

Enhancing Collaborative Data Collection

Using Mapillary

Jay Dahlstrom, Christian Matthews, Tommy Nguyen

August, 2017

Recommended Course of Action

Our team has devised four core Python-based script tools in order to aid Mapillary in their

development. These script tools are aimed at providing efficient data filtering, automating

representation of photos, and a method of verifying data quality. The four tools are comprised of:

geojson to shapefile converter, a spatial analysis tool to create heat maps and priority ranking

amongst photos, a false positive analyzer, and a tool to automate publishing to a web map.

Mapillary will be able to use these tools as a foundation for processing their photos while also

integrating and developing them further for use in their APIs. From the results, users and Mapillary

will better understand and represent relationships among various aspects of a complex world.

Table of Contents
1. Introduction .. 5

1.1 Background ... 5

1.2 Goal ... 5

1.3 Objectives .. 5

1.4 Scope ... 6

1.5 Social-Ecological System ... 7

2. Design & Methods .. 7

2.1 Data Acquisition ... 7

2.2 Software Requirements .. 8

2.3 Python Scripts .. 9

2.3.1 Mapillary to ESRI (GeoJSON to Shapefile) ...10

2.3.2 Priority Ranking and Heat Map Generation (Analyze Mapillary Photos).........................13

2.3.3 Image to Object Distance Calculation (Calculate Distance) ..15

2.3.4 Data to ArcGIS Online (Publish Service) ...18

2.4 ArcGIS Online ..21

3. Results ...21

3.1 GeoJSON to Shapefile ...21

3.2 Results of Analyze Mapillary Photos ...23

3.3 Results of Shapefile to ArcGIS Online ..24

3.4 Results of False Positive Analysis ...25

3.5 Results of ArcGIS Online Web Map ...26

4. Discussion ..26

4.1 Successes ..26

4.2 Lessons Learned ...27

4.3 Recommend Course of Action ..28

4.4 Future Implementations ..28

5. Business Case and Implementation Plan ..30

6. Literature Cited ...31

7. Appendix ...31

Table of Figures
Figure 1 - Toolbox ... 9

Figure 2 - GeoJSON to Shapefile Dialogue.. 10

Figure 3 - GeoJSON Example ... 11

Figure 4 - GeoJSON to Shapefile Code ... 12

Figure 5 - Analyze Mapillary Photos Dialogue... 13

Figure 6 - Analyze Mapillary Photos Code .. 14

Figure 7 - Calculate Distance Dialogue ... 15

Figure 8 - Calculate Distance Code ... 16

Figure 9 - Publish Service Dialogue ... 18

Figure 10 - Publish Service Code ... 20

Figure 11 - Map of Converted Shapefile ... 22

Figure 12 - Heat Map .. 23

Figure 13 - Ranked Grid .. 24

Figure 14 - ArcGIS Online ... 24

Figure 15 - Output Attribute Table... 25

Figure 16 - Scatter Plot of Distance Results .. 25

Figure 17 - Ranked Grid Web Map ... 26

1. Introduction

1.1 Background

Since the launch of Mapillary in 2013, the company has obtained “over 155 million photos

contributed over seven continents” (Mapillary 2017). The photos are used to compile large vista

datasets, from which Mapillary has constructed object class categories through their image

processing. Insightful information can then be extracted from this data. Current uses of this data

include editing OpenStreetMap (OSM), extracting recognized traffic signs, and integrating the data

with ArcGIS Pro and ArcGIS Online. As photos continue to be uploaded from many sources,

Mapillary is continuously seeking ways to manage and understand the dynamic relationships

among these datasets.

To meet this objective, Mapillary needs their data to not only be used, but also for their collection

and internal processes to be efficient and accurate. Currently, the semantic segmentation process

will classify an object with a minimum of 64 pixels. But, even when combined with a specific

confidence interval, this process can lead to false-positive features being tagged. Introducing false-

positives into datasets can prove extremely problematic when users begin extracting data and

using it for other purposes. For instance, a transit network model can be seriously altered by a bike

lane dataset that includes bike paths that do not exist. In addition, while collecting as much data as

possible is in any company’s best interest, it is our view that for a flagship coverage city, more of the

same data doesn’t necessarily improve coverage or quality. Not having enough data for certain

object classes hurts the overall data extraction efforts of users.

1.2 Goal

Mapillary’s specific request for this partnership with the University of Washington was either:

1. A clear and well researched case study which leveraged their computer vision data to

identify a social issue specific to the city in focus.

2. A solution that enabled us to verify and improve the accuracy of our segmentation data.

After discussing internally and in meetings with Mapillary, we decided that this project would need

to meet both of these requests. We determined that a multi-step analytical process would best meet

the sponsor’s needs. The motivation for this process was the unique data involved, the flexibility of

the case study, and the yearning to incorporate all aspects of the UW MGIS program. By performing

a case study of the developed tools, we seek to provide the necessary example for Mapillary to see

the benefits of this repeatable process.

