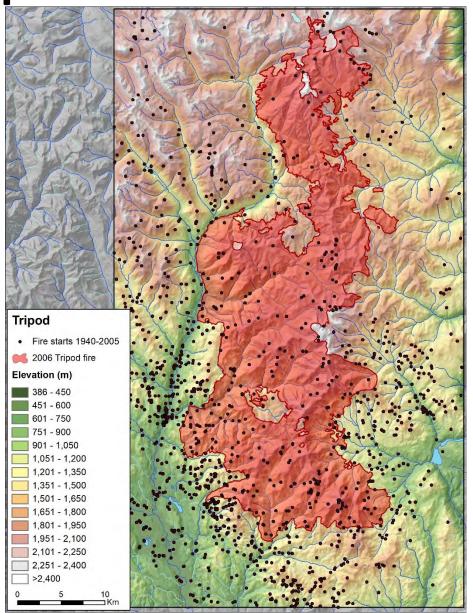
Influence of Past Burn Mosaics to Future Fire Behavior and Implications for Management

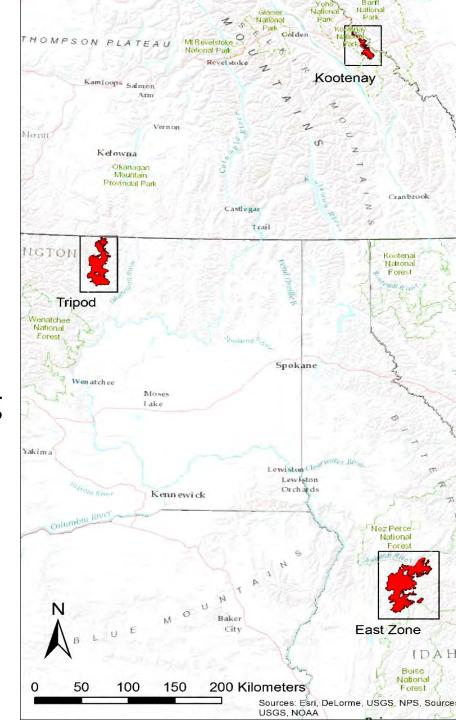
Robert Gray, RW Gray Consulting
Paul Hessburg, USFS Pacific Northwest Research Station
Nicholas Povak, USFS Pacific Northwest Research Station
Brion Salter, USFS Pacific Northwest Research Station
Camille Stevens-Rumann, Colorado State University



AGENDA

Agenda	Details	Presenter
0800 - 0820	Introduction to the Reburn Project	Prichard
0820 - 0840	Vegetation and fire dynamics	Gray
0840 - 0900	Wildland fire management scenarios	Prichard
0900 – 0920	Climate change and landscape resilience	Prichard
0920 - 0940	Discussion	Gray & Prichard
0940 – 1000	Break and load into vans	ALL

