

What Was Here? Prototyping a Map-centric

Historic Document Database for King County Archives

Tyler Graham and Tyler Buntain

University of Washington

MGIS 2017 Cohort

Geography 569 Capstone Project

Table of Contents

Recommended Course of Action 2

Introduction 4

Social Ecological Systems 6

Design and Methods 7

Adding The PSAAP Toolbox 7

PSAAP Database Table Script 9

Import Data to Database Table Script 9

Processing Fields for Relationship Classes 11

Building Relationships 11

Web Map / Story Map 11

Adding Coded Values 11

Results 13

The Geodatabase 13

Tools 13

Archive Web Map Portal 13

Discussion 14

Goals vs Reality 14

Relationship Problems - Participating in Multiple Relationships at Once 14

Geocoding 14

Area Selection 14

Business Case and Implementation Plan 14

NEPA, 106 14

Literature Cited 14

List of Figures
Figure 1: PSAAP Database Social Ecological Systems Table

Figure 2: Opening the Toolbox.

Figure 3: The PSAAP_Tools successfully added to ArcToolbox.

Figure 4: Locating the Python scripts used by the PSAAP_Tools

Figure 5: Navigate to the PSAAP Database in ArcCatalog.

Figure 6: The List of Domains (top table) and Coded Values of a selected domain (bottom table).

Figure 7: Scroll down to empty rows to add additional domain values and descriptions.

Figure 8: Enter the Code (left) and Description (right)

Recommended Course of Action

There are several paths still available to take the Spatially aware PSAAP Database down depending on
the sponsor’s opinion of how the user interface meets their goals and idea of a user friendly interface.

Our first recommendation is that the database continues to be scoped and developed. We have a
robust database underway, however it has not reached its final iteration to be considered a finished
product. Additional database needs were still being identified during the last week of class and there
was not enough time left in the quarter to begin to research or formulate a solution to them.

One question was about incorporating Getty Vocabulary into at least one of the database fields. We had
a quick discussion with the sponsor about how this would be used in the database. Getty Vocabulary
has millions of different standardized terms available for use (Getty Research Institute 2017). Getty
Vocabulary Terms are available in a variety of formats; manual searches of the website, “XML, relational
tables, APIs, and Linked OPen Data” (Getty Research Institute 2017). This question is outside of our
scope for this project, but one that does need an answer to if incorporating the Getty Vocabulary into
the database is possible. If it is possible, it raises the second question of “How would it be done?”

The second question that still needs an answer in regards to database design, is how to incorporate
historic documents that span multiple Township, Ranges, Sections, or Quarter Sections? The current
solution was to choose an arbitrary number of iterations of the Township, Range, Section, Quarter
Section fields (in this case, duplicating these fields 4 times). Each historic record that spanned more
than one of these polygons would need to use the next iteration of the groups of fields. This would
need to occur until all Township/Ranges were accounted for. If the database is implemented across King
County, this would create a problem for long linear features, such as roads. The available number of
Township/Range fields would simply not be enough. A potential solution to this problem was in the
works, but problems with the Python script prevented its rollout as part of the database. The solution
identified by our team was to append the Township/Range/Section/Quarter Section data to the Unique
Record Identifier(URI) and then duplicate the record for each township/range/section/quarter section it
crossed.

For example, if a record existed that spanned the Township/Range fields T1, R1, S1, QS1, T2, R2, and S2,
the script would create 5 new records in the PSAAP table appending the URI for the new records in
sequence with T1+R1, then T1+R1+S1, and then T1+R1+S1+QS1. These would be followed up with
additional URIs for new records having T2+R2, then T2+R2+S2 appended to the name. This script would
also need to write the later Township/Range fields (T2/R2 and up) to the first iteration of the
Township/Range fields (T1/R1). The reason for this is because of a difference between how ArcMap
handles relationship classes and how ArcGIS Online (AGOL) handles relationship classes. ArcMap lets
you create multiple relationships between the same feature class and database table and you can find
the records that relate for each version of the relationship. This allowed us to create four relationships
between the PSAAP Database Table and the PLSS Township feature class using the PSAAP Database
Table fields: Town_Range1, Town_Range2, Town_Range3, and Town_Range4. The problem we ran into
was when we attempted to publish as a feature service to AGOL. It treated the PSAAP Database Table
as non-existent when publishing. This resulted in no historic document metadata going up to AGOL,
which rendered the database useless. We tracked the issue to the multiple relates, a feature class could

only have one relationship class assigned to it from one table. We eliminated the extra relationships,
but this is a problem that needs a solution to handle records that cover large geographic areas.

