forests and Trees in Ubanized Societies”. Accessed August 15, 2014

http://courses.washington.edu/esrm200/Kaplan_Social_Values.pdf

Kowal, Christopher. 2007. “Measuring Urban Green – High Resolution Mapping of Chicago’s Tree

Canopy and Financial Valuation of Corresponding Environmental Services. Accessed August 15, 2014

ttp://www.pangaeatech.com/ckowal/AICPstudentproject.htm#tab6

Mapes, Lynda V., and Justin Mayor. 2014. “A fight for urban trees: Seattle’s wealthier neighborhoods

leafier. Seattle Times, August 13. Accessed August 14th, 2014

http://seattletimes.com/html/localnews/2024305935_treecanopyxml.html

http://courses.washington.edu/esrm200/Kaplan_Social_Values.pdf

37

Northrop, Rob. 2013. Reducing Conflicts Between Urban Infrastructure and Trees. The Council Quarterly

Issue 4, pp 1. Florida Urban Forestry Council.

Nowak, D.J., D.E. Crane, and J.C. Stevens. 2006. Air pollution removal by urban trees and shrubs in the

United States. Urban Forestry & Urban Greening 4 (3–4): 115-123

Portland’s Urban Forest Canopy Assessment and Public Tree Evaluation. 2007. Accessed August 17, 2014

http://www.portlandonline.com/shared/cfm/image.cfm?id=171829

Appendix A

http://www.portlandonline.com/shared/cfm/image.cfm?id=171829

38

Sensitivity Tables

39

40

41

42

Python Code for tools

SCL Get Selected Canopy Cover Python Script Tool code:

'''
 Name: SCLGetSelectedCanopyCover.py
 Create Date: 08/16/2014
 Created by: Ben Hillam
 Organization: UW PMPGIS Capstone Project - Sponsor Seattle City Light
 Description: This is the first of two python scripts to help SCL evaluate feeder impacts on canopy
cover
 in its service area. This script will take the dem height raster and get the qualifying
 cells in association with the roads and feeder height. The results can be put in the second
 model to run to calculate the total area of canopy impacted
'''
Import modules
import arcpy
from arcpy import env

Local variables
inputBaseRaster = arcpy.GetParameterAsText(0)#r'C:\Grad_School\Geog_569\Seattle City Light
Project\Data\Lidar\baseElevation\basee'
inputTopSurfaceRaster = arcpy.GetParameterAsText(1)#r'C:\Grad_School\Geog_569\Seattle City Light
Project\Data\Lidar\topElevation\surfacee'

43

inputFeederFC = arcpy.GetParameterAsText(2) #r'C:\Grad_School\Geog_569\Seattle City Light
Project\Data\SCLCapstoneProject.gdb\OH_Feeders'
inputStreetsFC =
arcpy.GetParameterAsText(3)#r'C:\Users\bhillam\Documents\ArcGIS\Packages\Buildings and
Streets\v101\sclcgdb.gdb\Transportation\Street_Network'
inputBufferDistance = arcpy.GetParameterAsText(4)#'10'
outputLocationDEM = arcpy.GetParameterAsText(5)#r'C:\Grad_School\Geog_569\Seattle City Light
Project\Data\Lidar\testWorkspace'
outputLocationFCs = arcpy.GetParameterAsText(6)#r'C:\Grad_School\Geog_569\Seattle City Light
Project\Data\Lidar\testWorkspace\ValidCanopyResults.gdb'

Set up workspace
env.workspace = outputLocationDEM
arcpy.env.overwriteOutput = True

try:
'''
**
CALCULATE THE TOP HEIGHT OF THE CANOPY
**
'''
#print 'Starting Calculations . . .\n'
arcpy.AddMessage('Starting Calculations . . .\n')
Calculate the height from the base and surface rasters
#print 'Checking out license . .'
arcpy.AddMessage('Checking out license . .')
arcpy.CheckOutExtension("Spatial")
resultHeightDEMName = 'ResultSurfaceHeight.tif'
#print 'Creating the height DEM by subtracting top surface raster from the base raster . . .'
arcpy.AddMessage('Creating the height DEM by subtracting top surface raster from the base raster
. . .')
resultHeightDEM = arcpy.sa.Minus(inputTopSurfaceRaster, inputBaseRaster)
#print 'Times the value by 1000000 to preserve the decimal places 6 places . . . '
arcpy.AddMessage('Times the value by 1000000 to preserve the decimal places 6 places . . . ')
resultHeightDEMT6 = arcpy.sa.Times(resultHeightDEM, 1000000)
#print 'Converting values to Int in raster . . .'
arcpy.AddMessage('Converting values to Int in raster . . .')
resultHeightDEM_Int = arcpy.sa.Int(resultHeightDEMT6)
#print 'Saving result height DEM . . .'
arcpy.AddMessage('Saving result height DEM . . .')
resultHeightDEM_Int.save('{0}\\{1}'.format(outputLocationDEM, resultHeightDEMName))
#print 'Result height DEM complete.\n'
arcpy.AddMessage('Result height DEM complete.\n')
#print 'Checking license back in . . .'
arcpy.AddMessage('Checking license back in . . .')
arcpy.CheckInExtension("Spatial")
 resultSurfaceHeightDEM = '{0}\\{1}'.format(outputLocationDEM, 'ResultSurfaceHeight.tif')