1.3 Objectives

Any process must meet the two objectives: enhancing the quality control of Mapillary’s image

processing while also increasing the efficiency of data capture efforts.

The process that we have developed meets these objectives through four major components. The

first component is the ability for Mapillary to easily and automatically convert their own data into a

traditional geospatial format. By converting the data to a geospatial format, the data is opened up to

a greater level of spatial analytics using desktop GIS software. The second component performs a

proximity analysis in order to enhance the quality control process. However, this component does

require complete comparison datasets and a substantial amount of manual effort. The third

component takes this data and determines not only the current coverage level, but where users

should target for future data capture. Because flagship cities already have ample coverage, we

believe that targeted capturing of specific and critical datasets increases the effectiveness of

Mapillary’s users. The last component automatically publishes these results to an ArcGIS Online

account for access when creating web maps or web applications.

1.4 Scope

Based on Mapillary’s requests and our given timeline, this project has a defined and limited scope.

Tools and data will be created and managed using Esri’s ArcGIS Desktop software. This will include

creating Python tools that integrate with ArcGIS Desktop and using the shapefile and file

geodatabase format for geographic data. Web maps will be created using ArcGIS Online.

Because of its designation by Mapillary as a flagship of data coverage, San Francisco was chosen for

the case study. While we had an original request for several object classes, due to a lack of data in

some, we finalized on using benches, bridges, and bike routes. These datasets provided ample

coverage across the city that could be used in our process. Additionally, the Metropolitan

Transportation Committee had datasets with near complete coverage of these same classes.

1.5 Social-Ecological System

 Environmental Economic Social

National Assess and project
current and future

impacts of populations
and resource

relationships for
country

Budgeting and
allocation of funds to

states.

Development of
relationships of data
that spans across all
systems at varying

scales.

San Francisco Accessing street-level
impacts (construction

on green spaces,
pollution, high rise

development)

Updates of
infrastructure

integrity and well-
being of population

Method of
communication,

promotion of sharing
improvements.

Citizen Represent pollution
sources from street-

level images.

Promote upkeep and
maintenance of

underserved areas

Contribution and
connecting with other

focal scales. Involve
users across

sociodemographic
spectrum.

2. Design & Methods

2.1 Data Acquisition

Before designing the Python tools, work was performed with Mapillary and local agencies to

acquire the data necessary to test the tools. Mapillary data is accessible through the Mapillary API,

which, at the time of this paper, was version 3. All of the data received from Mapillary and used in

this project can be accessed with this API. The public API does put certain restrictions on requests

including restricting the number of records returned by each call to the API at a single page of data

(Mapillary 2017). In addition, formulating these requests requires significant coding experience

with Representational State Transfer (REST). There are code examples on the Mapillary API

homepage that can be altered for this purpose.

Given the time limitations placed on this project, we did not develop our own REST calls to interact

with the data directly. Instead, Chris Beddow with Mapillary fulfilled all of our data needs. As a

Mapillary employee he has administrative access to the data that bypasses the limitations described

above.

Data from Mapillary, regardless if it is derived from the API or supplied by an employee with the

company comes in GeoJSON format. GeoJSON is an “[Open source] format for encoding a variety of

geographic data structures” (GeoJSON 2017). The format is commonly used in open source web

applications, such as those running on Leaflet. It is, however, not a format that Esri applications

(ArcGIS Desktop, etc.) can read natively. It needs to be either transformed into an Esri format

(shapefile, etc.) or converted using the Data Interoperability extension (which requires its own paid

license). As will be described in more detail later in this section, our first script was developed in

response to this limitation in Esri software. However, QGIS can read data in the GeoJSON format

natively.

The Mapillary data only represents half the data needs. There was also a need to acquire spatially

verified datasets for the Mapillary object classes that were under review. The Metropolitan

Transportation Commission (MTC) provided the bike lane and bridge data. MTC is a “transportation

planning, financing and coordinating agency for the nine-county San Francisco Bay Area” (MTC

2017). MTC hosts both datasets, along with many other social, environmental, and economic

datasets on their open data website. Both of these object classes were made available as shapefiles.

The bench dataset was found on the DataSF data portal and was provided by the San Francisco

Department of Recreation and Parks. This object class was not available as a shapefile. Some of the

download options included CSV, XML, JSON and RDF. For this project, the data was downloaded as a

CSV and loaded into ArcGIS as X,Y data. From there, the data was exported as a shapefile for further

analysis.

Depending on the location of analysis, the provider of these comparison datasets will vary.