After data was hosted to AGOL, problems were encountered with the ability to configure pop-ups to
embed data from related table into the pop-ups. The source of this problem is the type of relationship
class that was necessary to link multiple historic document attributes to one feature. It was necessary to
use a 1 to M (One to Many) relationship. This lets multiple records in the PSAAP Database Table that
share the same attribute value (such as multiple records attributed to one township/range) all point to
and from the feature in a feature class. The authors’ previous experience with AGOL has only been with
1 to 1 relationships, where only one record in a table relates to only 1 feature in a feature class. A 1 to 1
relationship can embed in the pop-up, but 1 to M relationships will only show the total number of
records that relate to the feature and not actual records themselves. In other words with a 1 to 1
relationship the pop-up would show the Unique Record Identifier value in the Unique Record Identifier
field since only one record is related. In a 1 to M relationship it show the total number or URI values
that occur; so if there are 9 historic records that relate to the feature, the URI field displays ‘9’ instead of
each URI value. This opens up the need to revisit how the data is being hosted. It will be worth digging
deeper into Open Source options, such as Carto and Mapbox to see how they work with 1 to M
relationships.

We recommend exploring a custom web mapping application to develop a strong user interface that can
leverage a related database. Examples of web mapping applications that allow users to search for
records by location are USGS Earth Explorer (earthexplorer.usgs.gov) and USGS TopoView
(ngmdb.usgs.gov/topoview). TopoView uses Mapbox, an open source map hosting service and both
websites use JavaScript to develop the interface, which is beyond the skillset of this Capstone group.
We had hoped that an out of the box solution existed, but it appears that customization by web
developers is going to be a necessity to produce a well-designed and functional product.

Introduction

Our project sponsor, King County Archives, is part of the Puget Sound Area Archive Partnership (PSAAP).
Their goal is to have the archives searchable by location on a user-friendly web map. Currently, PSAAP
members maintain their own separate databases, which have different interfaces in how the records are
searched. This creates a barrier that hinders the general public’s ability to access historical records;
people may not know about all the different archive websites, the different interfaces could be
confusing, and text only searches may rely on information they do not have.

King County Archives are looking for a product that can link scanned historical documents to feature
classes to perform a spatial records search. They were also hoping to have geocoding enabled for
historic records. The desire was expressed to georeference all the map files and have them available as
basemap layers in the web map.

As we started scoping the database, we interpreted this to mean that our database would be storing the
images as well as the historic records metadata that would be used to create a spatially aware database.
As database scoping progressed we learned that the hosted document scans will remain on the

individual archives servers, a centralized spatial database will point towards the scanned documents
using a URL link.

Successful implementation of a centralized spatial database will have an impact beyond the general
public’s ability to look up records about where grandpa used to live. Projects that receive federal
funding or permitting are required to follow NEPA. This includes a review of historical records related to
a project’s Area of Potential Effect (APE). Researchers will be able to visit one website which will have
historic records related to their appropriate spatial locations. This will enable professional researchers
to look at where their APE falls on a map and select the appropriate areas from the archive web map to
find the documents that will help determine if there are potential cultural resources that need to be
considered during the planning process.

Figure 1: PSAAP Database Social Ecological Systems Table

Social Ecological Systems

No data analysis was performed as part of this database development, but that does not mean there
were no Social, Economic, and Environment systems at work. Section 106 of the National Environmental
Policy Act covers cultural resources when federal money or permitting is involved. Part of Section 106 is
performing a records research for the project Area of Potential Effects (APE). The spans across all of the
focal scales of the database; from large geographic areas above the focal scale to cover the APE for large
projects. The focal scale of this map is at about the city scale (which is Kenmore, Wa for this project)
enables APE document research for smaller projects. Then going to below the focal scale allows for
targeted research in small areas at the quarter section, which will help design field survey methodology.

The environmental systems relates directly to economics; by centralizing archives into a spatially aware
database this reduces the travel time researchers for trips to archives. This also streamlines the
research process used online. Spatially aware records can be found simply by clicking on a map. The
need to know keywords, neighborhoods, date ranges, parcels, townships, or other search keywords can
now be shifted a role that serves to refine the search rather than the primary method of searching for
records.

