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Executive Summary 

 

Suggested key points to cover (Austin) 

General: 

- Data collector is meant to feed data into What if. 

- Data collectors are made with public audience in mind. 

 

Recreational & Incident Reporting Platform (RIRP): 

- Data collection platform 

- Provides two-way interaction between the park and the user 

- Examines the basis of human-nature interaction. 

 

Recommendations: 

- Advertise data collector to get a dataset going for What if model 

- Professionals in ecology, biology, and climatology should be consulted for major 

decisions with predicted change in ecosystem services 

- Strava Metro provided potential partnership opportunities for access of robust 

recreational datasets for evaluating Discovery Park’s recreational value 

- Future human-nature interaction studies can use VMP’s data collector as a framework 

for surveying.  
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1. Background and Project Objectives 

1.1 Background 

 

The largest city park in Seattle, Washington, Discovery Park offers the community a display of 

rich and diverse vegetation and wildlife, which has large areas of acreage preserved in its 

natural state.  Recently, Discovery Park has made news for issues such as sewage spills, and 

proposed plans to build affordable housing within and near the park. These previously 

mentioned events has potential implications for a park that Earth Economics projects to have a 

financial value somewhere between $557,000 and $1.08 million dollars. 

Given factors such as these, the Friends of Discovery Park (FoDP) reached out to the University 

of Washington’s Master of Geographical Information Sciences (UW-MGIS) program to help 

them to develop a tool that can enable Discovery Park’s stakeholders in making informed 

decisions about the recovery efforts and purposeful alterations to the park’s natural landscape. 

Established in 1974, the FoDP is a non-profit organization powered by volunteer efforts “to 

defend the integrity of Discovery Park and to create and protect there an open space of quiet 

and tranquility, a sanctuary where the works of man are minimized.” The collaborative efforts 

between FoDP and UW-MGIS began with a project executed by Rich, Peterson, and Marshall 

(2018). Their initial efforts laid the foundation of the work efforts for this project. Rich, Peterson, 

and Marshall’s work was heavily focused on data collection and researching influences and the 

implications of landscaping alterations within Discovery Park. Our guided efforts for this project 

were focused on developing a decision support tool with stakeholders of FoDP using data 

resources created by Rich, Peterson, and Marshall. As with many projects in the GIS 

profession, we encountered challenges that were needed to be addressed to achieve our initial 

goal of developing a tool. The first hurdle was the input data used for the proposed geo-

statistical modeling. One affordance in particular, recreational use of Discovery Park’s land 

involved data considered proprietary, which had data use agreements constraining the utility of 

physical activity data for the proposed GIS application. Also, the data collected by last years 

MGIS cohort, though critical to the tool’s functioning, does not appear sufficient to build a 

statistically accurate tool. The geo-statistical model would ideally have wildlife data points 

reflecting the diverse population of animals and insects within Discovery Park. Moreover, the 

ideal data source would have longitudinally robust data on wildlife and vegetation. Given these 

considerations, the authors of this report in collaboration with FoDP decided to make a 

necessary pivot after the sixth week of the academic quarter, to put FoDP in the best position to 

have a useful decision support tool as a long-term goal for this endeavour. The decision to 

make changes in the project’s goals and objectives were reached after several failed attempts 

to build an effective analytic model accurate enough to make actionable decisions related to the 

preservation and improvements to Discovery Park. 

1.2 Project Objectives 
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As mentioned in previous assignment submissions in GEOG 569, our initial primary objective 

was to develop a functional GIS web application for Seattle’s Discovery Park so that FoDP can 

increase their odds of acquiring more financial resources for a decision support tool that The 

University of Washington will prototype. As such, the core mission of our GEOG 569 capstone 

project was to: 

1. Propose Discovery Park Virtual Management Platform (VMP) as a framework for 

ecosystem-based green space management software across the country. 

2. Implement the Virtual Management Platform (VMP) as an in-house educational interface 

for the general public on ecosystem services and benefits. 

  

Given the project’s pivot, our current objective now is to develop a dynamic and live data 

collection and analytic framework for FoDP. Though this pivot means that the VMP return on 

investment would be delayed, the long-term goals of having actionable data would increase 

multi-fold, as the data architecture could facilitate more accurate longitudinal and time-

comparison analyses. The adjusted core mission of our GEOG 569 capstone project is to: 

1. Develop and implement a wildlife, vegetation and recreational data collection application 

for Discovery Park. 

2. Develop an automated geostatistical framework that will correlate FoDP’s outcomes of 

interest using existing data sources and data collected from the developed data 

collection application. 

3.  Develop a web-focused wireframe that will synergize these web applications through a 

centralized browser interface. 

4. Prepare a lay-language report that will inform FoDP how to replicate steps taken to 

develop tools so that they can enhance tool features and run statistical analyses once 

more data come available. 

 

Though challenging to implement in three weeks, this approach was preferred over the original 

project scope at the beginning of the Summer 2019 quarter because: 1) current and accurate 

data appears to be the most vital component that will influence the success of the decision 

support tool, 2) the analytic needs of FoDP exceed the capacity of a single web application, and 

3) clearly communicating the project’s tasks in lay terms is critical in advancing the long-term 

success of FoDP’s plans for this tool. Given the project’s fourth objective, this report will follow a 

format unconventional to previous MGIS capstone reports. The following sections of this report 

will detail the steps needed to develop the proposed tool so that individuals with moderate 

ArcGIS knowledge can replicate and enhance the proposed tool. Due to this report’s 

instructional format, typical GIS reporting sections such as “data development,” “workflow 

implementation,” are “results” will be interwoven within the instruction of each tool. The 

conclusions and recommendations section will be at the end of this report. The project’s system 

resource requirements and business case evaluation sections are located in the project 

appendices. 
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2. Data Collector Web Applications 

2.1 Hosted Feature Layers 

ArcGIS Online offers hosted layers to be published by accounts within an organization. FoDP’s 

creator ArcGIS online account status satisfies the prerequisites for publishing hosted feature 

layers for other to query, visualize and edit. Hosted features functions like feature classes in 

ArcGIS Desktop software, these layers can house specific vector data types with a wide range 

of fields to supplement individual spatial elements. Users within the organization can be broken 

down to Viewer, Data Editor, User, Publisher and Administrator access to facilitate access 

and maintenance of the hosted feature layers. More details can be found on AGOL FAQ1. 

2.1.1 Setting Up Hosted Features for Data Collection 

In order to provide hosted feature layers for other AGOL applications, simply navigate to the 

account’s content on the AGOL platform and hit “Create”. For the purposes of the VMP data 

collector platform, “Feature Layer” should be the primary hosted feature for FoDP (Fig 1). 

 

Fig 1. Creating hosted feature layer. 

 

After “Feature Layer” is selected, the user will be prompted with options to create from 

default layer templates based on the user layer requirements. Depending on the specific 

real-life phenomenon FoDP wishes to capture, either point, line or polygon can be 

selected from the default template to provide the hosted feature layer with default fields 

                                                
1 AGOL FAQ - User Privileges 

https://doc.arcgis.com/en/arcgis-online/reference/roles.htm
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for the type of vector geometry (Fig 2). Proceed with the selected geometry type and a 

sequence of options will be presented for the user to fill out metadata for the feature 

layer. All the contents provided for the hosted feature layer’s metadata can be updated 

from the layer details in FoDP’s “Content” menu.  

 

Fig 2. Default feature layer templates from ArcGIS Online. 

  

Once the hosted feature layer is successfully created, an “Overview” will be shown up 

for the feature layer. The “Data” tab allows the user to create, modify and update 

existing elements and fields housed by the feature layer. To add additional fields for 

data collection, click on “Add” and fill out the “Add Field” form presented by the 

interface (Fig). The most important aspect of the field creation wizard is the “Allow Null 

Values” option. If the created field is meant to be a required field for the data collector, 

then the option should be left “unchecked” to disallow null values. Once a field is 

created, each field can be modified and updated by clicking on the “Display Name” for 

the field and hit the “Edit” option afterward (Fig 3). 
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Fig X. Sample hosted feature layer data menu. 

 

 

Fig 3. Field overview from the Data tab under “Fields”. 

  

A host of desired field domains (attribute domains) can be created for the added fields 

or existed fields by using the “Create List” option. The “Label” are user-defined values 

that can be selected by data collector, and the “Code” is the backend alias for the 

specific “Label” (Fig 4). Once completed, save and return the data view and you should 

be able to see a “List of Values (Domain)” listed for your newly created field. More 

details on customizing a hosted feature layer can be access from AGOL FAQ2. 

                                                
2 AGOL FAQ - Publishing Hosted Feature Layers 

https://doc.arcgis.com/en/arcgis-online/manage-data/publish-features.htm
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Fig 4. Sample attribute domains for a field in ArcGIS online hosted feature layer. 

2.1.2 Visualization of Hosted Feature Layers 

Hosted feature layers can contain default symbology for the layer to take on for visualizing on a 

web map. Within the feature layer, navigate to the “Visualization” tab and click on the “Change 

Style” icon ( ). Choose the field to default the data visualization, and then select “OPTIONS” to 

customize the desired symbology by clicking on the current symbology (Fig 5). 

 

After the symbology has been customized for default visualizations, select “Save Layer” to 

register the visualization. By customizing visualization through the hosted feature layer 

“Visualization” menu all other AGOL applications and products that utilizes the feature layer will 

have universal visualization of the data layer. 
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Fig 5.. Customizing symbology for data visualization of fields from feature layer. 

2.1.3 Privacy Settings for Hosted Features  

ArcGIS online hosted feature layer allows customized layer settings centered around data 

management and accessibility. For long-term usage, enabling “Delete Protection” is highly 

recommended to prevent data loss from misuse. Privacy settings can be access from the 

“Settings” tab under “Feature Layer (hosted)” section (Fig 6). 

  



11 

 

Fig 6. Hosted feature layer privacy setting for editing, viewing, and data management. 

  

Depends on FoDP’s comfort in providing access for the public to use the data collector to 

populate hosted feature layers, several important settings should be enabled for the intended 

audience. Suggested setting for hosted feature layer privacy can be found below. 

  

Public Audiences 

Hosted feature layers published to allow public usage often face difficulty in maintaining 

data quality and integrity. To assist in facilitating a productive process of data collection 

with the hosted layers below is a list of important settings to consider for public usage: 

 

         Editing 

● Enable editing 

● Keep track of created and updated features 

● Keep track of who created and last updated features 

● Enable Sync (disconnected editing with synchronization) 

Editing Type (only one) 

● Add features 

● Add and update features 
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Editing Viewing Access (only one) 

● Editors can see all features 

● Editors can only see their own features (require tracking) 

Editing Features (only one) 

● Editors can only edit their own features (require tracking) 

Anonymous Editors (only one) 

● Only add new features, if allowed above (requires tracking) 

  

Trusted Audience 

Users that are entrusted with collecting spatial elements for the feature layer should 

allowed higher access to streamline data editing and in-field maintenance of data 

integrity. FoDP should consider modifying user privileges described in Hosted Feature 

Layers to manage trusted user access to hosted features. Within the feature layer 

privacy settings, a list of important settings to consider are listed below: 

 

         Editing 

● Enable editing 

● Keep track of created and updated features 

● Keep track of who created and last updated features 

● Enable Sync (disconnected editing with synchronization) 

Editing Type (only one) 

● Add and update features 

● Add, update, and delete features 

Editing Viewing Access (only one) 

● Editors can see all features 

Editing Features (only one) 

● Editors can edit all features 

● Editors can only edit their own features (require tracking) 

Anonymous Editors (only one) 

● Only add new features, if allowed above (requires tracking) 

2.2 Visualizing Layers in Web Maps 

ArcGIS Online Web Maps serve as the basis and foundation for building web applications. The 

online web map functions similarly to data frames in ArcGIS desktop counterparts. Despite 

having data analysis capabilities in the web map interface, it is recommended to only use 

ArcGIS online web maps for only data visualization and client-facing customizations. More 

information about the web map can be found on AGOL documentation3. 

2.2.1 Setting Up Layers for Web maps 

ArcGIS Online web map interface allows addition of feature layers from a wide range of sources 

including the user’s content repository, public feature layers, local files, or other import options. 

To construct the web map for a data collector, hosted feature layers will be the main import for 

                                                
3 AGOL - Web Map Documentation 

https://doc.arcgis.com/en/arcgis-online/reference/what-is-web-map.htm
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the web map. To add a layer into the web map, “Search for Layers” and locate the hosted 

feature layer created within FoDP’s content repository and “Add to Map” (Fig 7).  

 

Fig 7. Adding layers into ArcGIS Online web map. 

2.2.2 Adjusting Visualization 

The hosted feature layer should have defaulted symbology if layer creation follows section X.1.2 

Visualization of Hosted Feature Layers. If the layer symbology of the added hosted feature layer 

requires further customization, access data symbology with the “Change Style” icon ( ) and 

follow the instruction to specified desired field to symbology and applied the desired symbology. 

More details about available options within the “Change Style” property can be found on the 

web map documentation on style customization4. 

2.3 Using ESRI WebApplication for Data Collection  

ESRI Web Appbuilder provides an online builder platform for developers to create web 

applications that are accessible across stationary and mobile platforms. These applications can 

perform a wide range of functions ranging from information visualization, management, 

collection, and other customizable functionality. The web application developed by University of 

Washington MGIS 2019 FoDP group will center around utilizing the existing ESRI builder 

framework to construct an open-source data collector for FoDP. 