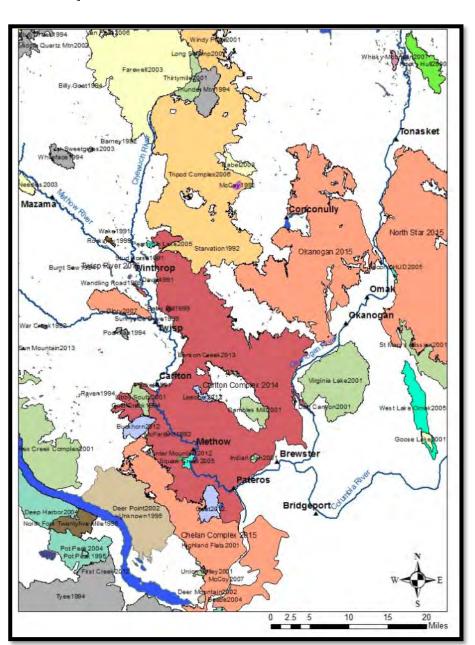
Tripod Historical Fire Starts

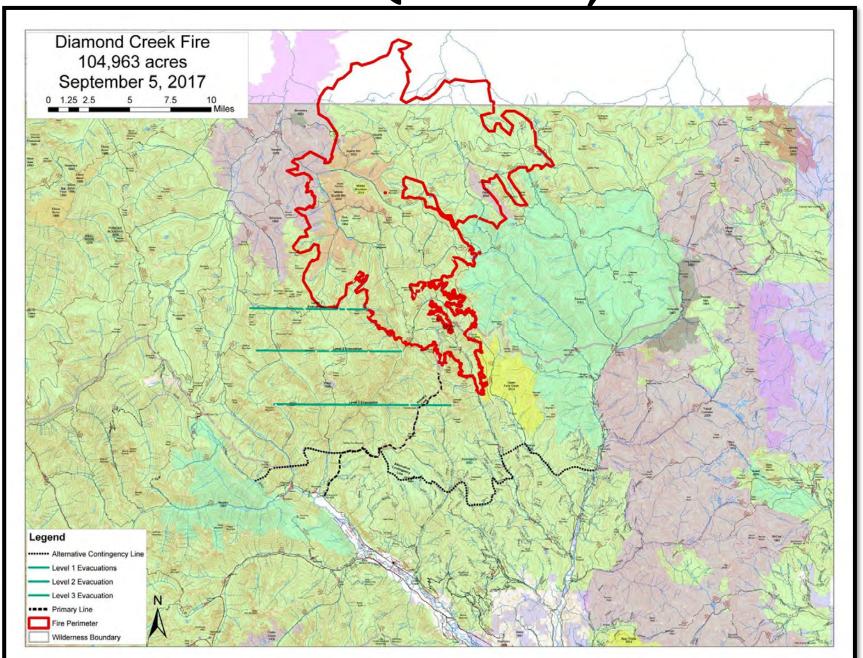


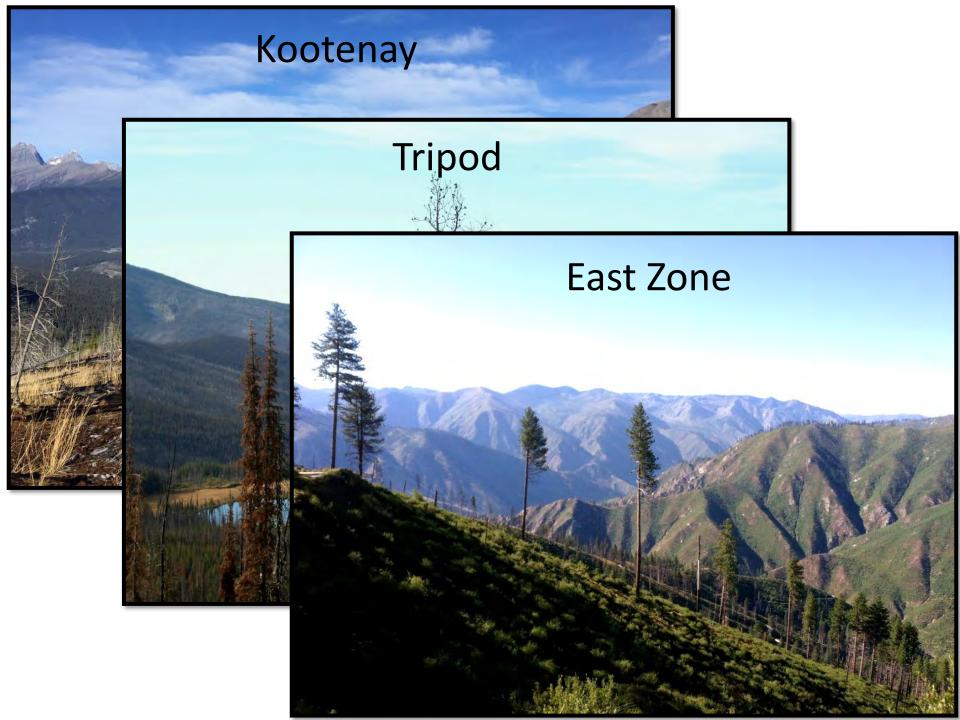
Suppressed fire starts (1940 – 2006, n > 300)

Objectives

To evaluate the effects of past wildfires on the:

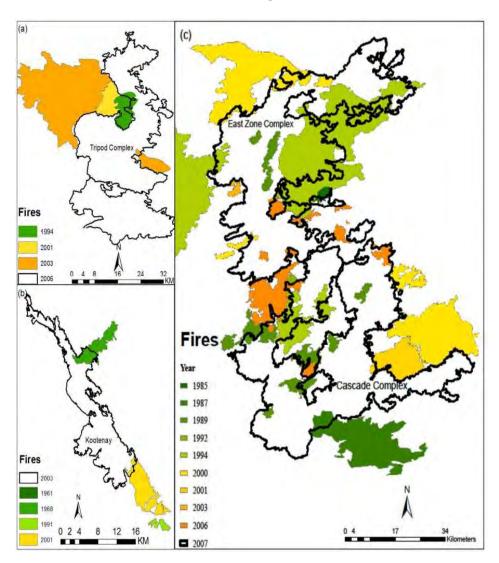

- 1) Characteristics (e.g. fire spread and severity)
- 2) Management (e.g. firefighting strategies and costs) of subsequent wildfires.


Research Questions

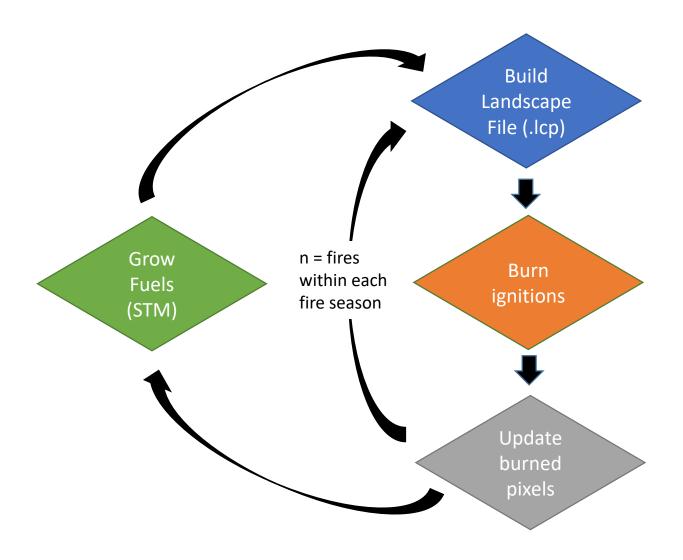

How do the location, size and age of past wildfires influence subsequent wildfire behavior and effects?

Were past wildfires effective as barriers to subsequent fire spread or to mitigate burn severity?

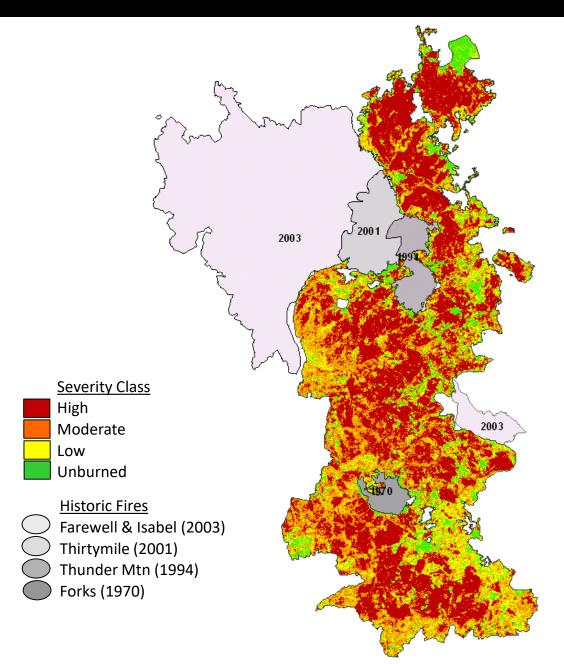
Research Questions, cont.