This ease with which records can be found spatially and in a centralized location will enable the general
public to access historic records easier. Increased public awareness of historic records could lead to
increased use and visitation of archive resources. There are positive and negative aspects of having
easily accessible records. On the positive side, better access can lead to greater awareness and demand
for more records, which could translate into additional funding to convert historic documents to digital
format and add them to the PSAAP archive.

Design and Methods

King County has a plethora of archival data. Thus, the scope of this project was reduced from all of King
County down to just the Kenmore area. As the scope for this pilot project Kenmore proved to have
enough data associated with it to carry out our models without associating so much data to make its
processing impractical. Instead of maintaining the priority to georeference images en masse the scope
was altered to focus on geodatabase creation. A well designed database will provide future archive
contributors structure for additional data, and as a geodatabase it provides geospatial access to data
instead of only keyword searches.

For the following Python scripts to function you need ArcGIS installed on the machine you will be using.
The scripts use the arcpy Python module which comes as part of the ArcGIS software installation. The
scripts also uses the Get Parameter As Text tool, which allows for user defined Parameters when the
tool is run within ArcGIS.

Adding The PSAAP Toolbox

1. Open ArcMap.

2. Select the Toolbox icon in the toolbar.

Figure 2: Opening the Toolbox.

3. The ArcToolbox should open up. Right click within the window and select ‘Add Toolbox’.
4. Navigate to where you have stored the ‘PSAADB’ folder and open ‘PSAAP_Tools.tbx’.
5. The PSSAAP_Tools toolbox should now be in the toolbox window.

Figure 3: The PSAAP_Tools successfully added to ArcToolbox.

6. Right-click on ‘PSAAP Table Create’ tool and select ‘Properties’.

7. In the ‘Source’ tab there is a browser bar. Either insert the file path for ‘PSAAP_db_createV12’ or
navigate to it. You can find it in the ‘Scripts’ folder within ‘PSAADB’.

Figure 4: Locating the Python scripts used by the PSAAP_Tools

8. Save the ArcMap file as a template with the PSAAP tools waiting at the ready.
➔ Repeat steps 5-8 for the tools ‘Import Data to PSAAP Database’ and ‘PLSS Field Combination’

PSAAP Database Table Script

Note: This tool requires an ArcMap Standard (ArcEditor) or Advanced (ArcInfo) license to function. It
calls on ArcPy to execute database and table management tools.

A Python script was designed that creates a geodatabase table to store metadata spreadsheets from
each archive partner. The initial setup imports arcpy from ArcMap, incorporates operation system rules,
and pulls environment protocol from arcpy. There are two workspaces written into the script. Only one
of these, 1.2.2., is meant for toolbox use within ArcMap. The other, 1.2.1., is for testing modifications to
script versions outside of ArcMap. This method can be more efficient than choosing a file path as a
parameter each time the script is run, but care must be taken to change it back and set the tool’s script
to the updated version.

The second section of the database creation script focuses on table creation, adding fields, and
managing the parameters that define them. Variables are assigned to each component of the script.
Because variables can represent file paths, lists, and other script components they are commonly
implemented to reduce the amount of editing that accompanies modifications and can facilitate
semantic uniformity.

In the interest of uniformity like fields were added together as a list whenever possible. On occasions
where parameters such as field type or field length differ from like fields separate renditions of field
management were executed. The fields are added to the table in an order consistent with the field
format of archive metadata spreadsheets that predated this capstone project, but some reformatting
was required to meet ArcMap standards.

In the third and final section of the database creation the script assigns domain variables and creates
dictionaries for the finite values specific to some fields. The first version of the tool created subtypes for
data form and genres. This resulted in each subtype overwriting its predecessor and the database only
the final rendition existed by the time the script finished. We instead homogenized the script, opting to
only create dictionaries for domains.

Import Data to Database Table Script

Note: This tool requires an ArcMap Standard (ArcEditor) or Advanced (ArcInfo) license to function since
the table will already have relationship classes created. There is no check for the license level in the
script since the author’s experience with government management of ArcGIS licenses uses a bank of
licenses that are checked out as needed. The author’s prior experience with integrating license checks
with license banks has never produced a script that could accurate check the license level that was
checked out. Therefore license checks were omitted to create a script that will run; it is up to the user
to activate the appropriate ArcGIS license prior to running the script.