2.3.1 Building ESRI Web Application 

Similar to constructing hosted feature layers and web maps, within the “Content” page of the 

ArcGIS Online platform, users can create a web application from the “Create” menu (Fig 8). 

Follow the wizard prompt after selecting “Using the Web AppBuilder” to provide the web 

                                                
4 AGOL - Change Style Documentation 

https://doc.arcgis.com/en/arcgis-online/create-maps/change-style.htm
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application with metadata, these metadata can be updated on the web application details page 

from accessing the application from the content list. 

 

Fig 8. Creating ESRI Web Application from Content page. 

 

Once the web application is successful created, the user will be brought to the Web Appbuilder 

interface (Fig 9). The web application can be customized from the AppBuilder via four distinct 

aspects – Theme, Map, Widget, Attribute. 

  

Theme – control of the overall application theme and color palette. 

  

Map – settings for referenced web map and associated customization of map viewing. 

  

Widget – controls for adding, editing, deleting, and customizing individual functions 

within the web applications. For instance, the Edit widget allows users to add, update, 

and manage data from editable layers. The Edit widget can be customized to restrict 

fields from user access. 

  

Attribute – settings for the overall web application in regards to branding, backend data 

source and content access. 
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Fig 9. Default ESRI Web AppBuilder interface. 

 

The first order of business in making a functional web application is to reference an existing web 

map from the user content repository. Within the “Map” tab select “Choose web map” to select 

the web map set up from Visualizing Layers in Web Maps of this document (Fig 10). 
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Fig 10. Selecting map for web application. 

2.3.2 User-experience Widgets 

ESRI web applications come with a suite of default widgets that enhances basic user 

functionality. These widgets can be customized and adjusted based on the needs of the 

application from the “Widget” menu in the AppBuilder (Fig 11). For the purpose of the data 

collector, legends, layer list are the two widgets that requires further customization from the 

default setting. The “Legend” widget governs the visibility of the symbology for each layer within 

the web application, while the “Layer List” controls the visibility and accessibility of each 

individual layer and the attribute table. Widget customization is application wide and will take 

effect once the changes are saved within the AppBuilder interface. 

  

Several widgets that can be further customized to enhance user experience includes: 

Coordinate – controls default projection of the web application. 

My Location – adjust settings for using of GPS location systems by user. 

Overview – adjust placement of in-set map for locating current extend on world extend. 

Attribute Table – customizable viewing and access of layer attribute tables. 

Scalebar – adjust visualization of map scale bar and units. 

  

 

Fig 11. Default widget view for web application created from FoDP template. 
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2.3.3 Data Collection Widgets 

ESRI Web Appbuilder offers two options for on-the-fly data editing – 1) Edit Widget and 2) 

Smart Editor. For the purpose of the FoDP data collection framework, the edit widget was 

focused on for this project and primarily used in the construction of the data collector 

application. The “Edit” widget offers a whole suite of options to customize user-side viewing and 

interaction with the hosted feature layer fields (Fig 12). 

  

 

Fig 12. Edit widget customization menu. 

  

Each editable field can be toggled for “Display” and “Edit” on the user side and these 

customized field settings allows the AGOL host to manage user access to recorded elements 

(Fig 13). 
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Fig 13. Hosted layer field access customization within Edit widget. 

  

These settings are reflected on the user-end when elements are added to the hosted feature 

layer (Fig 14). The same settings are applied whenever the use decides to add, update, or 

delete existing features. End users does not have access to manipulate which fields are 

available or unavailable; however, as mentioned in Setting Up Hosted Features for Data 

Collection, fields that do not accept “null values” will become required fields of the hosted layer 

and users will be required to provide a value for that field in order for an element to be added. 

  



19 

 

Fig 14. Edit widget user-end view. 

  

The symbology of the available templates provided by the hosted layer is customizable within 

the “Data” tab of the hosted layer as discussed in Visualization of Hosted Feature Layers. More 

information on the “Edit” widget can be found on ESRI AGOL documentation5. 

2.3.4 Complementary Summary Widgets 

Akin to the “Edit” widget’s option to customize for end user viewing and access. ESRI Web 

AppBuilder offers numerous widgets that caters to enriching user experience. Several default 

widgets provided by the AppBuilder serve as helpful complements for the data collector 

experience. Through the development of data collector, a list of four widgets were found to 

enhance user experience and provide information for FoDP’s data collectors. 

  

List of Complementary Widgets for Data Collector Application: 

  

1) About6 

                                                
5 ESRI WebApp Builder - Edit widget 
6 ESRI Web AppBuilder - About widget 

https://doc.arcgis.com/en/web-appbuilder/create-apps/widget-edit.htm
https://doc.arcgis.com/en/web-appbuilder/create-apps/widget-about.htm
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The “About” widget is an all-purpose widget for providing a pop-up window within the 

web application for user to read any additional information, description, summary of the 

application. This pop-up window can also be used to create custom HTML contents for 

the user to view and interact (Fig 15). 

 

 

Fig 15. About widget from FoDP Recreational & Incident Reporting Platform. 

 

2) Infographic7 

The “Infographic” widget provides templates for developer to use in illustrating field 

summaries or charted statistical data from the map (Fig 16). 

  

                                                
7 ESRI Web AppBuilder - Infographic widget 

https://doc.arcgis.com/en/web-appbuilder/create-apps/widget-infographic.htm
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Fig 16. Options of available infographic templates. 

  

The widget customization offers a limited selection of options for the user to customize 

their chart (Fig 17). 
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Fig 17. Widget customization for fine-tuning infographic display. 

  

The result is a user-friendly display of map information that facilitate highlighting of 

individual field categories and features (Fig 18). This widget provides user with feedback 

on their contributions to the hosted feature layer and reinforce positive interaction with 

FoDP’s data collector application. 
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Fig 18. Infographic from FoDP Recreational & Incident Reporting Platform. Map elements from a chart 

category is highlighted when user hovers over the infographic. 

 

3) Summary8 

The “Summary” widget allows web application to showcase a summary of numeric 

attributes from a feature layer. The summarized features are provided based on user 

viewing extent, and individual category for the summarized features can be filtered to 

isolated specific elements for viewing. To set up a “Summary” widget, four calculations 

are available for field summary – 1) sum (SUM), 2) average (AVG) , 3) maximum (MAX) 

and 4) minimum (MIN). These calculations can be performed and displayed for multiple 

fields within a single feature layer (Fig 19).  

  

                                                
8 ESRI Web AppBuilder - Summary widget 

https://doc.arcgis.com/en/web-appbuilder/create-apps/widget-summary.htm
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Fig 19. Summary widget set up for recreational activity survey 1. 

  

This widget functions similarly to the “Infographic” widget but provides a more concise 

view of numeric values for spatial elements (i.e. shape length) as seen in figure 20. 

Continuous value types are also well suited for this widget (i.e. elevation). 

  

 

Fig 20. Trail activity summary from user contribution, individual activity can be filtered and summarized. 
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4) Info Summary9 

The “Info Summary” widget provides the user with a collection of features from the map 

extent for each tallied feature layer. The collected elements can be organized based on 

preset templates from the hosted feature layer and individual records are displayed 

when the collection is expanded for viewing (Fig 21). This widget is exceptional for 

monitoring incidents in Discovery Park reported by data collectors. Individual elements 

within the collection can be interacted directly and associated feature information are 

displayed. Another advantage of the “Info Summary” widget is the widgets ability to 

summarize multiple layers at the same time. This reduces cluttering of widgets on the 

web application without losing the summary function. 

  

 

Fig 21. Info Summary from FoDP Recreational & Incident Reporting Platform. 

 

 

 

4. Recreational and Incident Reporting Platform 

A primary part of Virtual Management Platform project’s objectives is to facilitate interaction and 

education of visitors at Discovery Park. The platform aims to provide users with an 

understanding of effects from potential changes to the park’s natural elements. Along with the 

educational mission, FoDP also seeks to portrait human-nature interaction through the lens’ of 

the park visitors. The Discovery Park Recreational and Incident Reporting Platform (RIRP) was 

                                                
9 ESRI Web AppBuilder - Info Summary widget 

https://doc.arcgis.com/en/web-appbuilder/create-apps/widget-info-summary.htm
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constructed as a means of establishing a foundation for surveying human-nature interactions 

while informing the public about the park’s suggested recreational activities and safety 

precautions. The platform facilitates a two-way interaction where public users can review 

personal data contributions and FoDP users can manage park usage and respond to reported 

incidents. 

4.1 Recreational Activities 

Discovery Park provides the natural environment and service needed for conducting 

recreational activities. Physical recreational activities such as hiking, running, sports, and other 

outdoor hobbies requires the necessary environment to perform. These physical recreational 

activities are also often associated with mental and physical health benefits. The RIRP data 

collector allows users to input recreational activity information onto the platform and provide a 

spatial display of the user’s activity pattern (Fig 22). 

 

 

Fig 22. User recreational activity overview provided by Discovery Park Recreational and Incident 

Reporting Platform. 

4.1.1 Adding Recreational Activities 

The RIRP allows user to simply utilize the “Edit” widget to add in feature templates to denote 

the user’s recreational activity (Fig 23).  
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Fig 23. Available templates for recreational activities with Discovery Park Recreational and Incident 

Reporting Platform. 

 

A simple form will be provided when user finish drawing a feature from the available templates. 

Required fields are denoted by * and any other fields within the form will be treated as optional 

(Fig 24). Closing the form will save the feature and update the hosted feature layer with the user 

edit. 
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Fig 24.Edit form for recreational activities with Discovery Park Recreational and Incident Reporting 

Platform. 

 

4.2 Incident Reporting 

Another aspect of human-nature interaction focused by FoDP pertains to public safety within 

Discovery Park. Social activities are not limited to recreation, public safety concerns can 

oftentimes be attributed as another form of human-nature interaction. The RIRP allows users to 

add, update, and view identified public incidents within the park area. These incidents are live-

updated and keeps users informed of areas to avoid and exercise caution (Fig 25). 
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Fig 25. User incident report overview provided by Discovery Park Recreational and Incident Reporting 

Platform. 

4.2.1 Adding Incidents 

Similar to recreational activities, public incidents can be reported on the RIRP using pre-coded 

templates (Fig 26). Once a template is added, additional details can be filled out by the form 

provided for the feature (Fig 27). Each feature allows the user to update on the fly and provide 

changes to reported incidents. 

 

Fig 26. Available templates for incident reporting with Discovery Park Recreational and Incident 

Reporting Platform. 
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Fig 27. Edit form for incident reporting options with Discovery Park Recreational and Incident 

Reporting Platform. 

 

5. “What-If” Analysis Application 

 

The “What-If” Analysis Application is comprised of two major deliverables. The first deliverable 

being a statistical framework for FoDP, which can be used once more data becomes available 

for reasonably accurate analyses10.The second deliverable is a more simplified web application 

assessing implications in land cover modifications with respect to the affordance outcomes of 

interest (i.e., aesthetics, air flow quality, carbon sequestration, disaster mitigation, health, 

shelter, waste and water). The second deliverable with respect to the “What-If” analysis involves 

Python source code11 and an ESRI Web AppBuilder Application12. 

5.1 Data Management and Input Data Development 

 

At the request of FoDP we built an analytic framework using ArcGIS the Python API and arcpy 

libraries. The intent is for this source code to serve as a foundational workflow than can 

automate analyses once more comprehensive data becomes available. Relative to the code 

                                                
10 GitHub location for Jupyter Notebook of the geostatistical model: https://shorturl.at/hwFLS 
11 GitHub location for Jupyter Notebook of the simple application source code 
model::https://shorturl.at/bioJ3  
12 Location for simple “What-If” application: 
https://fodp.maps.arcgis.com/apps/webappbuilder/index.html?id=cc7f57f3f4c04736b40a578b34c12835 

https://shorturl.at/hwFLS
https://shorturl.at/bioJ3
https://fodp.maps.arcgis.com/apps/webappbuilder/index.html?id=cc7f57f3f4c04736b40a578b34c12835
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used in the simple model, it is imperative that users of this analytic workflow is aware of all the 

Python libraries use to conduct analyses. The core libraries used for the geostatistical model 

are: arcpy, ArcGIS Python API, pandas, numpy, and sciKit-learn. There were other libraries  

used, but the six previous libraries are critical to the functionality of the provided code. To this 

extent, the arcpy and ArcGIS Python API libraries are most functional for analysts with access 

to an active ArcGIS Desktop and ArcGIS online (AGOL) license. Therefore, it is recommended 

that coded models are processed using Integrated Development Environments (IDE) installed 

with the ArcGIS Desktop download. Among the IDEs preinstalled, we used the Jupyter 

Notebook IDE for this model. Also, these methods were implemented on a Microsoft Windows 

operating system. We accessed Jupyter Notebook through the Python Command Prompt within 

the ArcGIS program folder (as displayed in figure 28). Using this interface allows us to change 

the directory of our program on the front end by using the ‘cd’ command proceeded with the 

folder path where we plan to store the code (e.g., C:://user/name/documents/FoDP). After one 

changes their directory, the user needs to type ‘Jupyter Notebook’’ to start the software. If one is 

using the ArcGIS installed Jupyter Notebook IDE, most libraries used come preinstalled. sciKit-

Learn may need to be pip installed by opening the ArcGIS Python Command Prompt as an 

administrator, and typing ‘pip install -U scikit-learn ’ prior to changing the directory. 

 

 

Fig 28. How to access Python Command Prompt from Microsoft 
Windows Start Menu. 