Typically, city departments and agencies are the best place to start as they often track the same

granular data that Mapillary collects. If the city lacks the data then the county should be the next

stop followed by the state. The state level typically does not collect data that would be used in this

sort of analysis, but results could vary depending on the location. Lastly, one could use OSM to find

these datasets. However, the completeness of OSM datasets should be confirmed before analysis, as

OSM is a volunteer driven effort.

2.2 Software Requirements

The four Python tools for this project were built using version 2.7.10 of the programming language.

2.7.10 is not the current release of Python, which at the time of this report is 3.6.1. The reason for

using an older version of Python is that the ArcGIS plugin, arcpy, is built based on the 2.7.X releases

of Python and has not been ported over to the latest version. There are significant changes to the

core functionality of Python in 3.0 and above.

Any installation of ArcGIS Desktop comes with an installation of Python 2.7.10 and the arcpy

library. The arcpy library will not work without a valid ArcGIS license. In addition, the Spatial

Analyst extension is required to run one of the scripts. No additional extensions or functionality are

required beyond the core components of ArcGIS Desktop and the Spatial Analyst extension.

Finally, an ArcGIS Online Organization account is required to run one of the scripts. The

organizational account is required because data is published and hosted to ArcGIS Online with this

script. Hosting data costs credits on ArcGIS Online which are not available with the free ArcGIS

Online accounts. A developer account might also work since those accounts come with a handful of

credits but this project did not test to confirm this. It is also possible to use ArcGIS Server instead of

ArcGIS Online with a few alterations to the script, but the script as is will not work with ArcGIS

Server.

2.3 Python Scripts

Figure 1 - Toolbox

2.3.1 Mapillary to ESRI (GeoJSON to Shapefile)

Library Purpose

arcpy This library allows Python scripts to leverage all of the available tools within
ArcGIS Desktop. In this script the library is used to create and then insert data
from a GeoJSON field into a new feature class

json A library that allows Python to access the data stored within JSON and GeoJSON
files. Data is made available to Python in the form of a dictionary.

Figure 2 - GeoJSON to Shapefile Dialogue

The Mapillary to Esri script converts GeoJSON data extracted from Mapillary’s API or from a data

request that is fulfilled by a Mapillary employee into an Esri shapefile. With a shapefile, it is possible

to run spatial analysis in a desktop GIS application like ArcGIS and QGIS. The first step of each script

described in this report is to collect input from the user of the script. All four tools are designed to

run as custom ArcToolbox scripts and should be run within ArcGIS Desktop or ArcCatalog.

Figure 3 - GeoJSON Example

After launching the tool, a dialogue box appears that describes the intent of the script and what

outputs the user can expect. The first input from the user is the location of a folder where an output

shapefile will be saved. Next the user provides the name of the new shapefile, the name of a new

field to store the Mapillary image segmentation data for the desired object class, followed by the

desired coordinate system. Finally, the user will input the path to the GeoJSON file and Mapillary

object class name for the object they want to extract. An example object class name is ‘construction-

-flat--bike-lane’. The object class names can be found on the Mapillary Vistas website or in the

GeoJSON file, the GeoJSON data can be viewed in a text editor like notepad.

Figure 4 - GeoJSON to Shapefile Code

After collecting the required user inputs from the tool dialogue box, the script creates a new

shapefile with the name and path provided by the user. The coordinate system of the shapefile is

initially set to the Mapillary spatial reference, Web Mercator. This is necessary to ensure that the

initial data is imported and projected properly. Following later in the script the user defined

coordinate system is applied. Two fields are added, one with the user provided name for the

segmentation data and a second for the unique photo key that Mapillary adds to each photo.

At this point the script shifts to extracting the data from the GeoJSON file. The script iterates

through each feature in the file and since the dictionary keys are either known (key and geometry)

or provided by the user for the object class field, the values associated with each key can be

extracted. The data from each row of the GeoJSON file is stored in a Python list in the form of [Key,

Object Class, Geometry]. That list is in turn stored within another list, making a nested list. The

format of the nested list is as follows [[Key, Object Class, Geometry], [Key, Object Class, Geometry],

...]. The reason for the nested list is that the data needs to be formatted this way to load it into the

shapefile.

Finally, with the help of an arcpy insert cursor, the data from the GeoJSON file (now in a nested list)

is loaded into the previously built shapefile. The cursor iterates through the outer list and inserts

the contents of each inner list into their own row of the shapefile. The Mapillary key is added to the

key field, the object class data is added to the user named field, and XY data is added to the

Shape@XY field. The final step in the script is to project the shapefile into the user requested

coordinate system. It is imperative that the user defined coordinate system be applied after the data

is loaded into the shapefile. Unless the user requests Web Mercator, the data will not appear in the

correct location if it is applied before loading the data.

At the conclusion of the script the user is provided with a new shapefile in the specified directory, is

in their desired coordinate system, and includes all of the object class data from Mapillary.