Task 1 – Burn Severity Analysis


Prior wildfires influence burn severity of subsequent large fires

Camille S. Stevens-Rumann, Susan J. Prichard, Eva K. Strand, and Penelope Morgan



- Past burn severity reduced subsequent burn severitymore resistant
- Even under extreme fire weather conditions, vegetation, topography, and past burn severity all impacted reburn severity

Task 2 – Spatial Simulation Modeling

Task 3: Evaluate Alternatives to Tripod 2006

Tripod Progressions and Weather (July 2006)

	Cumulative
BurnDate, Time	Acres
7/24/06 9:00 PM	110
7/25/06 10:42 AM	1,267
7/26/06 8:00 AM	4,223
7/27/06 11:00 PM	14,985
7/28/06 9:00 AM	16,765
7/29/06 11:00 PM	27,106
7/30/06 11:00 PM	35,475
7/31/06 11:00 PM	35,838
8/1/06 11:00 PM	36,544
8/2/06 11:00 PM	40,831
8/4/06 2:19 AM	43,941
8/5/06 8:48 PM	49,328
8/6/06 10:13 PM	62,938
8/8/06 9:28 PM	74,587
8/10/06 2:00 AM	79,321
8/12/06 4:00 PM	82,754
8/13/06 2:00 AM	83,288
8/14/06 2:00 AM	89,509
8/15/06 2:00 AM	95,122
8/16/06 2:00 AM	99,388
8/17/06 2:00 AM	103,399
8/18/06 2:00 AM	109,441
8/19/06 2:00 AM	114,566
8/20/06 2:00 AM	119,640
8/21/06 2:00 AM	124,807

Burn	Max	Min RH	Avg Wind	Avg Wind	Max	Wind	Haines Index
Date	Temp (F)	(%)	(mph)	Dir (°)	Gust	Direction	
					(mph)		
7/13/06	66	21	1	187	15	S	
7/14/06	69	31	2	221	15	SW	
7/15/06	72	22	1	194	14	S	
7/16/06	74	15	2	220	11	SW	
7/17/06	77	16	3	229	16	SW	
7/18/06	82	14	1	241	13	SW	
7/19/06	75	20	3	228	16	SW	
7/20/06	73	28	3	167	15	S	
7/21/06	82	16	2	181	12	S	
7/22/06	89	21	2	143	12	SE	
7/23/06	95	15	1	203	10		
7/24/06	92	14	4	252	12	W	
7/25/06	81	19	6	316	18	NW	
7/26/06	88	11	5	273	20	W	2 Very Low
7/27/06	91	12	3	267	19	W	3 Very Low
7/28/06	71	23	6	329	16	NW	5 Moderate
7/29/06	82	18	2	165	16	S	4-5 Moderate
7/30/06	65	25	2	244	14	SW	3 Very Low
7/31/06	61	24	2	225	15	SW	3 Very Low
8/1/06	70	21	1	233	13	SW	3 Very Low
8/2/06	74	16	5	263	20	W	3 Very Low
8/4/06	77	17	1.3	188	12	S	4 Low
8/5/06	76	20	2.7	210	14	SW	4 Low
8/6/06	81	17	2	194	13	S	4 Low

Wildland Fire Decision Analysis

Strategic Planning - Fire Decision Analysis

Sample incident decision document (WFDSS would normally be decision of record)

Alternative Landscape: ☑ No Fire	☐ Full Suppression	☐ Managed w	ildfires 🗆 Let i	t burn
SITUATION INFORMATION				
Location of fire, cause				
Weather forecast				
Short-term fire behavior				
prediction (FARSITE)				
Objectives and requirements				
RISK ASSESSMENTS				
Relative risk assessment	Communities /	Water	Fish & wildlife	Forest
 Communities 	other ownerships	quality,	Habitat	health,
 Air quality 	Risk, Air Quality	fisheries		restoration
 Water quality 				
 Wildlife habitat 				
 Fisheries 				
 Forest health 				
Values inventory				
Extended risk assessment				
Weather and fire behavior				
analysis				
Benefits analysis				
Cost analysis				
HAZARD/RISK CONTROL				
Incident objectives &				
requirements				
Course of action				
Strategies	Full suppression	Managed wildfire	ion	
Management action points				
Cost estimates				