Once the database table script was developed, and run through the initial tests for functionality, a
second python script was written to import record metadata from spreadsheets provided by King
County Archives into the database. The early versions of this script had no capability to handle duplicate
records. Each record from the Archives had a Unique Record Identifier number assigned to it. This was
a combination of an identifier of the the PSAAP archive agency that provided the historic document, and
an ascension number for the historic document.

Our vision of the workflow was that only new records were being output from the PSAAP archives, so
duplicate handling was unnecessary. After consulting with King County Archives on this, we learned that
the historic records metadata would need to be updated if more information about a record became
available. These updated records would be included with new records as part of the spreadsheet to
upload to the database. This meant that the script needed a way to not just insert new table attributes,
but update existing ones at the same time.

This script function by the user setting the Workspace to the PSAAP geodatabase. They then set the
spreadsheet to import into the geodatabase and then set the table in the database where the historic
document metadata from the spreadsheet will be stored. The table must be a table that was created
using the PSAAP Database Table script. Attempts to load it to different tables may result in errors due to
number of fields, field types and attribute types (string, integer, decimal, or dates).

Once the script parameters are set in ArcGIS, the script runs a tool that imports the spreadsheet data
into a temporary database table within the PSAAP Database. Two search cursors are then activated, one
scans the temporary table and the other searches the PSAAP Database table for the Unique Record
Identifier(URI) values in each table. The returned URI values are added to one of two lists; one list for

the temporary table URI values and another list for the PSAAP Database Table URI values. The lists are
converted to sets and then intersected to find common values. The intersect URI values are duplicates
and they are added to a new list. The scan cursors are closed.

As the tool continues to run it starts a new search cursor, which scans all the fields in the temporary
table. If it finds a duplicate URI the script starts an update cursor and updates the existing record based
on the data in the temporary table. If no duplicate URI is found the script starts an insert cursor and
adds all the attributes to a new record in the PSAAP database table.

Three functions were also created in this script to process dates into a format that allows the update
cursor and insert cursor to add them to the appropriate fields in a format compatible with the PSAAP
Database table date fields. The Date Range field in the spreadsheet can hold both a start and end date
for the time period a historic document belongs to. The first two function separate the date range into a
start date and an end date. The date range data must be formatted in one of two ways in the
spreadsheet for these functions to work; Start Year - End Year without spaces between the hyphen (e.g.
1930-1945) or as a single year (e.g. 1933). In the event of a single year the function will use that year as
both the start and end of the date range.

The third function processes the known date of the record. This function draws from the Original
Record Date field in the spreadsheet, so dates in that field must follow a certain format to work. Dates
in this field must be in m/d/yyyy format without leading zeros. This means that August 9, 1930 needs to
be entered as 8/9/1930. If the date is entered as 08/9/1930 or 8/09/1930 it will return an error and
stop the script. Also dates cannot be formatted with hyphens; a date format of 8-9-1930 will not work.
Also it is important to make sure the Original Record Date column in the spreadsheet is formatted as
text, otherwise it imports the date codes that Excel uses to tell the time; these are not usable values for
the database.

Once the insert cursor and update cursor have finished adding or updating rows, the script deletes the
temporary table from the database. The script is then complete and the PSAAP Database table will
contain the new or updated records.

Processing Fields for Relationship Classes

The third Python script takes the individual fields for the iterations of the Township, Range, Section, and
Quarter Section fields and concatenates them into single strings that are used to relate to the King
County PLSS (Public Land Survey System) feature classes for Township/Range, Section, and Quarter
Section. For each iteration of the of the Township Range fields it populates 3 fields specifically created
as part of the PSAAP Database Table tool to hold these values. Town_Range fields holds the combined
Township/Range fields as double type data. Town_Range_Sec fields hold the combined
Township/Range/Section fields as double type data. Town_Range_Sec_QSec fields hold the combined
Township/Range/Section/Quarter Section fields as a string. This is because quarter sections are NE, NW,
SE, SW and not number values. The fields are populated using an update cursor. These field types
match the corresponding fields used to create the relationships in each of the PLSS feature classes.