2.3.2 Priority Ranking and Heat Map Generation (Analyze Mapillary Photos)

Library Purpose

arcpy This library allows Python scripts to leverage all of the available tools within
ArcGIS Desktop. Spatial analyst tools are utilized in this script to analyze the
distribution of photos and known objects and complete a multi-criteria analysis.

Figure 5 - Analyze Mapillary Photos Dialogue

The purpose of this tool is to analyze Mapillary’s photos in two ways. The first part generates a heat

map based on the density of the input point data. This aspect requires the Spatial Analyst extension.

The second part analyzes where those Mapillary points are, compares them to known features, and

then determines which areas of the chosen city should be targeted to gather more data on the

specific input features.

Like the previous tool, after launch, a dialogue box appears that initially describes the intent of the

script and what outputs the user can expect. The first input from the user is the location of a

workspace for the data. This location should be a GDB or MDB containing the rest of the necessary

data. Next, the user provides file paths to the feature class or shapefile of the city boundary, the

input photo data, the known data, and a buffer distance. The buffer distance is the distance in

meters that the input data class can be determined through semantic segmentation. For example, if

bike lanes can be determined from 150 meters, then the entry would be “150”.

Figure 6 - Analyze Mapillary Photos Code

At this point the script shifts to creating the heat map. The script uses default values to run the

Kernel Density tool. This tool creates a raster of the density values of the input data.

Next, the tool creates an equal 0.5 mile grid across the whole city boundary. This grid is the

foundation for the eventual priority ranking. The input known data is then buffered based on the

previously entered buffer distance. This buffer distance represents the possible area from where a

photo could be taken of the object and be classified as a specific feature. The total count of the input

photos within these buffers is then appended to the grid squares. This is done to determine how

many classified photos are within each grid that are also within the possible photo area. Next, the

total area of the buffers within each grid is appended to each grid. This is done to know which grids

have the greatest possible area from where a photo could be taken and classified. Then, these two

total values are converted to a scale value of 0 to 1. Lastly, a multi-criteria evaluation field is added

and calculated as the average value of these two scaled values. To interpret the result, higher values

represent areas with a lower number of already classified photos and larger areas from where to

take photos.

2.3.3 Image to Object Distance Calculation (Calculate Distance)

Library Purpose

arcpy This library allows Python scripts to leverage all of the available tools within
ArcGIS Desktop. In the calculate distance script, arcpy is used to prepare the
feature classes for analysis, perform the distance calculation and populate the
Mapillary feature class with the new data.

os The operating system library allows Python to interact with the underlying
computer operating system. In this case, os is used to dynamically create a
working folder to store draft data used in the script.

shutil Shutil, like os, allows Python to interact with the underlying operate system.
Shutil is beneficial because it simplifies the coding required to perform more
complex tasks. Deleting directories that contain files requires extra coding,
coding that is eliminated with shutil. Shutil is used to delete old versions of the
working folder.

sys The system library, like os and shutil, provides tools to interact with the
operating system. For this script, sys is used to find the directory containing the
script. The path is used by os to create the working folder.

Figure 7 - Calculate Distance Dialogue

The purpose of the Image to Object Distance Calculation script is to take a set of Mapillary photos

containing a particular object class and compare those locations to the locations of points

representing known objects. The known object data is typically derived from a local government

that manages the particular object. In this analysis, known object locations were identified for

bridges, bike lanes, and benches.

As with the other tools, after launching the tool in ArcGIS Desktop or ArcCatalog, a dialogue box

appears requesting information from the user. The first input is the file path to the feature class

containing known object locations. The tool can accept either point or line data for the known

object class. If the input data contains points, then the user can skip optional inputs two and three

and proceed to the fourth input. If on the other hand, the known feature class contains lines, then

the user needs to check the checkbox for the second input. The third input is the distance at which

points will be added along each line segment to allow the script to perform the analysis. The script

will create a new shapefile containing points along each line segment at the user specified distance.

The units of the provided distance are in the unit of measurement used by the coordinate system of

the Mapillary feature class (feet, meters, degrees, etc.). Finally, the user, regardless of the type of

input data, will provide the file path to the Mapillary shapefile. This is likely the shapefile created in

the Mapillary to Esri script.

Figure 8 - Calculate Distance Code

Once the inputs are submitted by the user, the tool creates a temporary working directory to store

scratch data over the course of the script. A new folder is created in the same directory as the script

file. If the script was run previously, the old working directory is deleted and new empty directory

is added in its place. With the directory created, the script prepares the known object feature class

for analysis. The projection of the known feature class is set to the same projection as the Mapillary

feature class to allow for distance calculations. A new feature class with the projection is added to

the working directory and that feature class is used in the analysis, unless it contains lines. If the

known object class data consists of lines instead of points, the script creates a new point feature

class. Points are added along each line segment at the user specified distance. From here, the point

feature class is used in the analysis to follow. Finally, X and Y fields are added to both the Mapillary

and known object feature classes.