AGENDA

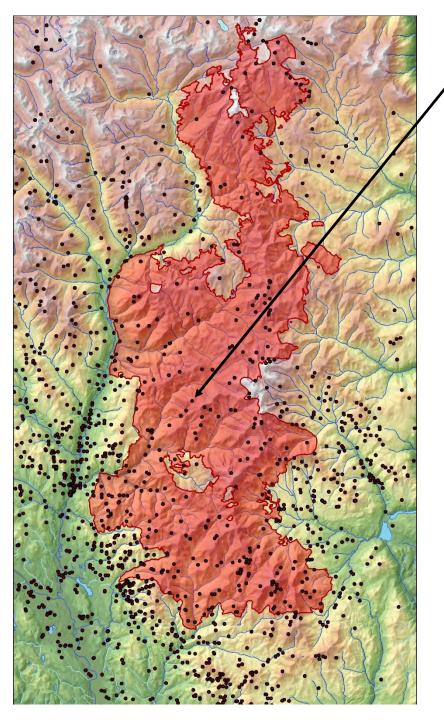
Agenda	Details	Presenter
0800 – 0820	Introduction to the Reburn Project	Prichard
0820 - 0840	Vegetation and fire dynamics	Gray
0840 - 0900	Wildland fire management scenarios	Prichard
0900 – 0920	Climate change and landscape resilience	Prichard
0920 – 0940	Discussion	Gray & Prichard
0940 - 1000	Break and load into vans	ALL

State and Transition Model Development

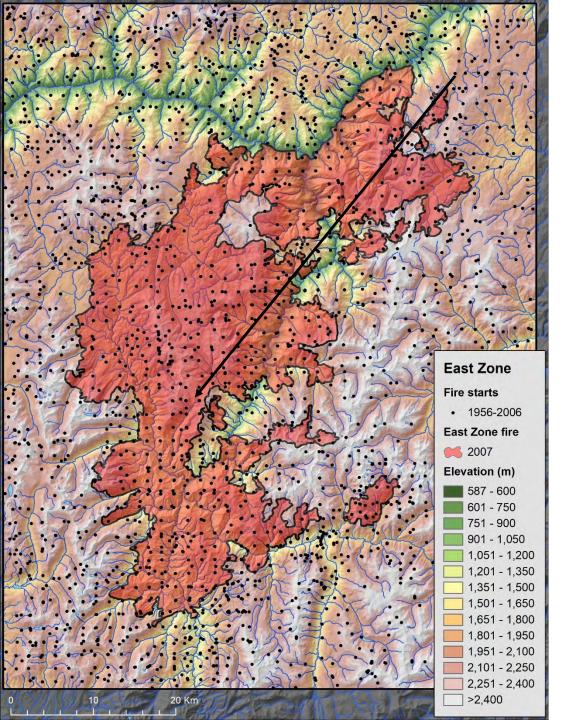
State 1A: Post-fire bare ground. Fuel model NB9. 0-14 yr.

State 4A: Understory reinitiation. Fuel model TU5. 90-129 yr.

State 2A: Stand initiation. Fuel model GS1. 15-49 yr.

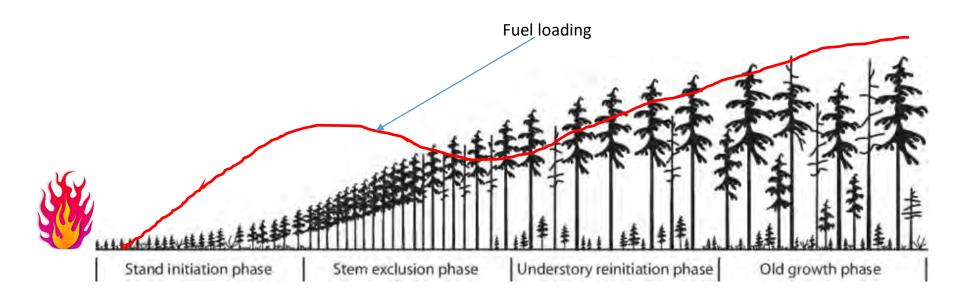

State 5A: Young forest multi-story. Fuel model TU5. 130-179 yr.