44

 '''
 **
 CONVERT THE CANOPY RASTER TO A POLYGON
 **
 '''
 #print '\nAssigning feeder type by associated street classification . . .'
 arcpy.AddMessage('\nAssigning feeder type by associated street classification . . .')
 # Re-assign the workspace
 env.workspace = outputLocationFCs
 arcpy.env.overwriteOutput = True

#print 'Creating surface height polygon . . .'
arcpy.AddMessage('Creating surface height polygon . . .')
 resultSurfaceHeightPoly = '{0}\\{1}'.format(outputLocationFCs, 'ResultSurfaceHeight')
arcpy.RasterToPolygon_conversion(resultSurfaceHeightDEM, resultSurfaceHeightPoly,
"NO_SIMPLIFY")
#print 'Surface height polygon completed.'
arcpy.AddMessage('Surface height polygon completed')

'''
**
GET THE STREET TYPE THE FEEDER IS MOST LIKELY ON TO CALCULATE DISTANCE
**
'''
First split the lines so they are all in segments
#print 'Spitting feeders into individual segments . . .'
arcpy.AddMessage('Spitting feeders into individual segments . . .')
feedersSplitFCName = 'FeedersSplit'
feedersSplitFC = '{0}\\{1}'.format(outputLocationFCs, feedersSplitFCName)
arcpy.FeatureToLine_management(inputFeederFC, feedersSplitFC)

Next identify the nearest street/road to get what type of road it is
#print 'Finding the nearest road to the feeder . . .'
arcpy.AddMessage('Finding the nearest road to the feeder . . .')
arcpy.Near_analysis(feedersSplitFC, inputStreetsFC)

Add a field to determine what type of road it is
#print 'Adding ArterialRoad field to feeders split FC . . .'
arcpy.AddMessage('Adding ArterialRoad field to feeders split FC . . .')
arcpy.AddField_management(feedersSplitFC, "ArterialFeeder", "SHORT")

Join the "FEaCODE" field to the feeders split FC to calculate the
#print 'Joining street network to feeders . . .'
arcpy.AddMessage('Joining street network to feeders . . .')
arcpy.JoinField_management(feedersSplitFC, "NEAR_FID", inputStreetsFC, "OBJECTID", "FEACODE")

Calculate whether the feeder is on an arterial street based on thejoin fiedl
#print 'Identifying feeders on arterial roads . . .'

45

arcpy.AddMessage('Identifying feeders on arterial roads . . .')
expression = 'getStreetType(!FEACODE!)'
codeBlock = '''def getStreetType(feaCode):
if feaCode == 1:
return 1
else:
return 0'''

arcpy.CalculateField_management(feedersSplitFC, "ArterialFeeder", expression, "PYTHON",
codeBlock)

'''
**
CREATE SEPERATE BUFFERS FOR ARTERIAL AND NON ARTERIAL FEEDERS
**
'''
Need to make feature layer of feedersSplitFC first
feedersSplitFeatureLayer = 'feedersSplitFeatureLayer'
#print 'Creating feature layer for the feeders feature class . . . '
arcpy.AddMessage('Creating feature layer for the feeders feature class . . . ')
if arcpy.Exists(feedersSplitFeatureLayer) == False:
arcpy.MakeFeatureLayer_management(feedersSplitFC, feedersSplitFeatureLayer)
else:
arcpy.Delete_management(feedersSplitFeatureLayer)
arcpy.MakeFeatureLayer_management(feedersSplitFC, feedersSplitFeatureLayer)

Select only primary arterial roads with "FEACODE" = 1 for first buffer
arcpy.SelectLayerByAttribute_management(feedersSplitFeatureLayer, "NEW_SELECTION",
"ArterialFeeder = 1")

 # Create buffer of only the arterial roads
 arterialBufferFCName = 'FeedersArterial_{0}FtBuff'.format(inputBufferDistance)
 arterialBufferFC = '{0}\\{1}'.format(outputLocationFCs, arterialBufferFCName)

#print 'Creating arterial feeder buffer . . .'
arcpy.AddMessage('Creating arterial feeder buffer . . .')
arcpy.Buffer_analysis(feedersSplitFeatureLayer, arterialBufferFC, inputBufferDistance + ' Feet')

 # Create arterial feeder buffer feature layer
 arterialFeedersBuffFeatureLayer = 'ArterialFeedersBuff'
 #print 'Createing feature layer for the arterial feeders buffer feature class . . .'
 arcpy.AddMessage('Createing feature layer for the arterial feeders buffer feature class . . .')
 if arcpy.Exists(arterialFeedersBuffFeatureLayer) == False:
 arcpy.MakeFeatureLayer_management(arterialBufferFC, arterialFeedersBuffFeatureLayer)
 else:
 arcpy.Delete_management(arterialFeedersBuffFeatureLayer)
 arcpy.MakeFeatureLayer_management(arterialBufferFC, arterialFeedersBuffFeatureLayer)