At this point, the feature classes are ready for analysis. A search cursor extracts the X and Y values

from both feature classes and places the coordinates into a list for each row. The attributes for each

row are added to one of two lists, one for each feature class, to create a nested list. For the Mapillary

feature class the unique Mapillary key is included with each row. The key will be used later on in

the script to import the distance calculations back into the Mapillary feature class.

With the XY data now in two lists the script uses a “for” loop to iterate through each row in the

Mapillary feature class. Within that for loop is another for loop that iterates through each row in the

known feature class for each Mapillary photo. The purpose of the nested for loop is to find the

shortest distance between the photo and a known point and this is only possible by checking each

known point and comparing its location to the photo’s location. An arbitrarily high value of

99,999,999 is assigned to a minimum distance value. If the calculated distance is less than that

value then the new distance value is assigned to the minimum distance variable replacing the old

value. The process continues for the rest of the rows in the known feature class. At the end of the

inner for loop, the minimum value is appended to the end of the nested Mapillary list. The

calculations repeat for each row in the Mapillary feature class.

Once all of the minimum distance values are identified and added to each of the nested lists, the

script calls an insert cursor. The insert cursor adds the newly identified distance data to the

distance column for each row. The distance column is created just before calling the insert cursor

and is the type ‘Double’. For each row in the feature class, the cursor iterates through each row of

the list until it finds a match in the key values. When a match is identified, the distance value from

the list is inserted. Again, this continues for each row in the feature class.

At this point, the script concludes and the user is provided with an updated feature class of

Mapillary photo locations that contains the distance to the nearest known object. With this data and

the semantic segmentation data, it is possible to create scatter plots that will identify outliers in the

data. These outliers could be false positives identified by the Mapillary algorithm.

2.3.4 Data to ArcGIS Online (Publish Service)

Library Purpose

arcpy This library allows Python scripts to leverage all of the available tools within
ArcGIS Desktop. In the fourth script, arcpy leverages the tools within ArcGIS
Desktop that allow information to be published to either ArcGIS Server or ArcGIS
Online.

os The operating system library allows Python to interact with the underlying
computer operating system. In this case, os is used to dynamically create a
working folder to store draft data used in the script.

shutil Shutil, like os, allows Python to interact with the underlying operate system.
Shutil is beneficial because it simplifies the coding required to perform more
complex tasks. Deleting directories that contain files requires extra coding,
coding that is eliminated with shutil. Shutil is used to delete old versions of the
working folder.

sys The system library, like os and shutil, provides tools to interact with the
operating system. For this script, sys is used to find the directory containing the
script. The path is used by os to create the working folder.

xml XML is a library that allows Python to interact with XML files. The service data
that is published to ArcGIS Online is transmitted as XML data. This library allows
the script to dynamically update the contents of the XML file to change the
service settings.

Figure 9 - Publish Service Dialogue

The Data to ArcGIS Online script is designed to upload the contents of an ArcGIS Map Document

(MXD) to an ArcGIS Online organization account. With the data in ArcGIS Online, users are able

create web maps from the results of the analysis. When the data is transferred to ArcGIS Online, the

symbols set in ArcMap are maintained. It is therefore recommended that symbolizing be performed

prior to running this script and all layers be added to the map. Each layer in the map will be

published as its own layer in the service.

To run this script the user is required to run the tool through ArcMap or ArcCatalog as a custom

script tool. This tool comes in the same custom toolbox as the other three tools. Prior to executing

the tool, the user needs to sign into their ArcGIS Online account within ArcMap. This can be

performed by opening the File menu and selecting Sign in. Note that this needs to be an account

with ArcGIS Online credits, a free account will not work. With the tool dialogue box open check the

box for the first input that you are signed into ArcGIS Online. Next use file explorer to provide the

path to the MXD file that has data you want to publish to your account. Lastly, provide a name for

the service in the third box and a summary and tags (separated by commas) in the fourth and fifth

boxes respectively. Note that if the name of the service is the same as an existing service in your

account, the new service will overwrite the old one.

Figure 10 - Publish Service Code

With the user provided parameters stored in their own variables, the script proceeds to create a

temporary working directory to store intermittent files. The temporary directory is created in the

same way as the temporary directory in the Image to Object Distance Calculation script. The only

difference is that this directory has a different name. The first step in actually publishing the service

is to create a draft service definition that includes the MXD, service name, summary, and tags. In

addition, the location where the data will be published is identified. It is in this part of the script

where the destination could be altered to an instance of ArcGIS Server.