 

https://pro.arcgis.com/en/pro-app/arcpy/get-started/a-quick-tour-of-arcpy.htm
https://developers.arcgis.com/python/
https://pandas.pydata.org/
https://www.numpy.org/
https://scikit-learn.org/stable/
https://pypi.org/project/scikit-learn/


32 

It is not the intent of this report to teach readers how to use Jupyter Notebook, but the directions 

are made available on the Internet13. The libraries used for the geostatistical model can be 

imported using the following code: 

 

import arcpy 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import matplotlib as matplotlib 

import sklearn as sklearn 

from matplotlib.ticker import FuncFormatter 

from sklearn.model_selection import train_test_split 

from sklearn.model_selection import cross_val_score, GridSearchCV 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.preprocessing import MinMaxScaler 

import os 

import getpass  

from arcgis.gis import GIS 

import sys 

from arcgis.mapping import WebMap 

from arcgis.features import SpatialDataFrame 

 

 

Next, we use the following code snippet to log into the clients AGOL portal. For security 

purposes, we use the Jupyter Notebook pre-installed getpass library to enter our stakeholder’s 

username and password so that external users will not see the secure information. It is 

important to store the username and password as variables for increased security. 

 

u = getpass.getpass(prompt='Enter username') 

p = getpass.getpass(prompt='Enter password') 

gis = GIS('https://fodp.maps.arcgis.com/',u, p) 

 

 

An entity relationship diagram of the primary data sources used for statistical modeling and the 

“what-if” application is displayed in Figure 29. These feature classes and tables are located in 

the FoDP contents section of its AGOL account.14 The full dictionaries for the data sources used 

are located in Appendix 4. All feature classes are projected using the following projection: NAD 

1983 StatePlane Washington North FIPS 4601 Feet. 

                                                
13 https://jupyter-notebook.readthedocs.io/en/stable/notebook.html  
14 https://fodp.maps.arcgis.com/home/item.html?id=945ae605ae594fa38bdb84e4d8e8a55d 
and https://fodp.maps.arcgis.com/home/item.html?id=a7e8c38fa59743cf8d3241abbbeb372a 
and https://fodp.maps.arcgis.com/home/item.html?id=bf90bf466a75417c942802e55c1276a0 

https://jupyter-notebook.readthedocs.io/en/stable/notebook.html
https://fodp.maps.arcgis.com/home/item.html?id=945ae605ae594fa38bdb84e4d8e8a55d
https://fodp.maps.arcgis.com/home/item.html?id=a7e8c38fa59743cf8d3241abbbeb372a
https://fodp.maps.arcgis.com/home/item.html?id=bf90bf466a75417c942802e55c1276a0
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Fig 29. Entity-relationship diagram of data sources used in “what-if” analyses 

 

Given that the source code underlying the What-If application analyses are provided, this written 

report will not cover every detail of code used in the analyses. To promote transparency and 

reproducibility for modeling in the future, this report will cover important concepts so that GIS 

analysts will understand the rationale behind the coding design. A key component in the data 

massaging in this project is the importation of data. To do this we used the following code in the 

ArcGIS Python API: 
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#This code searches for feature layer services in AGOL 

search_result = gis.content.search(query="Input Data Used for Geospatial 

Analysis v2") 

Search_result #This line enables us to see the results in Notebook 

 

#This code assumes what we are looking for is in the first feature layer 

#object from the code above 

dataSource = search_result[0].layers 

for lyr in dataSource: 

    print(lyr.properties.name) 

 

#After confirming the assigned title of layer from the code above, we 

#decide to import the attribute table in the feature layer collection's 

#first layer as a pandas dataframe 

birds = dataSource[0].query().sdf 

birds.head() #This line enables us to preview dataframe in Notebook 

 

The code used to import tables from AGOL is slightly different when compared to importing 

feature classes. The primary difference from the above code is in the second block of code, 

which looks like this when importing a table: 

 

#This code searches for data in AGOL 

search_result = gis.content.search(query="Earth Economics Lookup Table") 

search_result 

 

#This code assumes what we are looking for is in the first feature layer 

#object from the code above 

dataSource = search_result[0].tables #<<<This is what's different>>> 

Look = dataSource[0].query().sdf 

Look.head() 

 

5.2.2 The geostatistical model 

Early in this project, the FoDP stakeholder shared a keen interest in understanding the influence 

that vegetation has on wildlife. At the time of the project’s initiation, a dataset representing bird 

sightings in years 2015 and 2016 appeared to be the most robust data source representing 

wildlife. There was also interest in understanding the influence that wildlife has on vegetation. 

Early in the project, the MGIS students came to the conclusion that understanding the influence 

that wildlife has on vegetation would require more historical data and data reflecting a more 

diverse sampling of wildlife. Though we caution FoDP to accept this model’s findings as 

representative, we do believe that there are higher odds in getting data predicting wildlife 

presence given vegetation in the nearer future.  
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The key dependent variable in our geostatistical model is bird counts, which is present in our 

birds feature class. As suggested by the first phase of the virtual management platform project, 

we decided to use the 49,000 hexbin point feature class in our modeling so that we can 

leverage the increased power with large sampled data. That being said, the bird sightings are 

sampled from snapshot instances, which may not accurately reflect all areas within Discovery 

Park that serve as birds’ habitat. To better reflect vegetative areas where various species of 

birds within Discovery Park likely spend time at, we aggregated the count of birds within 700 

feet of each indexed hexbin. We considered using a buffer analysis where we looped through 

indexed hexbins and counted varying bird species within 700 feet of the centroid of each hexbin. 

Unfortunately, though simpler to code this approach was very computationally intensive on our 

computers. Therefore, we decided to do a cross-join between between our birds feature class 

and hexbin landcover point feature class using the pandas library. Therefore, to accomplish this 

task we first aggregated each species’ bird count over the 1.5 year period. Next, we pivoted the 

bird species column so that each column counted the species for each bird. Afterwards, we 

crossed joined the pivoted bird dataframe with the hexbin landcover dataframe, which allowed 

us to aggregate the number of birds within 700 feet of each hexbin without having to use any 

computationally intense geoprocessing tools. Finally, we left joined our vegetation dataframe to  

the cross-joined bird and landcover dataframe. In this model, the vegetation columns (1= yes 

this vegetation species is dominant in hexbin; and 0 = this vegetation species does not have a 

major presence in the hexbin) are our independent variables. The final dataframe used to 

process the statistical analyses are indexed at the hexbin-level, which means that this analysis 

comprises of roughly 49,000 observations. A summary of the source code to accomplish the 

previously described data management tasks are below: 

 

#pandas will not allow cross joins on columns  

#from different dataframes with same name 

key2 = key[['GRID_ID','Latitude','Longitude']] 

birds2 = birds[['Species','Count_','Latitude','Longitude']] 

birds2['Latitude2']=birds2['Latitude'] 

birds2['Longitude2']=birds2['Longitude'] 

del birds2['Latitude'] 

del birds2['Longitude'] 

 

#Lets do a cross join between the birds and hexbins, 

#but only keep the rows where bird sightings 

#are within 700 feet of a hexbin 

test=key2.assign(foo=1).merge(birds2.assign(foo=1)).drop('foo', 1) 

test['dist'] = np.sqrt(((test['Latitude']-

test['Latitude2']).pow(2))+((test['Longitude']-test['Longitude2']).pow(2))) 

test = test[test['dist']<=700] 

test.reset_index(inplace=True) 

del test['index'] 
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#Sum bird counts within each species at each GRID_ID 

birdSum = test.groupby(['GRID_ID','Species'])['Count_'].sum().reset_index() 

 

#now lets pivot the bird Species into separate columns 

birdPivot = 

pd.pivot_table(birdSum,index=['GRID_ID'],columns='Species',values='Count_') 

birdPivot.reset_index(inplace=True) 

 

#lets fill the nulls with zeros 

birdPivot.fillna(0, inplace=True) 

birdPivot.head() 

 

#Now lets pivot the vegetation across columns 

hexbins_pt_veg['val']=1 

veggiePivot = 

pd.pivot_table(hexbins_pt_veg,index=['GRID_ID'],columns='CommonDom',values=

'val') 

veggiePivot.fillna(0, inplace=True) 

 

#now let's left join the birds pivot on our key table 

almost = pd.merge(key[['GRID_ID','LC','Latitude','Longitude']],birdPivot, 

how='left', 

                 left_on='GRID_ID', right_on='GRID_ID') 

 

#now lest left join our vegetation to finalize our dataframe that we will 

model 

data = pd.merge(almost,veggiePivot, how='left', 

               left_on='GRID_ID', right_on='GRID_ID') 

data.rename(columns={'Null':'Barren'}, inplace=True) 

 

At this point, we are ready to build our statistical model. It is important to note that important 

covariates are likely missing from this model. Also, it is important to note that some data 

management steps that will take a fairly long time if an analyst is only working with a 

conventional home use desktop (e.g., 12 GB RAM and i5 Intel Processor). Prior to the draft of 

this report, we simultaneously ran models on more powerful servers that may not be available to 

FoDP. Given these considerations, it is important to reiterate that findings from our preliminary 

models are likely biased and not reflective on the true relationship between wildlife and 

vegetation at Discovery Park. Hopefully, once more data is collected, this will not always be the 

case. Moreover, it is paramount to mention that to optimize users’ experience for “real-time 

analyses,” it would be ideal that the back-end model in this framework is processed on a 

powerful server. Now that we covered data management for the geostatistical model, lets 

highlight the data management activities in the simple web application model. 
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5.1.2 The simple web application model 

As a consolation deliverable for FoDP in the project, we created a simple web application using 

ESRI appBuilder © that will help users understand the implications that landcover modifications 

have on the environmental value of discovery park. Originally, it was requested by the FoDP 

stakeholder for the application to have the ability to show instantaneous results based on quick 

“on-the-fly” edits by users. Our background research suggested that odds of meeting this 

request would be higher if a custom widget (i.e., function) was created using JavaScript. Given 

that the MGIS analysts did not feel that they had adequate expertise in web development to 

create the originally requested application, they decided to use existing templates in ESRI’s 

appBuilder, which could serve as an interactive wireframe. 

 

The feature class backending the simple application is essentially the point scenarios feature 

class merged with the Earth Economics lookup table so that users would have an understanding 

of the affordance valuation given five preprocessed situations that can serve as a potential site 

for residence at Discovery Park. This was done by importing the scenario feature class and 

lookup table from FoDP’s AGOL account. Next, a pivot table was created from the Earth 

Economics lookup table by affordance type. Next, the pivot table was joined on the scenario 

feature class. After that, the Earth Economic affordance values were multiplied by the acreage 

of each hexbin given the hexbin’s landcover. Finally, the generated dataframe was converted 

back to a feature class on a MGIS students local computer. To conserve FoDP’s ArcGIS web 

credits, the MGIS group preferred to do most geoprocessing on their local computers. The code 

snippet to generate the underlying data for the simple application go as follows:  

 

#code snippet doing a pivot on the Earth Economics lookup table 

test=pd.pivot_table(Look,index=['Landcover','Agriculture','Riparian','Urban'],colum

ns='valueType',values='low') 

test.reset_index(inplace=True) 

test['index1']=test.index 

values1=test[['Aesthetic','Air','Carbon Sequestration', 

      'Disaster Mitigation','Health','Shelter','Waste','Water']].add_suffix('_low') 

values1['index1']=values1.index 

test2=pd.pivot_table(Look,index=['Landcover','Agriculture','Riparian','Urban'], 

         columns='valueType', 

         values='high') 

test2.reset_index(inplace=True) 

values2=test2[['Aesthetic','Air','Carbon Sequestration', 

      'Disaster 

Mitigation','Health','Shelter','Waste','Water']].add_suffix('_high') 

values2['index1']=values2.index 

keyTableEE2 = 

pd.merge(test[['index1','Landcover','Agriculture','Riparian','Urban']], 

                       values1) 

keyTableEE = pd.merge(keyTableEE2,values2) 

del keyTableEE['index1'] 

keyTableEE.head() 
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newOriginal = scene[['FID','GRID_ID','Acres','Latitude','Longitude', 

                        

'zoneMGT','LC','Agricultur','Riparian','Urban','Scenario','modified']] 

newOriginal.rename(columns={'Agricultur':'Agriculture'}, inplace=True) 

 

preOrig = pd.merge(newOriginal,keyTableEE, how='left', 

                  left_on=['LC','Agriculture','Riparian','Urban'],  

                  right_on=['Landcover','Agriculture','Riparian','Urban']) 