Building Relationships

Relationship classes were created in the database using ArcCatalog. The HistDocsData table of the
PSAAP Database, which contains the metadata about the historic records, was related to the King
County PLSS feature classes for Township/Range, Sections, and Quarter Sections. Initially there were
four sets of relates to each PLSS feature class, one for each iteration of the arbitrary number of repeated
PLSS fields that we had decided to use. This did not function in AGOL (more detail is provided in the
Discussion subsection Relationship Problems) and we had to revert to using one relationship per feature
class. Relationships were created using the following steps and if the database needs to be rebuilt,
follow these steps to build a relationship:

1. Open the PSAAP Database in ArcCatalog,
2. Right click on the PLSS feature dataset.
3. Select New and from the submenu select Relationship Class.
4. In the new window that appears, name the relationship class. Make sure it has no spaces and is

easily identifiable.
5. For the Origin Table select HistDocsData.
6. For the Destination Table expand the PLSS feature dataset and select plss_qtr.
7. Click Next.
8. Set the relationship type to Simple (peer to peer) relationship.
9. Click Next.
10. In the next window leave the values at the default settings and click Next.
11. Set the cardinality for the relationship. Chose 1-M (one to many).
12. Click Next.
13. In the next window leave the setting as No, I do not want to add attributes to this relationship

class.
14. Click Next.
15. In the next window you will set the Primary Key for the origin table. Since this is the Quarter

Section feature class we relating to set this to the field Town_Range_Sec_Qsec1. This tells the
HistDocsData Table to use this field to create the relationship with the plss_qtr feature class.

16. Set the Foreign Key field in the destination feature class. The field to select here is TRSQ.
17. Click Next.
18. The next window shows a summary of the relationship class. Hit Finish and the relationship will

be established.
19. Repeat these steps to create new relationships with each of the plss_sec and plss_twn feature

classes (Step 6). To create the relationship with the plss_sec feature class, in the HistDocsData
table select the field Town_Range_Sec1 in Step 15 for the Primary Key field. For the Foreign Key
field in Step 15 select the TWNRNGSEC field.

For the plss_twn relationship, in Step 15, set the primary key to Town_Range1 and the foreign
key to TWNRNG.

To create the relationship for the parcel_address_area feature class, in Step 6, expand the Parcel
Feature dataset and select the parcel_address_area feature class. In Step 15, the Primary Key
will be Address2017 and the Foreign key will be FULL_ADDR.

A Note on Address Relationships. The FULL_ADDR field addresses are all capitalized. The same
must be done to the Address2017 addresses for the relate to work.

Web Map / Story Map

The web map that was produced used the PSAAP Database AGOL hosted feature service to add layers to
the web map. The map also includes the 1936 King County Aerial imagery as a layer that can be enabled
and disabled. The group was not able to get raster mosaics that we had created published as imagery
services to include on the web map. The raster are the Pre-1940 Road Establishment map and the
combined Kroll Land Use map pages from 1951 - 1959. These can be hosted by King County on their
servers and then added to the web map in the future.

Adding Coded Values

The ability to add more Coded Values to a domain is a workflow the project sponsor requested to have
described to them. This will allow the sponsor to update Domains as more archives participate, more
historic record formats are incorporated, or more townships and ranges are needed.

1. Open ArcCatalog.
2. Find the PSAAP Database (PSAAP_Final.gdb in the example)

Figure 5: Navigate to the PSAAP Database in ArcCatalog.

3. Right click on it and select Properties.
4. Click on the Domains tab.
5. From the table at the top Select the Domain to edit by clicking on it until it highlights.

Figure 6: The List of Domains (top table) and Coded Values of a selected domain (bottom table).

6. The Coded Values for the Coded Value Domain, that has been selected, displays on the bottom
table. Scroll through the list until you find empty Code and Description fields.

Figure 7: Scroll down to empty rows to add additional domain values and descriptions.

7. Type in the Code. This is the coded value that is stored in the Database Table. The length of the
Code must fall within the length of the Field(s) it is assigned to. For Example if the FileFormat
domain is assigned to a field that has a length of 3, you can enter a 3 character code, like GIF.
You could not however, use a 4 character code like JPEG.

8. In the example above, GIF is entered as the coded value and gif is entered as the description.

Figure 8: Enter the Code (left) and Description (right)

9. The description is not held to the field length limits that the code is, which means you could
enter a more indepth description such as Graphics Interchange Format. While the coded value
is what is stored in the database, the description is what displays when you open the attribute
table and look at the field that uses the domain.