46

Clear the selection to make sure nothing gets picked up that isn't wanted
arcpy.SelectLayerByAttribute_management(feedersSplitFeatureLayer, "CLEAR_SELECTION")

Select only non primary arterial roads with "FEACODE" <> 1 for second buffer
arcpy.SelectLayerByAttribute_management(feedersSplitFeatureLayer, "NEW_SELECTION",
"ArterialFeeder <> 1")

 # Create buffer of only the arterial roads
 nonArterialBufferFCName = 'FeedersNonArterial_{0}FtBuff'.format(inputBufferDistance)
 nonAarterialBufferFC = '{0}\\{1}'.format(outputLocationFCs, nonArterialBufferFCName)

print 'Creating non-arterial feeder buffer . . .'
arcpy.Buffer_analysis(feedersSplitFeatureLayer, nonAarterialBufferFC, inputBufferDistance + ' Feet')

 # Create non-arterial feeder buffer feature layer
 nonArterialFeedersBuffFeatureLayer = 'NonArterialFeedersBuff'
 #print 'Createing feature layer for the non-arterial feeders buffer feature class . . .'
 arcpy.AddMessage('Createing feature layer for the non-arterial feeders buffer feature class . . .')
 if arcpy.Exists(nonArterialFeedersBuffFeatureLayer) == False:
 arcpy.MakeFeatureLayer_management(nonAarterialBufferFC, nonArterialFeedersBuffFeatureLayer)
 else:
 arcpy.Delete_management(nonArterialFeedersBuffFeatureLayer)
 arcpy.MakeFeatureLayer_management(nonAarterialBufferFC, nonArterialFeedersBuffFeatureLayer)

print 'Completed intermediate tasks'

 '''
 **
 GET ALL THE VALID HEIGHT AREAS THAT INTERSECT BOTH BUFFERS
 **
 '''
 #print '\nSelecting all qualifying surface heights by buffer . . .'
 arcpy.AddMessage('\nSelecting all qualifying surface heights by buffer . . .')
 # Create feature layer of the result heights polygon
 resultSurfaceHeightFeatureLayer = 'resultSurfaceHeightFeatureLayer'
 #print 'Creating surface hieght feature layer . . .'
 arcpy.AddMessage('Creating surface hieght feature layer . . .')
 if arcpy.Exists(resultSurfaceHeightFeatureLayer) == False:
 arcpy.MakeFeatureLayer_management(resultSurfaceHeightPoly, resultSurfaceHeightFeatureLayer)

 totalWhereClause = "gridcode >= 30500000 and gridcode <= 60500000"
 #print 'Selecting only surface heights within total range for arterial and non-arterial feeders . . .'
 arcpy.AddMessage('Selecting only surface heights within total range for arterial and non-arterial
feeders . . .')
 arcpy.SelectLayerByAttribute_management(resultSurfaceHeightFeatureLayer, "NEW_SELECTION",
totalWhereClause)

 #print 'Selecting valid heights for arterial feeder locations . . .'

47

 arcpy.AddMessage('Selecting valid heights for arterial feeder locations . . .')
 arcpy.SelectLayerByLocation_management(resultSurfaceHeightFeatureLayer, "INTERSECT",
arterialFeedersBuffFeatureLayer, "", "SUBSET_SELECTION")
 #print 'Completed selection'
 arcpy.AddMessage('Completed selection')

 # Export this to a feature class
 arterialFeederSurfaceHeightFCName = 'ArterialFeederSurfaceHeight'
 arterialFeederSurfaceHeightFC = '{0}\\{1}'.format(outputLocationFCs,
arterialFeederSurfaceHeightFCName)

 arterialWhereClause = "gridcode >= 35500000 and gridcode <= 60500000"
 #print 'Exporting selected arterial surface height cells . . . '
 arcpy.AddMessage('Exporting selected arterial surface height cells . . . ')
 arcpy.FeatureClassToFeatureClass_conversion(resultSurfaceHeightFeatureLayer, outputLocationFCs,
arterialFeederSurfaceHeightFCName, arterialWhereClause)
 #print 'Arterial canopy location exported to feature class'
 arcpy.AddMessage('Arterial canopy location exported to feature class')

 # Clear the selection to do new one for non-arterial feeders
 #print 'Clearing selection . . .'
 arcpy.AddMessage('Clearing selection . . .')
 arcpy.SelectLayerByAttribute_management(resultSurfaceHeightFeatureLayer, "CLEAR_SELECTION")

 # Make initial selection again
 #print 'Selecting only surface heights within total range for arterial and non-arterial feeders . . .'
 arcpy.AddMessage('Selecting only surface heights within total range for arterial and non-arterial
feeders . . .')
 arcpy.SelectLayerByAttribute_management(resultSurfaceHeightFeatureLayer, "NEW_SELECTION",
totalWhereClause)