 

preOrig['aestheticLowTotal'] = preOrig['Acres']*preOrig['Aesthetic_low'] 

preOrig['aestheticHighTotal'] = preOrig['Acres']*preOrig['Aesthetic_high'] 

preOrig['airLowTotal'] = preOrig['Acres']*preOrig['Air_low'] 

preOrig['airHighTotal'] = preOrig['Acres']*preOrig['Air_high'] 

preOrig['carbonLowTotal'] = preOrig['Acres']*preOrig['Carbon Sequestration_low'] 

preOrig['carbonHighTotal'] = preOrig['Acres']*preOrig['Carbon Sequestration_high'] 

preOrig['mitigationLowTotal'] = preOrig['Acres']*preOrig['Disaster Mitigation_low'] 

preOrig['mitigationHighTotal'] = preOrig['Acres']*preOrig['Disaster 

Mitigation_high'] 

preOrig['healthLowTotal'] = preOrig['Acres']*preOrig['Health_low'] 

preOrig['healthHighTotal'] = preOrig['Acres']*preOrig['Health_high'] 

preOrig['shelterLowTotal'] = preOrig['Acres']*preOrig['Shelter_low'] 

preOrig['shelterHighTotal'] = preOrig['Acres']*preOrig['Shelter_high'] 

preOrig['wasteLowTotal'] = preOrig['Acres']*preOrig['Waste_low'] 

preOrig['wasteHighTotal'] = preOrig['Acres']*preOrig['Waste_high'] 

preOrig['waterLowTotal'] = preOrig['Acres']*preOrig['Water_low'] 

preOrig['waterHighTotal'] = preOrig['Acres']*preOrig['Water_high'] 

preOrig['lowTotal'] = 

preOrig['aestheticLowTotal']+preOrig['airLowTotal']+preOrig['carbonLowTotal']+preOr

ig['mitigationLowTotal']+preOrig['healthLowTotal']+preOrig['shelterLowTotal']+preOr

ig['wasteLowTotal']+preOrig['waterLowTotal'] 

preOrig['highTotal'] = 

preOrig['aestheticHighTotal']+preOrig['airHighTotal']+preOrig['carbonHighTotal']+pr

eOrig['mitigationHighTotal']+preOrig['healthHighTotal']+preOrig['shelterHighTotal']

+preOrig['wasteHighTotal']+preOrig['waterHighTotal'] 

preOrig=preOrig.drop(['Aesthetic_low','Aesthetic_high','Air_low','Air_high', 

              'Carbon Sequestration_low','Carbon Sequestration_high', 

              'Disaster Mitigation_low','Disaster Mitigation_high', 

              'Health_low','Health_high','Shelter_low','Shelter_high', 

              'Waste_low','Waste_high','Water_low','Water_high'], axis = 1) 

preOrig.fillna(0, inplace=True) 

 

x = np.array(np.rec.fromrecords(preOrig.values)) 

names = preOrig.dtypes.index.tolist() 

x.dtype.names = tuple(names) 

 

arcpy.da.NumPyArrayToTable(x, 
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"C:/Users/lewis/Documents/ArcGIS/Projects/FoDP/FoDP.gdb/Scenarios_eg_table") 

 

# convert pop geodatabase table to point file for network analysis 

in_table = "Scenarios_eg_table" 

out_feature_class = "Scenarios_eg" 

x_coords = "Longitude" 

y_coords = "Latitude" 

 

# Make the XY event layer for providers. 

arcpy.management.XYTableToPoint(in_table, out_feature_class,x_coords, 

y_coords,None, arcpy.SpatialReference(2285)) 

 

5.2 Statistical Model Development and Deployment 

Though the MGIS students in this capstone project feels as though there is insufficient data to 

replicate the wildlife and vegetation ecosystem present at Discovery Park, it will be to our 

stakeholder’s benefit if some foundational source code was provided that is capable of handling 

a large number of interactions. Therefore, the MGIS students decided to implement a random 

forest regression model to model the correlation between the population density of birds and 

vegetation. In this dataset, there are over 100 species of birds and almost 20 species of 

vegetation. Despite the preference of using a robust statistical model, we decided to keep the 

modeling simple. With respect to statistical modeling, interpreting complex models rivals the 

challenge of building a complex model. As such, we did not see the need in building a complex 

statistical model without proof that the findings would be useful. We also decided to use the 

sciKit-Learn library as it is one of the more established machine learning library used in Python. 

It is important to note that though ArcGIS has several geoprocessing tools that leverages the 

sciKit-Learn library, that users must activate (i.e., pip install) the library prior to use. There are 

several ways to do this, but the pip installation approach in the ArcGIS Python Command 

Prompt appears to be the easiest approach. 

 

The first step in generating a prediction model that can predict the presence of wildlife given an 

area’s vegetation status is to partition our data. We partitioned the data to prevent overfitting. 

Overfitting can drastically reduce our odds of reasonably predicting our outcome of interest. In 

this project we suggest that FoDP implement 10-fold cross validation where the estimates are 

based on an ensemble of ten models where 10% of our data are removed and compared 

against predictions to help develop our weights. Accuracy in modeling will be based upon the 

pooled negative mean absolute error in our ten models. Despite the challenges in interpreting 

beta weights in a random forest model, the model can output a variable importance factor to 

give us a hint as to predictors with the largest influence on our wildlife outcome. Code and 

preliminary findings are described below: 

 

X_train, X_test, Y_train, Y_test = train_test_split(good_data[['Big-leaf 

Maple','Bitter Cherry','California Blacberry', 
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                                                                'Cattail','Douglas-

fir','Himalayan Blackberry','Barren','Pacific Madrone', 

                                                                'Quackgrass','Red 

Alder','Scotch Broom','Skunk Cabbage','Tall Fescue', 

                                                                'Western 

Hemlock','Western Red Cedar','Willow']],  

                                                    good_data[['American Robin']], 

                                                    test_size=0, 

                                                    random_state=226) 

 

gsc = GridSearchCV(estimator=RandomForestRegressor(), 

                   param_grid={'max_depth': range(3,30), 

                               'n_estimators': (10, 50, 100, 1000),}, 

                   cv=5, scoring='neg_mean_squared_error', verbose=0, n_jobs=1) 

grid_result = gsc.fit(X_train, Y_train.values.ravel()) 

best_params = grid_result.best_params_ 

rfr = RandomForestRegressor(max_depth=best_params["max_depth"], 

n_estimators=best_params["n_estimators"], 

                            random_state=False, verbose=False) 

# Perform K-Fold CV 

scores = cross_val_score(rfr, X_train, Y_train.values.ravel(), cv=10, 

scoring='neg_mean_absolute_error') 

rfr.fit(X_train, Y_train.values.ravel()) 

scores 

 

features = X_train.columns.values 

importances = rfr.feature_importances_ 

indices = np.argsort(importances) 

 

plt.title('Feature Importances for The American Robin') 

plt.barh(range(len(indices)), importances[indices], color='#8f63f4', 

align='center') 

plt.yticks(range(len(indices)), features[indices]) 

plt.xlabel('Relative Importance') 

plt.show() 
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Fig 30. Feature importance results for the American Robin 

 

Now that we have our base model built, now it is time to predict out values. To do this we will 

essentially feed in the vegetation status of each of our five preprocessed scenarios to generate 

predictions of American Robin density per each hexbin. An example, of the python syntax to 

generate predictions is below: 

 

scenario1['pred_AmericanRobin'] = rfr.predict(scenario1[['Big-leaf Maple','Bitter 

Cherry','California Blackberry','Cattail','Douglas-fir','Himalayan 

Blackberry','Barren','Pacific Madrone','Quackgrass','Red Alder','Scotch 

Broom','Skunk Cabbage','Tall Fescue','Western Hemlock','Western Red 

Cedar','Willow']]) 

 

5.3 Model Integration in ArcGIS AppBuilder 

Since many details about appBuilder were discussed previously in this report, we will just 

highlight details about widgets used in the simple “What-If” Analysis application. As mentioned 

in section 5.1.2., the simple application is based on five preprocessed scenarios where we 

simulate a case where city government officials are planning to have low-income housing at 

Discovery Park. The feature class that was previously created using Earth Economics  

affordance values were published as a Web Mapping Application in FoDP’s AGOL account. 

From there the web map was imported into ESRI’s appBuilder. In this application, users can use 

a filter that alters the affordance values based upon the low-income housing location of choice 

(displayed in Figure 31). The Dashboard Theme template was used because it has a preset 

template that allows for a large number of chart and numeric display options. 
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Fig 31. “What-IF” Analysis Application 

 

The widgets of choice with respect to this application were 10 infographic widgets, which 

aggregates affordance values based upon the scenario chosen. A filter widget that allows users 

to select a particular scenario (as displayed in Figure 31). Moreover, there is a select widget 

that allows users to estimate affordances within the discovery park area (as displayed in Figure 

32). Aside from some of the default widgets, the application also has a print widget that will 

allow users to print and share their analyses to facilitate data-driven dialogue. 

 

 

Fig 32. “What-IF” Analysis Application - Select Widget 
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6. Landing Page 

6.1 ArcGIS Experience Builder 

One of the key challenges we faced when piecing together applications was that last year’s 

cohort had a dense amount of information within a single application. Moreover, as we 

continued to work on the project the application got even more complex and crowded with 

information. To increase the odds of information literacy among our prospective users, we 

decided to have our applications hosted on a website. Since we do not have extensive website 

development skills, we decided to use one of ESRI’s newly released software applications, 

Experience Builder.15 At the moment, Experience Builder is in Beta Phase and has not officially 

been released with full documentation and support. That being said, the functionality of the 

application is very similar to appBuilder. One of the primary differences between Web 

appBuilder and Experience Builder is that Experience Builder has more extensive web building 

technologies. Though knowledge of JavaScript is still recommended to develop powerful web 

application, Experience Builder provides more flexibility and functionality without having to know 

great detail about javaScript. A visual of our website is displayed in Figure 33.  

 

 

 

Fig 33. FoDP Web Application Landing Website 

 

                                                
15 https://www.esri.com/en-us/arcgis/products/arcgis-experience-builder/overview 

https://www.esri.com/en-us/arcgis/products/arcgis-experience-builder/overview
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6.2 How to Embed Image, Other Websites, and External Applications to Existing 

Website 

Due to the limited documentation and low user-group presence on the Internet,  we used a pre-

existing template, City Explorer, that had the most primary functions such as hyperlinks and tiles 

to more easily build a website (Figure 34). From there we were able to right click and change 

hyperlinks to existing FoDP websites and Story Maps. Moreover, we were able to integrate our 

Story Map presentation for our capstone presentation. One key challenge with Experience 

Builder being in Beta Phase is that (at the moment), users are unable to share websites to the 

public. During an instructor JavaScript API training session hosted by ESRI, one of the MGIS 

group members were told that the application should officially launch before the end of 2019, 

and that at that point, users will be able to share their website applications to the public.  

 

 

 

Fig 34. Experience Builder Opening Screen 

 

Figure 35 shows a screenshot of a user hyperlinking  another application through an image. 

Within the right side of the screen you will see the blue bar labeled “set link”, which allowed us 

to type in the url of the “What-If” tool. By selecting the set button on the right side of the screen, 

we are able to select an image as an icon. We are also able to create a live window where 

users can use applications and web maps without leaving the screen. 
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Fig 35.Hyperlinking and embedding applications 

 

 

7. Recommendations 

7.1 Discovery Park Virtual Management Platform 

The current Discovery Park VMP is constructed primarily with ESRI’s ArcGIS Online systems 

and applications. The landing page provides a centralized interface with ESRI’s experience 

builder and directs user to three applications for visualizing, collecting, and analyzing park data. 

The current design concept of the VMP focuses on leveraging available public sources to 

provide updated datasets for the analysis model to execute predictive analysis of Discovery 

Park’s vegetation and wildlife. The data collectors were developed with public audiences in mind 

to provide an interface for public user to establish long-term relationships with the collector.  

7.1.1 Data Collection System 

Provided that data collection hinges on public sources, the data collector uses ESRI’s Web 

AppBuilder to provide a user-friendly interface that facilitates two-way interaction between 

Discovery Park management and public users. In order to fuel the analytical model, up-to-date 

vegetation and wildlife data is essential for model accuracy. Hence, the MGIS 2019 cohort 

recommends FoDP to focus future effort in advertising and marketing VMP data collector to the 

public. An informational or educational session would be crucial to accurate data reporting and 

application usage. Provided that publicly sourced dataset tends to introduce varied data 
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integrity, data maintenance should be facilitated simultaneously to ensure reliable performance 

of the “What if” analysis model. 

7.2 Professional Consultation 

The “What if” analysis model provides predictive scenarios of change in Discovery Park’s 

ecosystem value. To fully understand the relationships between individual ecosystem services 

and the covariance of collective service, professional consultation should be considered by 

FoDP in the decision-making process. The current model does not provide a post-analysis 

report detailing relationships of calculated output.  

7.2.1 Strava Integration 

One of the resources examined during the project cycle was Strava, provided Strava Metro 

offers partnership for organization that plans with recreational data from local Strava users. 

FoDP should consider the option of leveraging on non-profit status to apply for access to 

Strava’s enterprise datasets. The process for user to report trail activities is more cumbersome 

for the average voluntary audience without the streaming support from ArcGIS Collector 

Classic16. With the added volatility in data integrity for crowd-sourced datasets, recreational 

analysis can be proven to be inaccurate and less efficient. Leveraging on an existing database 

for recreational analysis of Discovery Park will provide more effective results for future funding 

opportunities. 

7.3 Human-Nature Interaction 

One of the requested relationships to examine within FoDP VMP project was human-nature 

interaction. This interaction is characterized by the preferred physical and mental exposure to 

nature by individuals that visits the park. Without having a robust dataset, no analytical 

framework was able to be developed within the project cycle. The RIRP section of the current 

VMP serve as a foundational framework for FoDP to establish future studies of human-nature 

interaction within Discovery Park. The current surveying questionnaire does not offer an 

extensive coverage of documented variability for human-nature interaction from Kahn et al. 

(2019)17. As VMP data collector becomes more available to the public, FoDP should revise 

existing questionnaire for data collection to enhance data quality for human-nature interaction 

studies. 