With a draft service definition saved to the temporary directory, the XML library is used to open the

contents of the file in Python. The script iterates through the contents of the service to set the

desired parameters. In this case the feature service functionalities are enabled (editing, creating

and querying) and any caching settings removed. Once the edits have been made to the service

definition the document is saved. At this point, the script analyzes the service draft for any errors. If

an error is found, the script ends and the cause of the error is printed to the console in ArcMap. If no

issues are found then the contents of the service are published to ArcGIS Online.

At the successful conclusion of the script the user is provided with a hosted feature service in their

ArcGIS Online account. Note that all of the data associated with the layers in the MXD are also

copied to the account. One should consider the size of these datasets and the cost in terms of credits

to their account before publishing any data with this script. The new service can be used to create

web applications with the Web AppBuilder or Story Maps.

2.4 ArcGIS Online

With the data now available within ArcGIS Online it is possible to create web applications with the

results of the analysis. For example, the results of the grid analysis could be overlaid on top of the

study area. This is done by simply creating a new web map and adding the published service. From

there it is possible to change the symbols if needed, set popup windows, and filter the data to create

the ideal web map. The map can then be shared with your organization or can be made public and

available to all. ArcGIS Online allows groups to quickly share GIS data with non-technical audiences.

Since the focus of this project was on developing scripts to help Mapillary analyze their

segmentation algorithms, web maps were a byproduct of this effort. The exact process of creating

these maps will not be covered in further detail. The best way to learn how to use ArcGIS Online is

to review the numerous Esri help pages available online.

3. Results

3.1 GeoJSON to Shapefile

The GeoJSON to Shapefile script outputs a Shapefile based on the input GeoJSON features. Figure 11

shows the export of the bike lane GeoJSON file.

Figure 11 - Map of Converted Shapefile

3.2 Results of Analyze Mapillary Photos

The Analyze Mapillary Photos tool results in two datasets: a heat map of the input Mapillary photos

and a ranked grid of the input city.

Seen in Figure 12, the highest density of Mapillary’s bike lane photographs are in the northeast

portion of the city along the waterfront and along major roadways going into the center of the city.

Figure 12 - Heat Map

Figure 13 displays the ranked grid as a graduated color scheme where low priorities for targeting

bike lanes are blue and high values are red. The ranked grid is very dispersed regarding areas of

priority. The northeast part of the city has a small section of grids with a low priority.

Figure 13 - Ranked Grid

3.3 Results of Shapefile to ArcGIS Online

The Shapefile to ArcGIS Online tool results in the input data published as a feature service. This

feature service is the ranked grid seen in Figure 13.

Figure 14 - ArcGIS Online

3.4 Results of False Positive Analysis

The false positive tool adds the distance column to each record in the shapefile/feature class.

Figure 15 - Output Attribute Table

Utilizing the data, a scatter plot was made in Tableau which shows the distance from a known

object against the pixel percentage. Outliers seem apparent at 800 or more feet, however each point

should be verified manually.

Figure 16 - Scatter Plot of Distance Results

3.5 Results of ArcGIS Online Web Map

ArcGIS Online allows for simple web map creation that can be disseminated to a wider audience

than a static map. These maps also provide dynamic interaction so map users can manipulate, pan,

and zoom with the data.

The below figure is a web map of the feature service seen in Figure 14.

Figure 17 - Ranked Grid Web Map

4. Discussion

4.1 Successes

During the time in our capstone course, we were able to build script tools that were focused on

enhancing existing applications used at Mapillary. Despite focus shifts that set us back valuable

time, we were able to create a GeoJSON to Shapefile tool that is efficient, portable, and significantly

faster than what we’ve found on the web. Given more time, we would be able to transfer the

functionality into free and open source software such as QGIS. Automation of processing GeoJSON

data into a shapefile is not available in either software package as a standard feature. The Data

Interoperability extension allows you to convert GeoJSON features in ArcGIS, but this extension

requires an additional cost expenditure. With QGIS it is possible to display the data and manually

export the data out as a shapefile. However, this process is rather tedious and slow. An efficient

GeoJSON data converter is not something that we could find on the web so this tool appears to be a

new addition to spatial industry.

From our tools, we were also able to create results that represented false positives for Mapillary’s

vision team. They are able to use this information to improve and test their semantic segmentation

algorithm. Without tools like these, the vision team would need to look at all of their images to

check for errors. Even with random sampling of a small number of photos this would be a time

consuming and inefficient task. With a tool that identifies potential false positives, Mapillary is able

to focus their efforts on potential problem areas. These tools are pilot versions and when integrated

into existing APIs, it will have the ability to be replicated with other assets in different locations.

Multi-criteria evaluation allows for the evaluation of multiple and sometimes conflicting criteria.