 #print 'Selecting valid heights for non arterial feeder locations . . .'
 arcpy.AddMessage('Selecting valid heights for non arterial feeder locations . . .')
 arcpy.SelectLayerByLocation_management(resultSurfaceHeightFeatureLayer, "INTERSECT",
nonArterialFeedersBuffFeatureLayer, "", "SUBSET_SELECTION")
 #print 'Completed selection'
 arcpy.AddMessage('Completed selection')

 # Export this to a feature class
 nonArterialFeederSurfaceHeightFCName = 'NonArterialFeederSurfaceHeight'
 nonArterialFeederSurfaceHeightFC = '{0}\\{1}'.format(outputLocationFCs,
nonArterialFeederSurfaceHeightFCName)

 nonArterialWhereClause = "gridcode >= 30500000 and gridcode <= 55500000"
 #print 'Exporting selected non-arterial surface height canopy . . . '
 arcpy.AddMessage('Exporting selected non-arterial surface height canopy . . . ')
 arcpy.FeatureClassToFeatureClass_conversion(resultSurfaceHeightFeatureLayer, outputLocationFCs,
nonArterialFeederSurfaceHeightFCName, nonArterialWhereClause)

48

 #print 'Non-arterial canopy location exported to feature class'
 arcpy.AddMessage('Non-arterial canopy location exported to feature class')

 # Append the non-arterial results to the arterial results to get one final feature class
 #print 'Appending arterial and non-arterial qualified surface height feature classes . . . '
 arcpy.AddMessage('Appending arterial and non-arterial qualified surface height feature classes . . . ')
 arcpy.Append_management(nonArterialFeederSurfaceHeightFC, arterialFeederSurfaceHeightFC,
"TEST")

 # Delete any duplicates that may result from overlapping bufffers
 #print 'Deleting any duplicates from final feature class . . .'
 arcpy.AddMessage('Deleting any duplicates from final feature class . . .')
 arcpy.DeleteIdentical_management(arterialFeederSurfaceHeightFC, "Shape")

 # Add fied to calculate the correct height to 6 decimal places
 #print 'Adding final height field . . .'
 arcpy.AddMessage('Adding final height field . . .')

 # If HeightFt field already exists don't create a new one
 fieldExists = False
 resultFCFieldList = arcpy.ListFields(arterialFeederSurfaceHeightFC)
 for field in resultFCFieldList:
 if field.name == 'HeightFt':
 fieldExists = True
 else:
 fieldExists = False

 if fieldExists == False:
 arcpy.AddMessage("\tHeightFt field didn't not exists creating field . . .")
 arcpy.AddField_management(arterialFeederSurfaceHeightFC, "HeightFt", "DOUBLE")
 else:
 arcpy.AddMessage("\tHeightFt field already exist")

 # Calculate correct height value
 #print 'Calculating correct height to 6 decimal places . . .'
 arcpy.AddMessage('Calculating correct height to 6 decimal places . . .')
 expression = "!gridcode! / 1000000.00 "
 arcpy.CalculateField_management(arterialFeederSurfaceHeightFC, "HeightFt", expression, "PYTHON")
 print 'Qualified Surface Height Results Layer is complete'
 arcpy.AddMessage('Qualified Surface Height Results Layer is complete')

 #print '\nFINISHED'
 arcpy.AddMessage('\nFINISHED')

except Exception as e:
 #print '{0}'.format(e)
 arcpy.AddMessage('{0}'.format(e))

49

SCL Calculate Canopy Net Impact Pthon Script Tool code:

 ** This code needs to be updated. After the buffer is created and before secion three the buffer
needs to be dissolved to be one continuous buffer for the entire area.

'''
 Name: SCLCalculateCanopyNetImpact.py
 Create Date: 07/26/2014
 Created by: Ben Hillam
 Organization: UW PMPGIS Capstone Project - Sponser Seattle City Light
 Description: This script was written to go through the Seattle City Light (SCL)
 overhead feeders calculate total area of canopy possibly impacted by
 the overhead lines
'''
Import Modules
import arcpy
from arcpy import env

Global Variables
canopyFC = arcpy.GetParameterAsText(0)#r'C:\Grad_School\Geog_569\Seattle City Light
Project\Data\Lidar\testWorkspace\ValidCanopyResults.gdb\ArterialFeederSurfaceHeight'
feederFC = arcpy.GetParameterAsText(1)#r'C:\Grad_School\Geog_569\Seattle City Light
Project\Data\SCLCapstoneProject.gdb\OH_Feeders'
outputLocation = arcpy.GetParameterAsText(3)#r'C:\Grad_School\Geog_569\Seattle City Light
Project\Data\Lidar\testWorkspace\ResultsCanopyPerFeeder.gdb'

bufferDistance = arcpy.GetParameterAsText(2)#'10'
nearCalculated = False
areaField = False
areaPerFeederField = False
totalCanopyField = False

env.workspace = outputLocation

Methods
try:
 '''
 SECTION 1: Creating the buffer for the feeders. This is used to calculate the area and takes
 the input parameter of the bufferDistance. Here variation modeling could be done to complete this.
 '''
 # Create feeders buffer
 feedersBuffFCName = 'OH_Feeder{0}FtBuffer'.format(bufferDistance)
 feedersBuffFC = '{0}\\{1}'.format(outputLocation, feedersBuffFCName)
 #print '\nStarted Process...'
 arcpy.AddMessage('\nStarted Process...')
 #print 'Creating feeder buffer . . .'
 arcpy.AddMessage('Creating feeder buffer . . .')