  

                                                
16 ArcGIS Collector Classic 
17 Manuscript provided by Garrett Esperum from Friends of Discovery Park 

https://doc.arcgis.com/en/collector-classic/
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Appendix 1: System Resource Requirements 

 

For this project, the minimum resource technological requirements were a suite of ESRI 

products, a database management system, and Python.The ESRI products used in this project 

was ArcGIS Pro, Web appBuilder, AGOL, and Experience Builder. Though we were capable of 

using AGOL’s cloud as a database, it was very labor intensive for use to run powerful analyses 

on our PC which may or may not display errors in a timely manner. As such, we also leveraged 

use of a Microsoft SQL Server, to make some of the “big data” processing more tolerable. Also, 

given FoDP preference of coding and arching as much information as possible on their AGOL 

account, having strong internet connections for our working sessions and weekly meetings 

outside of class was very important. 
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Appendix 2: Business Case Evaluation 

 

1.3 Overarching Approach in the Quantification of Costs and Benefits 

 

The assessment of costs and benefits is a critical aspect of any GIS project given that it provides a 

rationale for engaging in the endeavour. While the qualitative aspect of our project’s benefits was 

assessed by the University of Washington’s Geography Department prior to the start of the capstone 

project, this section of our report will highlight the business case for this project. It is important to note 

that given our adjusted objectives, the empirical benefits of our efforts may not fully materialize until 

years of data collection. As such, some assumptions in our business case may heavily influence the 

outcomes of our case analyses. The business case focuses on work associated with developing the 

statistical framework and data collection applications. Based upon a previous study conducted by Earth 

Economics, we will anchor our analysis on promoting the preservation of Discovery Park, which is an 

asset valued anywhere between $556,978 and $1,079,587 (breakdown displayed in Table 1). Therefore, 

though the return of investment in this project may not be immediate, the legitimacy of costs associated 

with this project is based upon the risks of reducing an asset worth at least half a million dollars every 

year. It was also recommended by Earth Economics to evaluate Discovery Park’s valuation to use the 

“High” estimates presented in Table 1. The ecosystem services were evaluated across the Washington 

state using various research literature and field survey observations18. The condition and services 

provided by Discovery Park was quantified using the full spectrum of presented within Washington state. 

 

Table 1. Earth Economics’ Assessment of Discover Park’s Value per Year 

 

Service  Low   High  

Air  $           54,824  $         54,824 

Climate Stability  $         226,771  $       374,750 

Biological Control   $             5,964  $           5,964 

Shelter  $             7,793  $         20,709 

Waste  $         195,109  $       379,620 

Water  $8,149  $         89,804 

Carbon  $           58,368  $       153,916 

Total  $            556,978  $       1,079,587 

  

                                                
18 Earth Economics Central Puget Sound Open Space Evaluation (2015) 

https://openspacepugetsound.org/sites/default/files/final-report/appendices/E_OPEN-SPACE-VALUATION/Earth-Economics-ROSS-ESV-2015-Final-Report.pdf
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1. Benefit 

 

2.1 Type 1 Benefits: Quantifiable efficiencies in current practices, or benefits that reflect improvements to 

existing practices 

 

The 2018 MGIS cohort in their capstone project reported that FoDP “spent an average of 8 hours per 

week across the past 18 months on this particular project” prior to the start of their project.19 Rich, 

Peterson, and Marshall (2018) also mentions that the governing body for Discovery Park, Seattle Parks 

and Recreation, values volunteers at an estimated benefit of $25 an hour. After a skim of the internet to 

value the costs of GIS services in the free market,20 we came across a comparable estimate of  $25.65 an 

hour. For the geostatistical component of our project, we assume that at the develop framework would not 

require major modifications should the server FoDP is using have the minimum technological 

specifications of our groups computer resources (i.e., laptops with 16 GB of RAM on Intel i5 processor). 

The random forest model is a data mining model that has a decent and somewhat self-sustaining 

algorithm for variable selection. As such, as long as the independent variables are compiled as a list, then 

we would not have to make any major coding changes to the geostatistical model. Should Scikit-Learn 

depreciate some components of its library, then adjustments will need to be made. Based upon previous 

conversations with FoDP, we are confident that they are capable of adjusting code based upon 

recommended modifications in the Python © log should any components in SciKit Learn approach 

depreciation in the near future. We estimate that one hour per week will be saved based upon our 

contribution of the geostatistical model. We also integrated a data collection infrastructure, which 

significantly reduce the need to collect various data sources external of FoDP’s repository. We estimate 

that this would provide a time savings of seven hours of FoDP and data will be managed and auto-

populated through the web application. That being said, there needs to be some management of the 

platform’s data repository as issues may arise. Though we do not forecast any major issues, we do think 

that it would be beneficial for FoDP to invest at minimum one hour a week in managing the data 

collection system. 

 

 

Table 2. Type 1 Benefits Calculated as Reduced Work Hours 

 

FoDP’s original weekly efforts * (hours) 8 

Anticipated effort after VMP development (hours) 1 

Time savings due to VMP 7 

Value of work * $25/hour 

Savings $175/week 

* Also quoted by Rich, Peterson, and Marshall (2018) 

 

                                                
19 https://depts.washington.edu/mgis/capstone/files/GEOG569_2018_Rich_Peterson_Marshall.pdf 
20 https://www.indeed.com/salaries/GIS-Analyst-Salaries 

https://depts.washington.edu/mgis/capstone/files/GEOG569_2018_Rich_Peterson_Marshall.pdf
https://www.indeed.com/salaries/GIS-Analyst-Salaries
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2.2 Type 2 Benefits: Quantifiable expanded capabilities, or benefits that offer added capabilities 

 

There were challenges in the valuation of the expanded capabilities of the VMP due to our groups 

contribution. Discovery park currently does not have an active infrastructure to have real-time data. 

Services such as Strava © costs $0.80 per unique Strava user with activity reported in area of interest 

(first 10,000 Strava user with minimum of $1,000)21. The license fee lowers to $0.70 per user when the 

first 10,000 user count is reached. This pricing guideline is provided version 2.0 of the Strava © user 

guideline. The most current guideline does not detail specific licensing fees for purchasing the data22. 

Despite the enticing offer from Strava Metro ©, Discovery Park, with an visitorship of 250,000 per year23, 

if only 10% of the visitor uses Strava, then an annual cost of  $18,500 is estimated for FoDP to maintain 

recreational data for analysis. Through using Strava Metro © service, FoDP would not have full 

ownership of the data and data cost would vary from location to location based on the current floating rate 

licensing fee. If Discovery Park were to have in-house data collectors for vegetation and wildlife, we 

could assume that this wouldn't be a $40/week position and would most likely pay minimum wage ($15/h 

in Seattle). To be safe the park would need at least two part-time data collectors to make any kind of 

progress, which would put the cost of data collectors at ~$600 a week. So if we assume that FoDP would 

be gathering this data regardless of if we created the collection app, our open source collection app will 

save the park on average $31,200. The cost of a GIS analyst  to complete a project for a single analysis is 

projected to be $3,000 should it take an analyst 120 hours to structure data, check for errors, run model, 

and provide intelligence at a rate of $25 an hour. Though the geostatistical framework would not be an 

actual artificial intelligence framework that would provide some form of business intelligence in an 

automated fashion, the proposed framework should provide the ability to provide both archived and 

“current” statistical relationships without an analyst having to spend too much time generating analyses. 

Assuming that this would be done once a year, this would provide a benefit of an additional $58 a week 

(i.e., $3,000/52 weeks in a year). Calculations are displayed in Table 3. 

 

  

                                                
21 Strava Metro User Guide Version 2.0 
22 Strava Metro Comprehensive User Guide Version 8.0 
23 Discovery Park's One-Millionth Visitor 

https://www.ubdc.ac.uk/media/1323/stravametro_200_user_guide_withoutpics.pdf
http://metro.strava.com/wp-content/uploads/2019/05/Strava-Metro-Comprehensive-User-Guide-Version-8.0.pdf
https://www.wkms.org/post/discovery-park-america-anticipates-one-millionth-visitor-saturday#stream/0
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Table 3. Type 2 Benefits  

 

 Geostatistical Model 

Original  $175/week 

Geostatistical Model Added Benefit $58/week 

Recreational Activity Collector Added Benefit $355.77/week 

Wildlife and Veg. Collector Added Benefit $600/week 

Net Gain Per Week $413.77/week 

Total Efficiency Gained $646.77/week 

 

 

2.3 Type 3: Quantifiable unpredictable events or benefits that result from unpredictable events 

 

Rich, Peterson, and Marshall (2018) in their MGIS capstone project highlighted the West Point Treatment 

Disaster (page 924) as an example of the use of the VMP for an unpredictable event. Since we do not want 

to be redundant and highlight that case as an example. Interestingly, it was brought to our attention by our 

FoDP contact that the city of Seattle once explored the alternative uses of Discovery Park, which may 

alter the use and landcover of Discovery Park. More specifically, it was thought that the city might 

explore use of Discovery Park to serve as temporary shelter for individuals who are homeless in the 

Seattle metropolitan area. Though this event is not unpredictable (per se), it is an event that is beyond the 

control of FoDP. This means that this tool may aid in the decision making process of Discovery Parks use 

by the public. We believe that the VMP could be used to assist the city in locating these shelters should 

the city decided to implement this project. The VMP could assist stakeholders in understanding the 

financial implications of locating shelter camps at particular locations. Though there would be residual 

value lost in a project such as homeless camps at Discovery Park, we will assume that the platform would 

suggest locating these camps at landcovers that are habitable and Earth Economics value at $0.  To value 

this event, we will assume that all areas of the park except for water bodies and forest could be used for a 

homeless camp project. Given that all possible landcovers not excluded will be eligible to be selected as 

an area for a homeless camp, we project the impacted landcover that could decrease in value to have a 

worth at approximately $213,076 a year (or roughly $5,000 a week). This estimate is the median value of 

landcover eligible to be selected as appropriate for a homeless camp. We’ll assume that an endeavour like 

this to be viable for only nine months out of the year due to weather (38 weeks). We also project this 

event to have a probability of once every 50 years (i.e., 2,600 weeks)  given our FoDP confidence that the 

event will likely not happen due to political restructuring. Similar to Rich, Peterson, and Marshall’s 

(2018) projections, we will assume that the VMP will improve the odds of benefits by 33%. As a result of 

our assumptions, we believe that the VMP will result in a cost savings of $24 a week for an unpredictable 

event related to long term use of Discovery Park land for shelter related purposes. Calculations are 

displayed in Table 4. 

                                                
24 https://depts.washington.edu/mgis/capstone/files/GEOG569_2018_Rich_Peterson_Marshall.pdf 

https://depts.washington.edu/mgis/capstone/files/GEOG569_2018_Rich_Peterson_Marshall.pdf
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Table 4. Type 3 Benefits  

 

Worth of Land Capable for Homeless Shelter $5,000/week 

Duration of Shelter Project if Implemented 38 weeks 

Probability of Shelter Project Occuring 1:50 years (or 1:2,600 weeks) 

Projected Mitigation of Landcover Devaluation 

Due to VMP 

33% 

Total Weekly Improvement in Impact $24/week 

([{$5,000*38}/2,600]*0.33) 

 

 

2.4 Type 4: Intangible benefits 

 

Given that the motivation for the VMP is for FoDP to get other stakeholders to understand the value of 

Discovery Park’s green space, we will use the intangible benefits purported by Rich, Peterson, and 

Marshall (2018) in their MGIS capstone project. They identified the park’s green space as an area of 

interest for the intangible benefits. This sentiment was also shared by our FoDP administrative contact. In 

their analyses, they projected the benefit to be $523 a week, which was based from  a 0.1% improvement 

rate of the conservative $541,917.40 value of parcels at Discovery Park. 

 

2. Cost 

 

3.1 Capital Costs 

 

Research and Tool Development 

 

With respect to the research and development costs associated with this project, we define research as 

effort spent learning Python ©, ArcGIS ©, and scholarly content needed to successfully implement this 

project. The tool development is defined as effort spent managing input data, coding to develop analytic 

model, effort spent to develop data collection applications, and time spent debugging our code and 

applications. The research and tool development costs are displayed in Table 5. 
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Table 5. Hours worked performing research and developing the tool. 

Week DL 

Research 

(hours) 

RH 

Research 

(hours) 

AL 

Research 

(hours) 

DL 

Develop 

(hours) 

RH 

Develop 

(hours) 

AL 

Develop 

(hours) 

Total 

Hours 

Week 1 8 8 8 0 0 0 24 

Week 2 8 8 8 0 0 0 24 

Week 3 4 4 4 4 4 4 24 

Week 4 4 4 4 4 4 4 24 

Week 5 4 4 4 4 4 4 24 

Week 6 2 2 2 8 8 8 30 

Week 7 2 2 2 8 8 8 30 

Week 8 1 1 1 8 8 8 27 

Week 9 0 0 0 8 8 8 24 

 

Total hours 

231 

 

Hourly rate 

$25.00 

 

Total 

$5,775.00 

DL=Dwight Lewis; RH=Ray Hall; AL=Austin Lin 

 

Hardware and Software 

 

Fixed costs associated with hardware and software are constrained due to the non-profit status of FoDP. 

Due to their non-profit status, they are able to use ESRI’s software for essentially free. To the best of our 

knowledge, they have computer resources that are already depreciated. So, similar to logic used by Rich, 

Peterson, and Marshall (2018), we display the hardware and software costs in Table 6. 
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Table 6. Hardware and software costs 

Estimated Hours Worked per Week Using 

Computer Across Members 

22 

Computer Value $3,000* 

Estimated Mean Life of Computer in Hours 5,480 hours** 

Weekly Cost of Computer Usage $12.04 

Computer Use During Project $108.36 

*Collective cost of Dwight Lewis and Austin Lin’s personal laptop 

**rate used by Rich, Peterson, and Marshall (2018) 

 

3.2 Operating Costs  

 

Personnel 

As mentioned, the collected data resource and data collection system will require a minimum of one hour 

per week of maintenance by on-sight technician to maintain the estimated benefits. With the current job 

market rate of $17.27/hr, an estimated annual cost of $898.04 can be expected25. 