Previous research has proven the effectiveness of integrating multi-criteria evaluation with GIS

(Store and Kangas, 2001). Multi-criteria evaluation was selected as one of our tool’s outputs

because when targeting locations for photos, we wanted to know not only where there weren’t

photos already, but where we could take photos from. While we know that additional variables

would be more useful in a final evaluation, we argue that with the available data, these two

variables provide the best evaluation. By weighting these values equally, the resulting layer is

determined as the most optimal location for users to target for capturing specific features.

The heat map generation and multi-criteria evaluation provide useful insights currently not being

tracked. They are able to use the heat maps to not only know where their data is, but also the

magnitude of this data. This dataset can also be easily implemented in a web map and shared

widely. For future use, the multi-criteria evaluation results can be used for competitions and

specific targeting.

4.2 Lessons Learned

Given our successes we have room for improvement in many areas of our project. First, we wanted

to start with what we assumed was an advantage by selecting the city of San Francisco. According

to Mapillary, the city had a great percentage of data coverage for their object classes. We soon

discovered great coverage of Mapillary data does not translate into others having the same robust

publically available data. The lack of robust comparison data would challenge our design, testing,

and implementation. The datasets we used to compare our results were often unavailable online or

were incomplete.

In addition, the current process of comparing our results proved tedious and manual. This does

leave room for improvement and for future development of a more efficient method of comparing

datasets. Secondly, we spent some time learning other methods with which we were unfamiliar, to

produce results. We quickly found learning a new programming language and the complexities

along with it would require more time than the course allowed, hence the utilization of Esri-based

software. We would have preferred to develop tools with QGIS or to create web applications with

Leaflet, but it can take months to learn either of those. This was time we simply did not have if we

wanted to meet our deadlines.

When we entered into the project we knew the potential challenges that may arise. We did not

anticipate changing our project focus several times to meet the needs of both Mapillary and the

curriculum. Despite reevaluating and redeveloping our scope, we were able to meet the program

and capstone partner deadlines.

4.3 Recommend Course of Action

In the immediate future, it is our recommendation that Mapillary identify other cities and areas to

repeat the analysis outlined in this paper. Ideally this would be in locations with easily accessible

and complete comparison data. In terms of identifying false positives or hotspots to promote image

collection, it is more important to have robust control data than it is to have significant photo

coverage. At the start of the project we looked for areas that had lots of photos. If we had to do it

again, we would have instead identified locations with object class data that we could use in our

analysis. From there we would pull the Mapillary data for that location instead of the other way

around.

After performing this analysis in several other locations, it is recommended to combine all of the

potential false positives into one group and take a random sampling of the points for human review.

If the population of photos is small enough then they can be reviewed manually, but likely there will

be too many photos to be practical. The results of the human analysis should help inform the

segmentation algorithms. If there are false positives then the algorithm can be improved to address

the issues. On the other hand if there are not false positives then Mapillary has a selling point to use

with the local agencies that manage the area. Mapillary can sell the fact that their platform is a more

effective means of inventorying their assets.

Another change that can be implemented is the use of the hot spot statistical analysis tool to

determine where to run Complete the Map challenges. These are challenges that Mapillary puts on

in different cities to promote their users to add photos to their platform. The hot spot analysis tool

can be used to make data driven decisions on where to statistically focus their efforts. If there are

certain assets that Mapillary wants to add they can target areas where photos are most likely to

capture them.

4.4 Future Implementations

The first step to improve upon these scripts should be the porting over of the functionality to open

source Python libraries. Given the time limitations that have been discussed in detail, it was not

possible for the team to develop scripts using libraries they were unfamiliar with before the course.

Given more time, the functionality would have been developed using the QGIS equivalent libraries.

The group only performed a cursory review of the functionality offered by the QGIS add-in but it

should be possible to replicate the first three scripts. The ArcGIS Online script is the only script that

cannot be ported over to open source. In an open source environment ArcGIS Online would not be

necessary. Instead, a new script should be developed to convert the results back to GeoJSON. The

GeoJSON data could then be used in open source web mapping applications like Leaflet. In this way

the data would come full circle.

A couple quick improvements to the scripts that would improve analysis are automated scatter plot

generation and the selection of a random set of points for humans to review in more detail. A

scatter plot could be generated to compare distance from a known object class to the segmentation

data (e.g. the percent of an image classified as the object). Our current assumptions based on the

data show that photos further away from known features have a lower pixel count. The further the

photo is from an object the smaller it will appear. The smaller an object in an image, the fewer

pixels that will be classified than if the photo was right in front of the same object. By implementing

a scatter plot generation, users would be able to more easily visualize how distance and the pixel

levels are correlated. However, this is very dependent on the known data being accurate. This

should be relatively straightforward with the matplotlib library. The team planned to implement

this functionality but ran out of time before the conclusion of the course.

For random sampling, implementing a random photo selection would be more statistically accurate

for point comparison. This would ensure that the spatial location would not be the main contributor

to any inaccuracies in the segmentation process. It would also limit the amount of work required to

check image segmentation. A new field could be added to the feature class with a value from a

random number generator. For example, the twenty points nearest zero could be selected for more

thorough analysis.