10. Click OK to make the changes to the domain.

Results

The Geodatabase

PSAAP now has a geodatabase tailored to their needs that has the potential serve as a powerful
repository for historical data. Visitors to the King County Archives facility or webmap can access archives
through a medium that combines geospatial capabilities with broadened search capabilities in
comparison to the current search portal. The geodatabase contains documentation, PLSS parcel feature
classes, the PSAAP tools, and relationship classes. Its ‘HistDocsData’ table contains a date field, but also
fields for start and end dates that are short integers instead of date data types. The fields processed for
relationship classes that contain combined town-range and town-range-section values are doubles, and
the quarter sections are text. File size is the only attribute that is a long integer. All other attributes are
text fields.

The geodatabase has four relationship classes that connect it the attribute tables of feature classes used
to spatially query data. The parcel, quarter, section, and township feature classes all share relationship
classes with ‘HistDocsData’. Each of the feature classes offer increased resolution through a recursive
relationship. Parcels generally smaller than quarter sections which are nested within sections that fill
townships.

Tools

Three tools using Python scripts were created to streamline database creation, data importing and
relationship management. The first tool creates an empty table in a database that has the fields mapped
out and ready to use to import data from spreadsheets. The second tool imports data from the
spreadsheets to the database table. It is capable of finding duplicates based on the Unique Record
Identifier field and the updating the existing record in the database rather than creating a duplicate. It
then adds new data from the spreadsheet to the table. The last tool processes the historic document’s
plss data into single fields that are used to relate the data to the plss feature classes.

Archive Web Map Portal

The web map published can be upscaled to serve as a portal to access and share archival data with the
public

Discussion

Goals vs Reality

Going into this project our assumption was that we would be linking existing non-spatial database tables
to feature classes via relates to create a ‘new’ database which would then be spatially enabled and able
to be used in a web mapping application. We assumed that a database existed.

As we met with the sponsor started to realize that there was a difference in database dialects that we
used. Our interpretation after some meetings was that there was no database management system
(DBMS) being used by King County Archives and we approached our project with that in mind. It was not
until the end of the project that we found out, by accident, that was not the case. They do use a DBMS
to manage their records. This misunderstanding actually guided the bulk of our project and in the end
resulted in a much more robust examination of how to utilize the data and develop the first steps of
what can be developed into very powerful and useful product.

Our interpretation of the sponsor’s wants was that all the documents showing any sort of landscape
should be georeferenced. Some of these records were odd shapes, covered small areas which would be
of limited use for a web map that covers a large area. Georeferencing is lower skill level GIS work, and
wouldn’t have been suitable for a Master’s Capstone project. Plus, georeferencing takes a lot of time
per record to complete. With the potential for hundreds of thousands of record attributes to be stored
in this database, we determined that georeferencing was a not a viable solution. We informed our
sponsor of this and explained what we wanted to do; create a relational database that would access
records quickly on a map without the need to make each historic record spatially aware beforehand.

Carol Shenk, our main contact with the archives, had very limited GIS experience going in. It was clear to
us from the start that we were the GIS experts, and that it was our job was to translate the needs and
wants she had into a useable product. Her willingness to listen and be responsive helped us immensely
in scoping and developing the database. We would not have been able to produce a database that is
developed to the extent it is, without her expertise in historic records and feedback that she provided.

Relationship Problems - Participating in Multiple Relationships at Once

A significant problem that was encountered was the difference between how an ArcMap Geodatabase
and ArcGIS Online Hosted Feature Service handle relationship classes. Relationships allow for tables to
be related to each other using a set of keys to match attribute rows. Database managers can edit
attributes of a table that is related to a feature class without actually editing the feature class itself.
Relationships also allow data to be connected where it does not make sense from an organizational
standpoint to include data in a feature class that has purpose different from the data you want to
include. An example here is the data we are working with; parcel data has a totally different function
(managing land ownership) than historic records metadata. However we need to use the parcel data to
access the historic records metadata in a spatial context. This is where the relationship comes into play.

No editing of parcel data needed to take place to accomplish this; only the Address fields needed to be
related to then access the metadata in a map.