 

Consultation 

To fully maximize user collected data it is recommended to work with experters in the fields or 

ornithology, botany, biology, etc. to act as yearly consultants. Having experts in the fields of study related 

to the data collected will verify that the attributes collected by the data are useful in identification and 

analysis. With a 2014 survey stating that the annual income for a PhD Biologist consultant is $115,000 or 

roughly $55/h12. We believe that any consultant working on this application would only need to be used 

for a week every year evaluating the data that has been collected and updating any attributes that may 

need be added, costing FoDP $2,200. 

 

Maintenance Fees 

FoDP’s non-profit status provides an Creator-level ESRI ArcGIS Online license with many online 

resources available to the account. Previous cohort communicated with FoDP and documented a budgeted 

credit count of 200 credits annually for FoDP’s AGOL account26. Associated storage cost of currently 

available feature and hosted services are documented by Rich, Peterson, and Marshall (2018). Due to the 

nature of our effort in forwarding the VMP project, no further data storage is expected from phase 2 of the 

VMP project. However, it is worth noting the final deliverable will likely result in an increased storage 

cost of vector feature services alongside the data collection application we will be delivering to FoDP to 

achieve our adjusted project objective. 

Utilities, Supplies, and Other 

At the current state of the VMP project, there are no foreseeable increase in infrastructure cost of the 

platform. Hence, we would extend our estimation of infrastructure and equipment upkeep through the 

                                                
25 Entry-Level GIS Technician Salary from PayScale 
26 https://depts.washington.edu/mgis/capstone/files/GEOG569_2018_Rich_Peterson_Marshall.pdf 

https://www.payscale.com/research/US/Job=Geographic_Information_Systems_(GIS)_Technician/Hourly_Rate/67c9ee8a/Entry-Level
https://depts.washington.edu/mgis/capstone/files/GEOG569_2018_Rich_Peterson_Marshall.pdf
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estimation performed by the previous cohort. As estimated electricity cost performed by Rich, Peterson, 

and Marshall (2018) with the publically available electricity data browser for the United States. With the 

updated information on May 2019, the estimated cost for retail/commercial electricity usage totals to 

$0.1053/kWh27. Despite the “negligible” cost of utility estimated by the electricity cost for FoDP, it was 

discussed in our sponsor meeting that an eventual goal for a locally hosted park management interface can 

be expected towards the end of the FoDP VMP project. With the expansion in information infrastructure, 

FoDP can expect an increase in utility and equipment cost annually. 

 

3. Benefit-Cost Analysis 

 

  Weekly Value (8-week period) 

Type 1 Benefits (Efficiency) MGIS Voluntary Effort $ 175 

Type 2 Benefits (Progression) Geostatistical Analysis Model $ 58 

 Reactional Data $ 355.77 

 Wildlife and Vegetation Data $ 600 

Type 3 Benefits (Unpredictable) Social Impact $ 24 

Type 4 Benefits (Foundational) Green-space Value $ 523 

   

Capital Cost  -$ 721.88 

Hardware/Software Cost  -$ 12.04 

Personnel Cost  -$ 17.27 

Consultation Cost*   -$2,200/Year or $42/Week 

Maintenance Cost  TBA28 

Utility/Infrastructure Cost  Annually 15kWh per sq ft29 

 Sum $ 942.58** 

*Annual cost of a one week process. 
**Calculated from weekly adjusted Consultation cost 

 

Important Assumptions 

- Associated cost for utility and infrastructure is using national averages 

                                                
27 Electricity Data Browser - Average Retail/Commercial Electricity Price 
12https://www.sciencemag.org/careers/2014/09/science-careers-guide-consulting-careers-phd-scientists 
28 ArcGIS Online Credit Pricing 
29 Electricity Cost for Small to Mid-size Office 

https://www.eia.gov/electricity/data/browser/#/topic/7?agg=2,0,1&geo=g&freq=M&start=200101&end=201905&ctype=linechart&ltype=pin&rtype=s&maptype=0&rse=0&pin=
https://www.sciencemag.org/careers/2014/09/science-careers-guide-consulting-careers-phd-scientists
https://www.esri.com/en-us/arcgis/products/arcgis-online/pricing/credits
https://mge.bizenergyadvisor.com/article/small-and-midsize-offices#toc-4
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- Maintenance cost can be counted as 0 if credit usage falls within 200 

- Capital cost can be front loaded 

- Benefits will be lasting so long system is maintained 
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Appendix 3: Python Source Code for Model in “What-If” Analysis Application 

 

Full Code--”What-IF” Analysis 

(note: full code with comments can be seen 

here:http://htmlpreview.github.io/?https://github.com/lewis060-

UAT/FreindsOfDiscoverParkAnalysis/blob/master/What%20If%20Input%20Generation%20-

%20FoDP%20(Final).html ) 

 

import arcpy 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import matplotlib as matplotlib 

import getpass 

from arcgis.gis import GIS 

from arcgis.mapping import WebMap 

from arcgis.features import SpatialDataFrame 

pd.set_option('display.max_columns', None) 

pd.set_option('display.max_rows', None) 

pd.set_option('display.max_colwidth', -1) 

direct="C:/Users/lewis/Documents/GEOG 569/" 

 

# Set environment settings for database so that there isn't a need to type out full 

pathnames in arcpy library 

arcpy.env.workspace = "C:/Users/lewis/Documents/ArcGIS/Projects/FoDP/FoDP.gdb" 

 

u = getpass.getpass(prompt='Enter username') 

p = getpass.getpass(prompt='Enter password') 

gis = GIS('https://fodp.maps.arcgis.com/',u, p) 

 

search_result = gis.content.search(query='Earth Economics Lookup Table') 

#This is a single table, so no need to import layers like the geostatistical 

example 

dataSource = search_result[0].tables 

#Lets import the lookup table fom Earth Economics 

Look = dataSource[0].query().sdf 

 

#data dictionary for the look-up tables 

lookDictionary = Look.dtypes.to_frame('dtypes').reset_index() 

lookDictionary.columns = ['Column','Data Type'] 

column = [ 

lookDictionary['Column'] == 'Agriculture', 

lookDictionary['Column'] == 'Landcover', 

lookDictionary['Column'] == 'ObjectId', 

lookDictionary['Column'] == 'Riparian', 

lookDictionary['Column'] == 'Urban', 

http://htmlpreview.github.io/?https://github.com/lewis060-UAT/FreindsOfDiscoverParkAnalysis/blob/master/What%20If%20Input%20Generation%20-%20FoDP%20(Final).html
http://htmlpreview.github.io/?https://github.com/lewis060-UAT/FreindsOfDiscoverParkAnalysis/blob/master/What%20If%20Input%20Generation%20-%20FoDP%20(Final).html
http://htmlpreview.github.io/?https://github.com/lewis060-UAT/FreindsOfDiscoverParkAnalysis/blob/master/What%20If%20Input%20Generation%20-%20FoDP%20(Final).html
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lookDictionary['Column'] == 'high', 

lookDictionary['Column'] == 'low', 

lookDictionary['Column'] == 'valueType' 

] 

descriptions = [ 

'Indicator (0-1) whether the landcover is agrarian', 

'Landcover type', 

'Default index for feature clases created by ArcGIS', 

'Indicator (0-1) whether the landcover is riparian', 

'Indicator (0-1) whether the landcover is urban', 

'Upper limit dollar value for affordance', 

'Lower limit dollar value for affordance', 

'Affordance type (Aesthetics, Air, Carbon Sequestration,...)' 

] 

lookDictionary['Description'] = np.select(column,descriptions, default='error') 

 

test=pd.pivot_table(Look,index=['Landcover','Agriculture','Riparian','Urban'], 

         columns='valueType', 

         values='low') 

test.reset_index(inplace=True) 

test['index1']=test.index 

values1=test[['Aesthetic','Air','Carbon Sequestration', 

      'Disaster Mitigation','Health','Shelter','Waste','Water']].add_suffix('_low') 

values1['index1']=values1.index 

test2=pd.pivot_table(Look,index=['Landcover','Agriculture','Riparian','Urban'], 

         columns='valueType', 

         values='high') 

test2.reset_index(inplace=True) 

values2=test2[['Aesthetic','Air','Carbon Sequestration', 

      'Disaster 

Mitigation','Health','Shelter','Waste','Water']].add_suffix('_high') 

values2['index1']=values2.index 

keyTableEE2 = 

pd.merge(test[['index1','Landcover','Agriculture','Riparian','Urban']], 

                       values1) 

keyTableEE = pd.merge(keyTableEE2,values2) 

del keyTableEE['index1'] 

 

search_result = gis.content.search(query="ScenariosFeature_pts") 

#The required data is a "Feature Layer Collection" so it's the only option (i.e., 

indexed at 0) 

dataSource = search_result[0].layers 

for lyr in dataSource: 

    print(lyr.properties.name) 

 

#Importing the point data representing landcover at  

#Discovery Park aggregated to the centroids of hexbins 
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scene = dataSource[0].query().sdf 

 

#data dictionary for the polygon hexbins 

sceneDictionary = scene.dtypes.to_frame('dtypes').reset_index() 

sceneDictionary.columns = ['Column','Data Type'] 

column = [ 

sceneDictionary['Column'] == 'Acres', 

sceneDictionary['Column'] == 'Agricultur', 

sceneDictionary['Column'] == 'FID', 

sceneDictionary['Column'] == 'GRID_ID', 

sceneDictionary['Column'] == 'LC', 

sceneDictionary['Column'] == 'Latitude', 

sceneDictionary['Column'] == 'Longitude', 

sceneDictionary['Column'] == 'Riparian', 

sceneDictionary['Column'] == 'SHAPE', 

sceneDictionary['Column'] == 'Scenario', 

sceneDictionary['Column'] == 'Urban', 

sceneDictionary['Column'] == 'modified', 

sceneDictionary['Column'] == 'zoneMGT' 

] 

descriptions = [ 

'The acreage of the hexbin', 

'Indicator (0-1) whether the landcover in hexbin is agrarian', 

'Feature class index created by ArcGIS', 

'Indexed unique identifier for hexbin', 

'Landcover type', 

'Latitude coordinate (feet) for hexbin centroid', 

'Longitude coordinate (feet) for hexbin centroid', 

'Indicator (0-1) whether the landcover in hexbin is riparian', 

'Geometry object of feature class', 

'Identifier (0-5) of the scenario for landcover manipulations', 

'Indicator (0-1) whether the landcover in hexbin is urban', 

'Indicator (0-1) whether the landcover in hexbin is different from original', 

'Description of zone area within Discover Park' 

] 

sceneDictionary['Description'] = np.select(column,descriptions, default='error') 

sceneDictionary 

 

newOriginal = scene[['FID','GRID_ID','Acres','Latitude','Longitude', 

                        

'zoneMGT','LC','Agricultur','Riparian','Urban','Scenario','modified']] 

newOriginal.rename(columns={'Agricultur':'Agriculture'}, inplace=True) 

 

preOrig = pd.merge(newOriginal,keyTableEE, how='left', 

                  left_on=['LC','Agriculture','Riparian','Urban'],  

                  right_on=['Landcover','Agriculture','Riparian','Urban']) 

preOrig['aestheticLowTotal'] = preOrig['Acres']*preOrig['Aesthetic_low'] 
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preOrig['aestheticHighTotal'] = preOrig['Acres']*preOrig['Aesthetic_high'] 

preOrig['airLowTotal'] = preOrig['Acres']*preOrig['Air_low'] 

preOrig['airHighTotal'] = preOrig['Acres']*preOrig['Air_high'] 

preOrig['carbonLowTotal'] = preOrig['Acres']*preOrig['Carbon Sequestration_low'] 

preOrig['carbonHighTotal'] = preOrig['Acres']*preOrig['Carbon Sequestration_high'] 

preOrig['mitigationLowTotal'] = preOrig['Acres']*preOrig['Disaster Mitigation_low'] 

preOrig['mitigationHighTotal'] = preOrig['Acres']*preOrig['Disaster 

Mitigation_high'] 

preOrig['healthLowTotal'] = preOrig['Acres']*preOrig['Health_low'] 

preOrig['healthHighTotal'] = preOrig['Acres']*preOrig['Health_high'] 

preOrig['shelterLowTotal'] = preOrig['Acres']*preOrig['Shelter_low'] 

preOrig['shelterHighTotal'] = preOrig['Acres']*preOrig['Shelter_high'] 

preOrig['wasteLowTotal'] = preOrig['Acres']*preOrig['Waste_low'] 

preOrig['wasteHighTotal'] = preOrig['Acres']*preOrig['Waste_high'] 

preOrig['waterLowTotal'] = preOrig['Acres']*preOrig['Water_low'] 

preOrig['waterHighTotal'] = preOrig['Acres']*preOrig['Water_high'] 

preOrig['lowTotal'] = 

preOrig['aestheticLowTotal']+preOrig['airLowTotal']+preOrig['carbonLowTotal']+preOr

ig['mitigationLowTotal']+preOrig['healthLowTotal']+preOrig['shelterLowTotal']+preOr

ig['wasteLowTotal']+preOrig['waterLowTotal'] 

preOrig['highTotal'] = 

preOrig['aestheticHighTotal']+preOrig['airHighTotal']+preOrig['carbonHighTotal']+pr

eOrig['mitigationHighTotal']+preOrig['healthHighTotal']+preOrig['shelterHighTotal']