Currently, the Analyze Mapillary Photos tool exports the heat map as a raster. For integration with

custom web maps (Leaflet), this data needs to be converted to a vector data format (points, lines or

polygon) instead of raster (grid). While we did attempt this using Python, we ran into roadblocks

with the Raster Calculator tool. This function can be performed manually, but, automation would

ease and speed up the process. This does not alter the analysis in any way but improves the

functionality of the data in terms of communicating the results.

A couple improvements in the more distant future are the ability for the scripts to take location

viewshed into consideration and an improved MCE analysis. The multi-criteria evaluation and

distance tools assume that features can be photographed from anywhere within the city or area.

However, we know that this is not accurate for most features. This is because in real life, other

objects such as buildings can block the view of users to the object. Implementing a viewshed

analysis using LIDAR would ensure that areas out of view would not be included in the multi-

criteria evaluation and that distances would be calculated to the nearest object in view, if there is

one. This can be done in GIS manually and can most likely be implemented in Python but it will

require a significant amount of coding. However, the results would be far more robust than those in

the current scripts.

The multi-criteria evaluation can be improved in several ways, one of which is the incorporation of

user locations. Without knowing where active users live or primarily spend their time, the multi-

criteria evaluation does not take into account how close users are to where the grids are located. By

adding in the locations of users, the multi-criteria evaluation would then factor in the “ease” of

getting to specific grids.

There are likely many more changes that can be made to these scripts and those changes will be

defined by Mapillary in order to align the scripts with their business goals. As those goals change,

the functionality of the scripts will also need to adapt. Hopefully with the foundation provided by

these pilot scripts, Mapillary can easily adapt them into their existing and future business

processes.

5. Business Case and Implementation Plan

The final project should include a business case, including a financial and strategic analysis and

workflow plan, for implementation of your recommended course of action. The implementation

plan including "who" will be doing what, when, with what expected outcome and at what estimated

cost versus what intended benefits for the organization.

The team at Mapillary has formed a solid foundation on which our additions are built upon. As the

company continues to grow, so will the number of users and the data collected by them every day.

The ability for users to contribute data to Mapillary’s database at virtually zero cost provides great

benefit to both the user and the host. As the database continues to grow exponentially, there must

be ways to filter, verify, and manage each photo passing through. With the addition of our analysis

kit we hope Mapillary will be able to allocate manual efforts to other tasks while allowing the

scripts to perform routine quality assurance checks and data maintenance.

Automating analysis of photos as they are received will allow Mapillary to determine data cold

spots. These areas will give Mapillary an idea of where users are inactive and strategize on ways to

develop promotional efforts to those areas. This process is aided by the use of automated web map

publishing to view and communicate the need to fill in gaps. Furthermore, these analysis results

provide a reference to compare other factors such as social, ecological, and environmental aspects.

The addition of various scripts has the ability to connect the environment to the people and the

local governments that help operate them. Lastly, Mapillary has the tools to build upon and

integrate further, providing a public viewing interface to draw in participation from both cities and

their citizens.

Local governments are given a unique opportunity to collaborate with its citizens. Mapillary allows

beneficial relationships to blossom which benefit livability and access across the social spectrum.

The benefit of crowdsourcing data collection is that anyone with a camera can contribute. Those

that want to be more involved with their communities and cities are given a chance to share their

photos and help develop a database of useful information. This information can then be used to

develop functional and effective improvements to areas that may once have been overlooked. These

improvements may include infrastructure, assessing green spaces, determining availability to

integrate better road sharing opportunities, and more. Mapillary can use our kit as a springboard to

sharing, collaborating, and connecting people to bring change to areas that are needed.

6. Literature Cited

GeoJSON. "GeoJSON." Accessed August 5, 2017. https://geojson.org/

Mapillary. “About Mapillary.” Accessed August 4, 2017. https://www.mapillary.com/about

Mapillary. "Mapillary API Documentation." Mapillary API. Accessed August 13, 2017.

 https://www.mapillary.com/developer/api-documentation/.

Metropolitan Transportation Commission (MTC). “About MTC.” Accessed August 5, 2017.

 http://mtc.ca.gov/about

Store, Ron, and Jyrki Kangas. 2001. “Integrating spatial multi-criteria evaluation and expert

 knowledge for GIS-based habitat suitability modelling”.” Landscape and Urban Planning,

 Volume 55, Issue 2, Pages 79-93, ISSN 0169-2046, http://dx.doi.org/10.1016/S0169-

 2046(01)00120-7.

7. Appendix

Script Code

https://github.com/james1992/UW_Capstone_Mapillary/

http://geojson.org/
https://www.mapillary.com/about