The historic records table had multiple relationships that needed to be established with it; one for each
of the Township/Range, Section, and Quarter Section, and Parcel feature classes. The PLSS feature
classes were originally intended to have four relationships for each feature class in order to allow one
historic document to relate to multiple features. This functioned in ArcMap; documents that covered
large areas, such as road profile records, would appear as a related record for each section they crossed.

When the database was then published to AGOL as a feature service, none of the relates functioned.
The historic document metadata table appeared in the AGOL feature service, as did the PLSS feature
classes, but the relationship was broken. Testing took place, and it was determined that the 4
relationship classes that were assigned from one table to one feature class was what caused the
problem. The number of relationships was reduced to one relationship per feature class to the historic
documents metadata table and then re-published. This time the relationship worked. Clicking on a
feature in an AGOL web map would show that related records existed, and the related table could be
opened at the bottom of the map and the documents could be accessed.

It was then realized more work would be necessary to adjust the database schema to allow one historic
document to relate to multiple features in a feature service. One potential solution, that would need
more development and input from the project sponsor, would be to append the data used in the
relationship to the URI field, for each different relationship the record participated in, it would need to
be duplicated in the database. No functioning test of this was ever achieved, and a real concern is that if
thousands, or hundreds of thousands of records live in this database, it would cause some serious bloat
in terms of server space the database would need.

A second relationship issue was then encountered directly in AGOL. The authors’ previous experience
with relationships in AGOL had been with a 1 to 1, one feature relates to only one attribute in a table.
The relationship classes in the PSAAP database are 1 to many, which allows multiple table attributes to
relate to one feature. Pop-ups were going to be an integral interface for users to view and access
historic records. Unfortunately with AGOL feature services that use a 1 to many relationship, AGOL is
unable to show the individual table attributes for each relate. This means that an out of the box
solution for an easy to use interface was not feasible with AGOL. It also meant that using the database
to directly create story maps about certain subjects or areas would be impossible for someone with
limited GIS experience; they wouldn’t be able to query the results by a subject and add them to a new
map. They will instead need to process all the records offline and join them to a feature class prior to
publishing.

However, the web map can still display related records, in the pop-up clicking ‘Show Related Records’
will open the table and filter the results based on the number of documents that are related. While this
is far from the intuitive user interface that King County Archives and PSAAP wanted; it is a start. People
familiar with databases will still be able to use the web map. The URL to records even shows as one of
the first fields in the table, so while the public may find the other table fields useless, they can click the
link and go directly to the historic document hosted on the archives’ server.

Geocoding

The project sponsor and project team had hopes of being able to add a historic geocoder as part of the
database. This would have allowed a text search by address, or other geocodable data, such as the PLSS
data. This was pushed lower on the priority list of deliverables once research showed the immense
undertaking this could be, New York Public Library has a citizen science geocoder and georeferencer to
process old maps. It is a mammoth undertaking well beyond the time available to this project.

As the project progressed and it was clear that developing a functioning database with associated tools
would be the main focus, the geocoder idea was scrapped as part of this project. Developing a robust
database would allow this project to serve as a useful stepping stone for further development of a web
mapping application. While the group failed to create the polished and functional web map that the
project sponsor desired; it did build the framework to allow others to pursue further development
without starting entirely from scratch.

Business Case and Implementation Plan

AGOL’s limited relationship class capabilities affected the user interface of the online map data portal,
but in ArcMap all of the relationships are fully functional for local access. A GIS portal integrated into a
workstation on site at King County Archives could offer in depth use of digitized records. ArcGIS desktop
licenses may be available at minimal cost through the county enterprise system.

Agencies and contractors are required to follow the National Environmental Policy Act (NEPA) when
considering development. Section 106 of NEPA states that agency officials are responsible for and EIS
and Record of Decision an Environmental Assessment, and a Finding of No Significant Impact to ensure
that historic properties are protected (National Preservation Institute). The webmap archive portal and
the geodatabase created to support it can streamline and enhance the workflow of those tasked with
scoping and identifying areas of cultural significance.

Literature Cited

Getty Research Institute. 2017. “Getty Vocabularies.”
http://www.getty.edu/research/tools/vocabularies/

National Preservation Institute. 2017. “NEPA and Section 106 of the National Historic Preservation Act.”
https://www.npi.org/NEPA/sect106

https://www.npi.org/NEPA/sect106
http://www.getty.edu/research/tools/vocabularies/