+preOrig['wasteHighTotal']+preOrig['waterHighTotal'] 

preOrig=preOrig.drop(['Aesthetic_low','Aesthetic_high','Air_low','Air_high', 

              'Carbon Sequestration_low','Carbon Sequestration_high', 

              'Disaster Mitigation_low','Disaster Mitigation_high', 

              'Health_low','Health_high','Shelter_low','Shelter_high', 

              'Waste_low','Waste_high','Water_low','Water_high'], axis = 1) 

preOrig.fillna(0, inplace=True) 

x = np.array(np.rec.fromrecords(preOrig.values)) 

names = preOrig.dtypes.index.tolist() 

x.dtype.names = tuple(names) 

arcpy.da.NumPyArrayToTable(x, 

"C:/Users/lewis/Documents/ArcGIS/Projects/FoDP/FoDP.gdb/Scenarios_eg_table") 

# convert pop geodatabase table to point file for network analysis 

in_table = "Scenarios_eg_table" 

out_feature_class = "Scenarios_eg" 

x_coords = "Longitude" 

y_coords = "Latitude" 

# Make the XY event layer for providers. 

arcpy.management.XYTableToPoint(in_table, out_feature_class,x_coords, 

y_coords,None, arcpy.SpatialReference(2285)) 
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Full Code--Statistical Model 

(note: full code with comments can be seen here:) 

 

import arcpy 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import matplotlib as matplotlib 

import sklearn as sklearn 

from matplotlib.ticker import FuncFormatter 

from sklearn.model_selection import train_test_split 

from sklearn.model_selection import cross_val_score, GridSearchCV 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.preprocessing import MinMaxScaler 

import os 

import getpass  

from arcgis.gis import GIS 

import sys 

from arcgis.mapping import WebMap 

from arcgis.features import SpatialDataFrame 

pd.set_option('display.max_columns', None) 

pd.set_option('display.max_rows', None) 

pd.set_option('display.max_colwidth', -1) 

direct="C:/Users/lewis/Documents/GEOG 569/" 

 

u = getpass.getpass(prompt='Enter username') 

p = getpass.getpass(prompt='Enter password') 

gis = GIS('https://fodp.maps.arcgis.com/',u, p) 

 

search_result = gis.content.search(query="Input Data Used for Geospatial Analysis 

v2") 

 

#The required data is a "Feature Layer Collection" so it's the second option (i.e., 

indexed at 0) 

dataSource = search_result[0].layers 

for lyr in dataSource: 

    print(lyr.properties.name) 

 

#Lets import the bird data 

birds = dataSource[0].query().sdf 

 

#now lets create and display data dictionary for the bird data 

birdsDictionary = birds.dtypes.to_frame('dtypes').reset_index() 

birdsDictionary.columns = ['Column','Data Type'] 

column = [ 

birdsDictionary['Column'] == 'Count_', 

birdsDictionary['Column'] == 'ID', 
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birdsDictionary['Column'] == 'Latitude', 

birdsDictionary['Column'] == 'Longitude', 

birdsDictionary['Column'] == 'Loop', 

birdsDictionary['Column'] == 'Month', 

birdsDictionary['Column'] == 'Month_No', 

birdsDictionary['Column'] == 'OBJECTID', 

birdsDictionary['Column'] == 'Precipitation', 

birdsDictionary['Column'] == 'SHAPE', 

birdsDictionary['Column'] == 'Site', 

birdsDictionary['Column'] == 'Species', 

birdsDictionary['Column'] == 'Station', 

birdsDictionary['Column'] == 'Survey_Date', 

birdsDictionary['Column'] == 'Weather', 

birdsDictionary['Column'] == 'Year' 

] 

descriptions = [ 

'The count of birds witnessed', 

'Indexed unique identifier for bird data collection event', 

'Latitude coordinate (feet) where collection occurred', 

'Longitude coordinate (feet) where collection occurred', 

'Park specific descriptive location', 

'Descriptive month', 

'Month of event in integer format (1-12)', 

'Default index for feature classes created by ArcGIS', 

'Description of whether precipitation took place', 

'Geometry object of feature class', 

'Park where bird sighting took place', 

'Descriptive bird species', 

'Station number where bird sighting took place', 

'Date when bird sighting took place (YYYY-MM-DD)', 

'Description of weather on the day of bird sighting', 

'Year when bird sighting took place (YYYY)' 

] 

birdsDictionary['Description'] = np.select(column,descriptions, default='error') 

 

#now lets import the polygons with our simulated scenarios to output bird counts 

when we modify land type 

Scenarios = dataSource[1].query().sdf 

 

#data dictionary for the polygon scenarios 

ScenariosDictionary = Scenarios.dtypes.to_frame('dtypes').reset_index() 

ScenariosDictionary.columns = ['Column','Data Type'] 

column = [ 

ScenariosDictionary['Column'] == 'Acres', 

ScenariosDictionary['Column'] == 'OBJECTID', 

ScenariosDictionary['Column'] == 'SHAPE', 

ScenariosDictionary['Column'] == 'Scenario', 
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ScenariosDictionary['Column'] == 'SceneDesc', 

ScenariosDictionary['Column'] == 'Shape__Area', 

ScenariosDictionary['Column'] == 'Shape__Length' 

] 

descriptions = [ 

'The acreage of the area simulated for change in landcover/vegetation status', 

'Default index for feature clases created by ArcGIS', 

'Geometry object of feature class', 

'Nominal indicator (1-5) identifying simulated change in landcover/vegetation 

status', 

'Descriptive summary where change in landcover/vegetation status will take place', 

'Area (in meters) of the polygon simulated for change in landcover/vegetation 

status', 

'Length of perimeter of polygon simulated for change in landcover/vegetation 

status' 

] 

ScenariosDictionary['Description'] = np.select(column,descriptions, 

default='error') 

 

#importing the polygon hexbins 

hexbins_polygons = dataSource[2].query().sdf 

 

#data dictionary for the polygon hexbins 

hexPolyDictionary = hexbins_polygons.dtypes.to_frame('dtypes').reset_index() 

hexPolyDictionary.columns = ['Column','Data Type'] 

column = [ 

hexPolyDictionary['Column'] == 'Acres', 

hexPolyDictionary['Column'] == 'Agriculture', 

hexPolyDictionary['Column'] == 'GRID_ID', 

hexPolyDictionary['Column'] == 'LC', 

hexPolyDictionary['Column'] == 'OBJECTID', 

hexPolyDictionary['Column'] == 'Riparian', 

hexPolyDictionary['Column'] == 'SHAPE', 

hexPolyDictionary['Column'] == 'Shape__Area', 

hexPolyDictionary['Column'] == 'Shape__Length', 

hexPolyDictionary['Column'] == 'Urban', 

hexPolyDictionary['Column'] == 'zoneMGT' 

] 

descriptions = [ 

'The acreage of the hexbin', 

'Indicator (0-1) whether the landcover in hexbin is agrarian', 

'Indexed unique identifier for hexbin', 

'Landcover type', 

'Default index for feature classes created by ArcGIS', 

'Indicator (0-1) whether the landcover in hexbin is riparian', 

'Geometry object of feature class', 

'Area (in meters) of the hexbin', 
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'Length of perimeter of hexbin', 

'Indicator (0-1) whether the landcover in hexbin is urban', 

'Description of zone area within Discover Park' 

] 

hexPolyDictionary['Description'] = np.select(column,descriptions, default='error') 

 

#Importing the point data representing vegetation at  

#Discovery Park aggregated to the centroids of hexbins 

hexbins_pt_veg = dataSource[3].query().sdf 

 

#data dictionary for the vegatation data 

hexVegDictionary = hexbins_pt_veg.dtypes.to_frame('dtypes').reset_index() 

hexVegDictionary.columns = ['Column','Data Type'] 

column = [ 

hexVegDictionary['Column'] == 'Acres', 

hexVegDictionary['Column'] == 'CommonDom', 

hexVegDictionary['Column'] == 'GRID_ID', 

hexVegDictionary['Column'] == 'Latitude', 

hexVegDictionary['Column'] == 'Longitude', 

hexVegDictionary['Column'] == 'OBJECTID', 

hexVegDictionary['Column'] == 'SHAPE' 

] 

descriptions = [ 

'The acreage of the hexbin', 

'Common name of the dominant vegetation species within hexbin', 

'Indexed unique identifier for hexbin', 

'Latitude coordinate (feet) for hexbin centroid', 

'Longitude coordinate (feet) for hexbin centroid', 

'Default index for feature classes created by ArcGIS', 

'Geometry object of feature class' 

] 

hexVegDictionary['Description'] = np.select(column,descriptions, default='error') 

 

 

#Importing the point data representing landcover at  

#Discovery Park aggregated to the centroids of hexbins 

key = dataSource[4].query().sdf 

 

#data dictionary for the polygon hexbins 

keyDictionary = key.dtypes.to_frame('dtypes').reset_index() 

keyDictionary.columns = ['Column','Data Type'] 

column = [ 

keyDictionary['Column'] == 'Acres', 

keyDictionary['Column'] == 'Agriculture', 

keyDictionary['Column'] == 'GRID_ID', 

keyDictionary['Column'] == 'LC', 

keyDictionary['Column'] == 'Latitude', 
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keyDictionary['Column'] == 'Longitude', 

keyDictionary['Column'] == 'OBJECTID', 

keyDictionary['Column'] == 'Riparian', 

keyDictionary['Column'] == 'SHAPE', 

keyDictionary['Column'] == 'Urban', 

keyDictionary['Column'] == 'zoneMGT' 

] 

descriptions = [ 

'The acreage of the hexbin', 

'Indicator (0-1) whether the landcover in hexbin is agrarian', 

'Indexed unique identifier for hexbin', 

'Landcover type', 

'Latitude coordinate (feet) for hexbin centroid', 

'Longitude coordinate (feet) for hexbin centroid', 

'Default index for feature classes created by ArcGIS', 

'Indicator (0-1) whether the landcover in hexbin is riparian', 

'Geometry object of feature class', 

'Indicator (0-1) whether the landcover in hexbin is urban', 

'Description of zone area within Discover Park' 

] 

keyDictionary['Description'] = np.select(column,descriptions, default='error') 

 

search_result = gis.content.search(query="ScenariosFeature_pts") 

search_result 

#The required data is a "Feature Layer Collection" so it's the only option (i.e., 

indexed at 0) 

dataSource = search_result[0].layers 

for lyr in dataSource: 

    print(lyr.properties.name) 

 

#Importing the point data representing landcover at  

#Discovery Park aggregated to the centroids of hexbins 

scene = dataSource[0].query().sdf 

 

#data dictionary for the polygon hexbins 

sceneDictionary = scene.dtypes.to_frame('dtypes').reset_index() 

sceneDictionary.columns = ['Column','Data Type'] 

column = [ 

sceneDictionary['Column'] == 'Acres', 

sceneDictionary['Column'] == 'Agricultur', 

sceneDictionary['Column'] == 'FID', 

sceneDictionary['Column'] == 'GRID_ID', 

sceneDictionary['Column'] == 'LC', 

sceneDictionary['Column'] == 'Latitude', 

sceneDictionary['Column'] == 'Longitude', 

sceneDictionary['Column'] == 'Riparian', 

sceneDictionary['Column'] == 'SHAPE', 
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sceneDictionary['Column'] == 'Scenario', 

sceneDictionary['Column'] == 'Urban', 

sceneDictionary['Column'] == 'modified', 

sceneDictionary['Column'] == 'zoneMGT' 

] 

descriptions = [ 

'The acreage of the hexbin', 

'Indicator (0-1) whether the landcover in hexbin is agrarian', 

'Feature class index created by ArcGIS', 

'Indexed unique identifier for hexbin', 

'Landcover type', 

'Latitude coordinate (feet) for hexbin centroid', 

'Longitude coordinate (feet) for hexbin centroid', 

'Indicator (0-1) whether the landcover in hexbin is riparian', 

'Geometry object of feature class', 

'Identifier (0-5) of the scenario for landcover manipulations', 

'Indicator (0-1) whether the landcover in hexbin is urban', 

'Indicator (0-1) whether the landcover in hexbin is different from original', 

'Description of zone area within Discover Park' 

] 

sceneDictionary['Description'] = np.select(column,descriptions, default='error') 

 

#pandas will not allow cross joins on columns  

#from different dataframes with same name 

key2 = key[['GRID_ID','Latitude','Longitude']] 

birds2 = birds[['Species','Count_','Latitude','Longitude']] 

birds2['Latitude2']=birds2['Latitude'] 

birds2['Longitude2']=birds2['Longitude'] 

del birds2['Latitude'] 

del birds2['Longitude'] 

 

#Lets do a cross join between the birds and hexbins, 

#but only keep the rows where bird sightings 

#are within 700 feet of a hexbin 

test=key2.assign(foo=1).merge(birds2.assign(foo=1)).drop('foo', 1) 

test['dist'] = np.sqrt(((test['Latitude']-

test['Latitude2']).pow(2))+((test['Longitude']-test['Longitude2']).pow(2))) 

test = test[test['dist']<=700] 

test.reset_index(inplace=True) 

del test['index'] 

 

#Sum bird counts within each species at each GRID_ID 

birdSum = test.groupby(['GRID_ID','Species'])['Count_'].sum().reset_index() 

 