50

 # If the buffered feature class doesn't already exist create it
 if arcpy.Exists(feedersBuffFC) == False:
 arcpy.Buffer_analysis(feederFC, feedersBuffFC, '{0} Feet'.format(bufferDistance))
 else:
 #print '\tBuffer Already Existed'
 arcpy.AddMessage('\tBuffer Already Existed')

 '''
 SECTION 3: Get the selected canopy first by what road it is associated with, then whether it falls
within the
 feeders buffer
 '''
 #print 'Begginging to go through calculate canopy per feeder'
 arcpy.AddMessage('Begginging to go through calculate canopy per feeder . . .')

 # Clip the canopy featureclass to the buffered feeder feature class
 canopyClipFCName = 'FeederCanopy{0}FtBuff'.format(bufferDistance)
 canopyClipFC = r'{0}\\{1}'.format(outputLocation, canopyClipFCName)
 if arcpy.Exists(canopyClipFC) == False:
 #print 'Clipping Canopy . . .'
 arcpy.AddMessage('Clipping Canopy . . .')
 arcpy.Clip_analysis(canopyFC, feedersBuffFC, canopyClipFC)
 else:
 #print "Canopy clip feature class all ready exists"
 arcpy.AddMessage("Canopy clip feature class all ready exists")

 # Evaluate if near distance already calculated
 fields = arcpy.ListFields(canopyClipFC)
 for field in fields:
 if field.name == 'NEAR_FID':
 nearCalculated = True
 if field.name == 'AreaSqFt':
 areaField = True
 if field.name == 'aPerFeeder':
 areaPerFeederField == True

 # Use near analysis to calculate which feeder the canopy will go to
 if nearCalculated == False:
 #print 'Calculating near distance for clipped canopy . . .'
 arcpy.AddMessage('Calculating near distance for clipped canopy . . .')
 arcpy.Near_analysis(canopyClipFC, feederFC)
 else:
 #print 'Near distance already calculated'
 arcpy.AddMessage('Near distance already calculated')

 if areaField == False:
 #print 'Creating field to calculate area in square feet . . .'

51

 arcpy.AddMessage('Creating field to calculate area in square feet . . .')
 arcpy.AddField_management(canopyClipFC, "AreaSqFt", "DOUBLE")
 else:
 #print 'Clipped canopy feature square feet field all ready exists'
 arcpy.AddMessage('Clipped canopy feature square feet field all ready exists')

 if areaPerFeederField == False:
 #print 'Creating area per feeder field . . .'
 arcpy.AddMessage('Creating area per feeder field . . .')
 arcpy.AddField_management(canopyClipFC, "aPerFeeder", "Double")
 else:
 #print 'Area per feeder field already exists'
 arcpy.AddMessage('Area per feeder field already exists')

 # Sort the attribute table before you edit it
 canopyClipSortFCName = '{0}Sort'.format(canopyClipFCName)
 canopyClipSortFC = r'{0}\\{1}'.format(outputLocation, canopyClipSortFCName)

 if arcpy.Exists(canopyClipSortFC) == False:
 #print 'Sorting the clipped canopy layer . . .'
 arcpy.AddMessage('Sorting the clipped canopy layer . . .')
 arcpy.Sort_management(canopyClipFC, canopyClipSortFC, 'NEAR_FID')
 else:
 #print 'Sort feature class already exists . . .'
 arcpy.AddMessage('Sort feature class already exists . . .')

 #print 'Calculating number of records in canopy feeter class . . .'
 arcpy.AddMessage('Calculating number of records in canopy feeter class . . .')
 numRows = arcpy.GetCount_management(canopyClipSortFC)
 numberRowsInCanopyFC = int(numRows.getOutput(0))

 #print 'Calculating the area of canopy of clipped features & sum per feeder . . .'
 arcpy.AddMessage('Calculating the area of canopy of clipped features & sum per feeder . . .')
 feederAreaTemp = []
 feederArea = []
 feederAreaFields = ['NEAR_FID','Shape_Area']
 counter = 0
 count = 0
 areaPerFeeder = 0
 with arcpy.da.UpdateCursor(canopyClipSortFC, feederAreaFields) as cursor:
 for row in cursor:
 count+=1
 feederID = row[0]
 feederAreaSqFt = row[1]
 if count == numberRowsInCanopyFC:
 areaPerFeeder += feederAreaSqFt
 feederArea.append([feederID, areaPerFeeder])
 else:

52

 if len(feederAreaTemp) == 0:
 feederAreaTemp.append([feederID, feederAreaSqFt])
 areaPerFeeder+=feederAreaSqFt
 elif (len(feederAreaTemp) - 1 == 0) & (feederID == feederAreaTemp[counter - 1][0]):
 feederAreaTemp.append([feederID, feederAreaSqFt])
 areaPerFeeder+=feederAreaSqFt
 elif feederID == feederAreaTemp[counter-1][0]:
 feederAreaTemp.append([feederID, feederAreaSqFt])
 areaPerFeeder+=feederAreaSqFt
 else:
 feederArea.append([feederAreaTemp[counter-1][0], areaPerFeeder])
 areaPerFeeder = feederAreaSqFt
 feederAreaTemp = []
 feederAreaTemp.append([feederID, feederAreaSqFt])
 counter=0
 counter+=1

 # Have to have a canopy clip layer as well
 canopyClipFeatureLayer = 'CanopyClipFeatureLayer'
 if arcpy.Exists(canopyClipFeatureLayer) == False:
 #print 'Creating canopy clipped feature layer . . .'
 arcpy.AddMessage('Creating canopy clipped feature layer . . .')
 arcpy.MakeFeatureLayer_management(canopyClipFC, canopyClipFeatureLayer)
 else:
 arcpy.Delete_management(canopyClipFeatureLayer)
 arcpy.MakeFeatureLayer_management(canopyClipFC, canopyClipFeatureLayer)
 #print 'Canopy clip feature layer already exists. Deleted and created new one.'
 arcpy.AddMessage('Canopy clip feature layer already exists. Deleted and created new one.')

 # Populate the canopyClipFeature with its resulting total canopy area
 #print 'Calculating total area per feeder . . .'
 arcpy.AddMessage('Calculating total area per feeder . . .')
 for area in feederArea:
 fid = area[0]
 whereClause = 'NEAR_FID = {0}'.format(fid)
 arcpy.SelectLayerByAttribute_management(canopyClipFeatureLayer, "NEW_SELECTION",
whereClause)
 arcpy.CalculateField_management(canopyClipFeatureLayer, "aPerFeeder", area[1], "PYTHON")

 # Create a new feeders feature class to store the area results in
 resultCanopyFeederFCName = 'OH_Feeder_CanopyResults'
 resultCanopyFeederFC = '{0}\\{1}'.format(outputLocation, resultCanopyFeederFCName)

 if arcpy.Exists(resultCanopyFeederFC) == False:
 #print 'Creating result canopy feeder feature class . . .'
 arcpy.AddMessage('Creating result canopy feeder feature class . . .')
 arcpy.CopyFeatures_management(feederFC, resultCanopyFeederFC)
 #print 'Creating result square feet field . . .'

53

 arcpy.AddMessage('Creating result square feet field . . .')
 arcpy.AddField_management(resultCanopyFeederFC, "ResultCanopySQFt", "DOUBLE")
 else:
 #print 'Result canopy feature class already exists'
 arcpy.AddMessage('Result canopy feature class already exists')

 # Dissolve the canopy clip feature layer to use to join back to OH_Feeder_CanopyResult FC
 dissolveCanopyFCName = 'FeederCanopyResults_Dissolve'
 dissolveCanopyFC = '{0}\\{1}'.format(outputLocation, dissolveCanopyFCName)

 # The dissovle tool requires a feature class, so get the feature class from the canopy clip feature layer
 #print 'Getting canopy clip feature class from canopy clip feature layer . . .'
arcpy.AddMessage('Getting canopy clip feature class from canopy clip feature layer . . .')
desc = arcpy.Describe(canopyClipFeatureLayer)
arcpy.AddMessage('described canopyClipFeatureLayer')
canopyClipFC = desc.catalogPath
arcpy.AddMessage ('got path of canopyClipFeature Layer feature class')
 arcpy.AddMessage('This is where it failed earlier')

 if arcpy.Exists(dissolveCanopyFC) == False:
 #print 'Disolving canopy clip feature class . . .'
 arcpy.AddMessage('Disolving canopy clip feature class . . .')
 arcpy.Dissolve_management(canopyClipFC, dissolveCanopyFC, ["NEAR_FID", "aPerFeeder"])
 else:
 #print 'Dissolved canopy clip feature class aleady exists'
 arcpy.AddMessage('Dissolved canopy clip feature class aleady exists')

 # Join tables and calculate
 #print 'Joining table and calcuating area per feeder . . .'
 arcpy.AddMessage('Joining table and calcuating area per feeder . . .')
 arcpy.JoinField_management(resultCanopyFeederFC, "OBJECTID", dissolveCanopyFC, "NEAR_FID",
"aPerFeeder")

 # Calculate area field in result Canopy feature class
 #print 'Calculaing the area field in the result feature class . . .'
 arcpy.AddMessage('Calculaing the area field in the result feature class . . .')
 arcpy.CalculateField_management(resultCanopyFeederFC, "ResultCanopySQFt", "!aPerFeeder!",
"PYTHON")

 # Delete the joined field from the result
 #print 'Removing teomporary joined field from the result . . .'
 arcpy.AddMessage('Removing teomporary joined field from the result . . .')
 arcpy.DeleteField_management(resultCanopyFeederFC, "aPerFeeder")

resultCanopyFeederFC = r'C:\Grad_School\Geog_569\Seattle City Light
Project\Data\Lidar\resultHeight\ResultSurface.gdb\OH_Feeder_CanopyResults'
 # Calculate the final total canopy area per feeder
 resultFields = arcpy.ListFields(resultCanopyFeederFC)