#now lets pivot the bird Species into separate columns 

birdPivot = 

pd.pivot_table(birdSum,index=['GRID_ID'],columns='Species',values='Count_') 
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birdPivot.reset_index(inplace=True) 

 

#lets fill the nulls with zeros 

birdPivot.fillna(0, inplace=True) 

 

#Now lets pivot the vegetation across columns 

hexbins_pt_veg['val']=1 

veggiePivot = 

pd.pivot_table(hexbins_pt_veg,index=['GRID_ID'],columns='CommonDom',values='val') 

veggiePivot.fillna(0, inplace=True) 

#now let's left join the birds pivot on our key table 

almost = pd.merge(key[['GRID_ID','LC','Latitude','Longitude']],birdPivot, 

how='left', 

                 left_on='GRID_ID', right_on='GRID_ID') 

#now lest left join our vegetation to finalize our dataframe that we will model 

data = pd.merge(almost,veggiePivot, how='left', 

               left_on='GRID_ID', right_on='GRID_ID') 

data.rename(columns={'Null':'Barren'}, inplace=True) 

 

data2=data[['American Robin','Big-leaf Maple','Bitter Cherry','California 

Blacberry', 

            'Cattail','Douglas-fir','Himalayan Blackberry','Barren','Pacific 

Madrone', 

            'Quackgrass','Red Alder','Scotch Broom','Skunk Cabbage','Tall Fescue', 

            'Western Hemlock','Western Red Cedar','Willow']] 

null_data = data2[data2.isnull().any(axis=1)] 

null_data 

good_data = data2[~data2.isnull().any(axis=1)] 

good_data = good_data.reset_index() 

 

X_train, X_test, Y_train, Y_test = train_test_split(good_data[['Big-leaf 

Maple','Bitter Cherry','California Blackberry', 

                                                                'Cattail','Douglas-

fir','Himalayan Blackberry','Barren','Pacific Madrone', 

                                                                'Quackgrass','Red 

Alder','Scotch Broom','Skunk Cabbage','Tall Fescue', 

                                                                'Western 

Hemlock','Western Red Cedar','Willow']],  

                                                    good_data[['American Robin']], 

                                                    test_size=0, 

                                                    random_state=226) 

 

gsc = GridSearchCV(estimator=RandomForestRegressor(), 

                   param_grid={'max_depth': range(3,30), 

                               'n_estimators': (10, 50, 100, 1000),}, 

                   cv=5, scoring='neg_mean_squared_error', verbose=0, n_jobs=1) 

grid_result = gsc.fit(X_train, Y_train.values.ravel()) 
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best_params = grid_result.best_params_ 

rfr = RandomForestRegressor(max_depth=best_params["max_depth"], 

n_estimators=best_params["n_estimators"], 

                            random_state=False, verbose=False) 

# Perform K-Fold CV 

scores = cross_val_score(rfr, X_train, Y_train.values.ravel(), cv=10, 

scoring='neg_mean_absolute_error') 

rfr.fit(X_train, Y_train.values.ravel()) 

scores 

 

features = X_train.columns.values 

importances = rfr.feature_importances_ 

indices = np.argsort(importances) 

 

plt.title('Feature Importances for The American Robin') 

plt.barh(range(len(indices)), importances[indices], color='#8f63f4', 

align='center') 

plt.yticks(range(len(indices)), features[indices]) 

plt.xlabel('Relative Importance') 

plt.show() 

 

predict = pd.merge(scene[['GRID_ID','Scenario','modified']], 

                  data[['GRID_ID','Big-leaf Maple','Bitter Cherry','California 

Blacberry', 

                        'Cattail','Douglas-fir','Himalayan 

Blackberry','Barren','Pacific Madrone', 

                        'Quackgrass','Red Alder','Scotch Broom','Skunk 

Cabbage','Tall Fescue', 

                        'Western Hemlock','Western Red Cedar','Willow']], 

                  how='left', left_on='GRID_ID', right_on='GRID_ID') 

 

predict.loc[predict['modified'] == 1, 'Big-leaf Maple'] = 0 

predict.loc[predict['modified'] == 1, 'Bitter Cherry'] = 0 

predict.loc[predict['modified'] == 1, 'California Blacberry'] = 0 

predict.loc[predict['modified'] == 1, 'Cattail'] = 0 

predict.loc[predict['modified'] == 1, 'Douglas-fir'] = 0 

predict.loc[predict['modified'] == 1, 'Himalayan Blackberry'] = 0 

predict.loc[predict['modified'] == 1, 'Barren'] = 1 

predict.loc[predict['modified'] == 1, 'Pacific Madrone'] = 0 

predict.loc[predict['modified'] == 1, 'Quackgrass'] = 0 

predict.loc[predict['modified'] == 1, 'Red Alder'] = 0 

predict.loc[predict['modified'] == 1, 'Scotch Broom'] = 0 

predict.loc[predict['modified'] == 1, 'Skunk Cabbage'] = 0 

predict.loc[predict['modified'] == 1, 'Tall Fescue'] = 0 

predict.loc[predict['modified'] == 1, 'Western Hemlock'] = 0 

predict.loc[predict['modified'] == 1, 'Western Red Cedar'] = 0 

predict.loc[predict['modified'] == 1, 'Willow'] = 0 
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scenario1=predict.loc[(predict['Scenario'].isin([0,1]))&(predict['modified']==1)] 

scenario2=predict.loc[(predict['Scenario'].isin([0,2]))&(predict['modified']==1)] 

scenario3=predict.loc[(predict['Scenario'].isin([0,3]))&(predict['modified']==1)] 

scenario4=predict.loc[(predict['Scenario'].isin([0,4]))&(predict['modified']==1)] 

scenario5=predict.loc[(predict['Scenario'].isin([0,5]))&(predict['modified']==1)] 

 

scenario1['pred_AmericanRobin'] = rfr.predict(scenario1[['Big-leaf Maple','Bitter 

Cherry','California Blackberry', 

                        'Cattail','Douglas-fir','Himalayan 

Blackberry','Barren','Pacific Madrone', 

                        'Quackgrass','Red Alder','Scotch Broom','Skunk 

Cabbage','Tall Fescue', 

                        'Western Hemlock','Western Red Cedar','Willow']]) 

scenario2['pred_AmericanRobin'] = rfr.predict(scenario2[['Big-leaf Maple','Bitter 

Cherry','California Blackberry', 

                        'Cattail','Douglas-fir','Himalayan 

Blackberry','Barren','Pacific Madrone', 

                        'Quackgrass','Red Alder','Scotch Broom','Skunk 

Cabbage','Tall Fescue', 

                        'Western Hemlock','Western Red Cedar','Willow']]) 

scenario3['pred_AmericanRobin'] = rfr.predict(scenario3[['Big-leaf Maple','Bitter 

Cherry','California Blackberry', 

                        'Cattail','Douglas-fir','Himalayan 

Blackberry','Barren','Pacific Madrone', 

                        'Quackgrass','Red Alder','Scotch Broom','Skunk 

Cabbage','Tall Fescue', 

                        'Western Hemlock','Western Red Cedar','Willow']]) 

scenario4['pred_AmericanRobin'] = rfr.predict(scenario4[['Big-leaf Maple','Bitter 

Cherry','California Blackberry', 

                        'Cattail','Douglas-fir','Himalayan 

Blackberry','Barren','Pacific Madrone', 

                        'Quackgrass','Red Alder','Scotch Broom','Skunk 

Cabbage','Tall Fescue', 

                        'Western Hemlock','Western Red Cedar','Willow']]) 

scenario5['pred_AmericanRobin'] = rfr.predict(scenario5[['Big-leaf Maple','Bitter 

Cherry','California Blackberry', 

                        'Cattail','Douglas-fir','Himalayan 

Blackberry','Barren','Pacific Madrone', 

                        'Quackgrass','Red Alder','Scotch Broom','Skunk 

Cabbage','Tall Fescue', 

                        'Western Hemlock','Western Red Cedar','Willow']]) 
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Appendix 4: Data Dictionaries of the What-If Analysis 

 

Polygon Feature Class: Hexbin Polygons 

Short Description: This is a feature class consisting of roughly 49,000 hexbins covering the 

Discovery Park area 

 

Column Data Type Description 

Acres double The acreage of the hexbin 

Agriculture integer Indicator (0-1) whether the landcover in hexbin is 

agrarian 

GRID_ID string Indexed unique identifier for hexbin 

LC string Landcover type 

OBJECTID integer Default index for feature classes created by 

ArcGIS 

Riparian integer Indicator (0-1) whether the landcover in hexbin is 

riparian 

SHAPE geometry Geometry object of feature class 

Shape__Area double Area (in meters) of the hexbin 

Shape__Length double Length of perimeter of hexbin 

Urban integer Indicator (0-1) whether the landcover in hexbin is 

urban 

zoneMGT string Description of zone area within Discover Park 
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Polygon Feature Class: Scenario Polygons 

Short Description: This feature class has polygons representing a simulated case study where 

areas in Discovery Park are considered for commercial use. 

 

Column Data Type Description 

Acres double The acreage of the area simulated for change in 

landcover/vegetation status 

OBJECTID integer Default index for feature classes created by ArcGIS 

SHAPE geometry Geometry object of feature class 

Scenario integer Nominal indicator (1-5) identifying simulated change in 

landcover/vegetation status 

SceneDesc string Descriptive summary where change in 

landcover/vegetation status will take place 

Shape__Area double Area (in meters) of the polygon simulated for change in 

landcover/vegetation status 

Shape__Length double Length of perimeter of polygon simulated for change in 

landcover/vegetation status 
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Point Feature Class: Birds 

Short Description: This is feature class consists of points throughout the park where birds has 

been sighted in 2015 and 2016 

 

Column Data Type Description 

Count_ integer The count of birds witnessed 

ID integer Indexed unique identifier for bird data collection event 

Latitude double Latitude coordinate (feet) where collection occurred 

Longitude double Longitude coordinate (feet) where collection occurred 

Loop string Park specific descriptive location 

Month string Descriptive month 

Month_No integer Month of event in integer format (1-12) 

OBJECTID integer Default index for feature clases created by ArcGIS 

Precipitation string Description of whether precipitation took place 

SHAPE geometry Geometry object of feature class 

Site string Park where bird siting took place 

Species string Descriptive bird species 

Station integer Station number where bird sighting took place 

Survey_Date string Date when bird sighting took place (YYYY-MM-DD) 

Weather string Description of weather on the day of bird sighting 
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Year integer Year when bird sighting took place (YYYY) 
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Point Feature Class: Scenarios 

Short Description: This is a point feature class representing centroids of the hexbins. 

Furthermore, landcover is modified within some hexbins to enable modeling of landcover 

changes. 

 

Column Data Type Description 

Acres double The acreage of the hexbin 

Agriculture integer Indicator (0-1) whether the landcover in hexbin is 

agrarian 

FID integer Feature class index created by ArcGIS 

GRID_ID string Indexed unique identifier for hexbin 

LC string Landcover type 

Latitude double Latitude coordinate (feet) for hexbin centroid 

Longitude double Longitude coordinate (feet) for hexbin centroid 

Riparian integer Indicator (0-1) whether the landcover in hexbin is 

riparian 

SHAPE geometry Geometry object of feature class 

Scenario integer Identifier (0-5) of the scenario for landcover 

manipulations 

Urban integer Indicator (0-1) whether the landcover in hexbin is 

urban 

modified integer Indicator (0-1) whether the landcover in hexbin is 

different from original 

zoneMGT string Description of zone area within Discover Park 
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Point Feature Class: Hexbin Landcover 

Short Description: This is a point feature class representing centroids of the hexbins 

highlighting Discovery Park’s landcover in its current state.  

 

Column Data Type Description 

Acres double The acreage of the hexbin 

Agriculture integer Indicator (0-1) whether the landcover in hexbin is 

agrarian 

GRID_ID string Indexed unique identifier for hexbin 

LC string Landcover type 

Latitude double Latitude coordinate (feet) for hexbin centroid 

Longitude double Longitude coordinate (feet) for hexbin centroid 

OBJECTID integer Default index for feature clases created by ArcGIS 

Riparian integer Indicator (0-1) whether the landcover in hexbin is riparian 

SHAPE geometry Geometry object of feature class 

Urban integer Indicator (0-1) whether the landcover in hexbin is urban 

zoneMGT string Description of zone area within Discover Park 
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Point Feature Class: Vegetation 

Short Description: This is a point feature class representing centroids of the hexbins 

highlighting specific vegetative species at Discovery Park. 

 

Column Data Type Description 

Acres double The acreage of the hexbin 

CommonDom string Common name of the dominant vegetation species within 

hexbin 

GRID_ID string Indexed unique identifier for hexbin 

Latitude double Latitude coordinate (feet) for hexbin centroid 

Longitude double Longitude coordinate (feet) for hexbin centroid 

OBJECTID integer Default index for feature clases created by ArcGIS 

SHAPE geometry Geometry object of feature class 

 

 

Table: Earth Economics Lookup 

Short Description: This is a table listing monetary affordances of Discovery Park’s acreage 

given landcover. 

 

Column Data Type Description 

Agriculture integer Indicator (0-1) whether the landcover is agrarian 

Landcover string Landcover type 

ObjectId integer Default index for feature clases created by ArcGIS 

Riparian integer Indicator (0-1) whether the landcover is riparian 

Urban integer Indicator (0-1) whether the landcover is urban 
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high double Upper limit dollar value for affordance 

low double Lower limit dollar value for affordance 

valueType string Affordance type (Aesthetics, Air, Carbon 

Sequestration,...) 

 