54

 for field in resultFields:
 if field.name == 'TotalCanopySqFt':
 totalCanopyField = True

 if totalCanopyField == False:
 #print 'Creating total canopy field in result feature class . . .'
 arcpy.AddMessage('Creating total canopy field in result feature class . . .')
 arcpy.AddField_management(resultCanopyFeederFC, 'TotalCanopySqFt', 'DOUBLE')
 else:
 #print 'Total canopy field already existed'
 arcpy.AddMessage('Total canopy field already existed')

 # Sort the attribute table before you edit it
 resultSortFCName = '{0}Sort'.format('OH_Feeder_CanopyResults')
 resultSortFC = r'{0}\\{1}'.format(outputLocation, resultSortFCName)

 if arcpy.Exists(resultSortFC) == False:
 #print 'Sording result layer . . .'
 arcpy.AddMessage('Sording result layer . . .')
 arcpy.Sort_management(resultCanopyFeederFC, resultSortFC, 'FEEDERID')
 else:
 #print 'Sorted results feature class already existed'
 arcpy.AddMessage('Sorted results feature class already existed')

 #print 'Calculating the number of records in the result feature class . . .'
 arcpy.AddMessage('Calculating the number of records in the result feature class . . .')
 numRecs = arcpy.GetCount_management(resultSortFC)
 numRecsSort = int(numRecs.getOutput(0))

 # Grouping the total result canopy area for each feeder
 #print 'Grouping the total canopy per individual feeder . . .'
 arcpy.AddMessage('Calculating the total canopy per individual feeder . . .')
 feederTotalTemp = []
 feederTotal = []
 feederTotalFields = ['FEEDERID','ResultCanopySQFt']
 fCount = 0
 fCounter = 0
 totalAreaPerFeeder = 0
 with arcpy.da.SearchCursor(resultSortFC, feederTotalFields) as cursor:
 for row in cursor:
 fCount+=1
 feederID = row[0]
 feederAreaSqFt = row[1]
 if feederAreaSqFt is None:
 feederAreaSqFt = 0
 if fCount == numRecsSort:
 totalAreaPerFeeder += feederAreaSqFt
 feederTotal.append([feederID, areaPerFeeder])

55

 else:
 if len(feederTotalTemp) == 0:
 feederTotalTemp.append([feederID, feederAreaSqFt])
 totalAreaPerFeeder+=feederAreaSqFt
 elif len(feederTotalTemp) - 1 == 0:
 feederTotalTemp.append([feederID, feederAreaSqFt])
 totalAreaPerFeeder+=feederAreaSqFt
 elif feederID == feederTotalTemp[fCounter-1][0]:
 feederTotalTemp.append([feederID, feederAreaSqFt])
 totalAreaPerFeeder+=feederAreaSqFt
 else:
 feederTotal.append([feederTotalTemp[len(feederTotalTemp)-1][0], totalAreaPerFeeder])
 totalAreaPerFeeder = feederAreaSqFt
 feederTotalTemp = []
 feederTotalTemp.append([feederID, feederAreaSqFt])
 fCounter=0
 fCounter+=1

 #print 'Calculating the total canopy for each feeder . . .'
 arcpy.AddMessage('Calculating the total canopy for each feeder . . .')
 for feeder in feederTotal:
 with arcpy.da.UpdateCursor(resultCanopyFeederFC, ["FEEDERID", "TotalCanopySqFt"]) as cursor2:
 for row in cursor2:
 if feeder[0] == row[0]:
 row[1] = feeder[1]
 cursor2.updateRow(row)

 # Dissolve the canopy clip feature layer to use to join back to OH_Feeder_CanopyResult FC
 dissolveResultFCName = 'TotalFeederCanopyResult'
 dissolveResultFC = '{0}\\{1}'.format(outputLocation, dissolveResultFCName)

 if arcpy.Exists(dissolveResultFC) == False:
 #print 'Disolving Canopy Resolve Feature Layer . . .'
 arcpy.AddMessage('Disolving Canopy Resolve Feature Layer . . .')
 arcpy.Dissolve_management(resultCanopyFeederFC, dissolveResultFC, ["FEEDERID",
"TotalCanopySqFt"])
 else:
 #print 'Dissolved result feature class already exists'
 arcpy.AddMessage('Dissolved result feature class already exists')

 #print "\nFINISHED"
 arcpy.AddMessage("\nFINISHED")

except Exception as e:
 print '{0}'.format(e)
 arcpy.AddMessage('{0}'.format(e))

56

57

58

Feature Dataset Feature Class Definition of Feature Class Data Source Spatial Reference Data Model

BaseLayers

Building

Building locations throughout the SCL service

area from 2009 Seattle City Light (SCL) NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolygon

City City boundaries in King County King County GIS Portal NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolygon

KingCounty King County boundary King County GIS Portal NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolygon

SCLServiceAreaGeneral Outer boundary of SCL service area Derived (digitized) by analyst NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolygon

ServiceAreaDetail

Detailed boundary of SCL service area (inner

boundary included) Derived (digitized) by analyst NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolygon

CanopyFeederLayers

OH_Feeders All the over head feeder lines in SCL service area Seattle City Light (SCL) NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolyline

SCLPercentCanopy11

Canopy density throughout SCL service area from

2011 Derived from United States Forest Service (USFS) NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolygon

StreetNetwork

The transportation network (streets) for SCL

service area Seattle City Light (SCL) NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolyline

InequityIndexMCE_Inputs

ManufacturingCenter Location of manufacturing centers King County GIS Portal NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolygon

ManufacturingIndustrialCenter Manufacturing and Industrial areas King County GIS Portal NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolygon
Parks Public parks in the greater Seattle area King County GIS Portal NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolygon

TreesPlanted Samples of trees planted throughout region Seattle Department of Transportation (SDOT) NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPoint
TreesRemoval Total trees removed at specific location and time Seattle City Light (SCL) NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPoint

WasteWaterTreatmentFacility Waste water facility locations King County GIS Portal NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPoint

Wetlands Wetland areas King County GIS Portal NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolygon
InequityIndexMCE_Intermediate

FacilitySCL Facilities within tracts Derived from MCE workflow NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolygon

Greenspace Greenspace within tracts Derived from MCE workflow NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolygon

GreenspaceIntersect Intersect of all areas for greenspace Derived from MCE workflow NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolygon
HospitalsSCL Hospital locations in the greater Seattle area Derived from MCE workflow NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPoint

IndustrialCenters Industrial centers within selected tracts Derived from MCE workflow NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolygon

SCLTractsCanopySptJn Tracts joined with the percent canopy layer Derived from MCE workflow NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolygon

TreesPlantedIntersect Trees planted joined with tracts Derived from MCE workflow NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolygon

TreesRemovedIntersect Trees removed joined with tracts Derived from MCE workflow NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolygon

InequityIndexMCE_Result

InequityIndexResult Result layer with all scores Derived from MCE workflow NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolygon

SCLCalculateNetImpact_Results

FeederCanopy10FtBuff

Qualifying canopy within 10 ft. buffer of feeder

line Derived from python script tool NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolygon

FeederCanopy10FtBuffSort FeederCanopy10FtBuff sorted Derived from python script tool NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolygon

FeederCanopyResults_Dissolve

Qualifying canopy within 10 ft. buffer of feeder

line dissolved by feeder line ID Derived from python script tool NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolygon

OH_Feeder_CanopyResults

Area (sq. ft.) of canopy within input clearance

distance of each feeder multi-line part Derived from python script tool NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolyline

OH_Feeder_CanopyResultsSortOH_Feeder_CanopyResults sorted Derived from python script tool NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolyline

OH_Feeder10FtBuffer Feeder lines buffered by user input distance Derived from python script tool NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolygon

TotalFeederCanopyResult

Final result of total area (sq. ft.) of canopy within

input clearance distance per feeder line Derived from python script tool NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolyline

SCLCanopyPercent_Results

OH_FeederPercentCanopy

Result area (sq. ft.) of canopy possibly within

clearance distance based on percent canopy layer Derived by analyst NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolyline

SCLPercentCanopy10FtBuff

Selected grid cells from SCLAreaPercentCanopy

raster within clearance distance Derived by analyst NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolygon

SCLGetSelectedCanopyCover_Results

ArterialFeederSurfaceHeight

Final qualifying canopy area layer

(NonArterialFeederSurfaceHeight appended to

this layer) Derived from python script tool NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolygon

FeedersArterial_10FtBuff

Feeders associated with primary arterial streets

buffered by input clearance distance Derived from python script tool NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolygon

FeedersNonArterial_10FtBuff

Feeders associated with all other types of streets

buffered by input clearance distance Derived from python script tool NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolygon

FeedersSplit

Feeder lines split at vertices to associate with

streets Derived from python script tool NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolyline

NonArterialFeederSurfaceHeight

Qualifying canopy area layer from non-primary

arterial streets Derived from python script tool NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolygon

ResultSurfaceHeight

Feature class resulting from subtracting the

BaseHeight from the TopSurfaceHeight raster

dataset Derived from python script tool NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetPolygon

Tables

Income10 Income by census tract from 2010 NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetTable

RacePopulationCensusTract10 Race and population by census tract from 2010 NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetTable

Raster Datasets

BaseHeight Base 6ft. Resolution raster from LIDAR 2000 Puget Sound LIDAR Consortium (PSLC) NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetRaster

SCLAreaPercentCanopy Canopy density that intersects SCL feeders 2011 United States Forest Service (USFS) NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetRaster

SCLPercentCanopy Canopy density for entire SCL service area 2011 United States Forest Service (USFS) NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetRaster

TopSurfaceHeight Top surface (first return) raster from LIDAR 2000 Puget Sound LIDAR Consortium (PSLC) NAD 1983 HARN StatePlane Washington North FIPS 4601 FeetRaster

59

Figure 1 SES Map