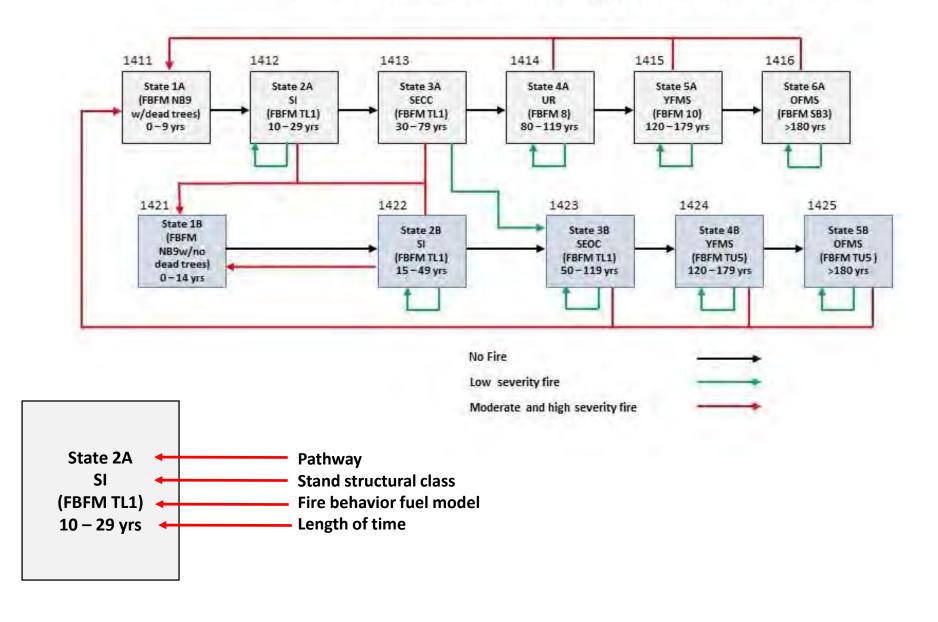
State 3A: Stem exclusion closed-canopy. Fuel model 2. 50-89 yr.



State 6A: Old forest multi-story. Fuel model TU5. ≥ 180 yr.

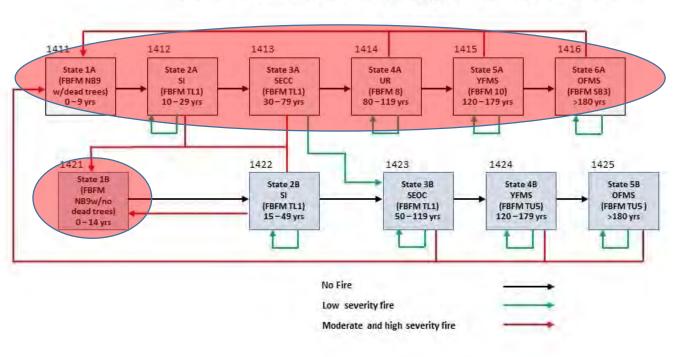
DMC Pixel burned 1940


- Assigned State 1A following fire season
- Add a time step prior to 1941
- In the absence of fire, this pixel will transition to State 2A in 1949.

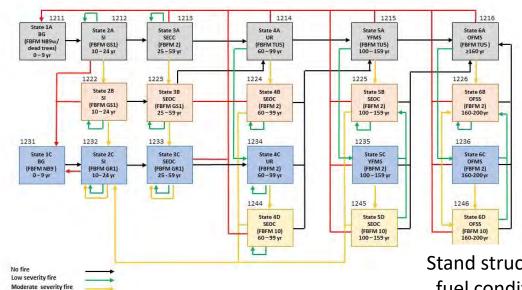

Pixel burned in 1956

- Assigned State 1A following fire season
- Add a time step prior to 1956
- In the absence of fire, this pixel will transition to State 2A in 1957.

Fuel succession is a continuum....

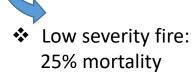


State and Transition Model Tripod Cold Moist Conifer



Difference between pathways – function of fire behavior/effects at each successional stage

State and Transition Model Tripod Cold Moist Conifer



- Fuel load from antecedent forest carried forward through several stages of forest and fuel succession
- Fuels from antecedent forest mostly consumed early in succession on pathway "A" in a reburn. The result is much lower fuel loading carried forward on pathway "B" through several stages of succession.

Stand structure, fuel condition inputs Fuel moisture, fire weather, terrain inputs

Fire behavior and effects outputs

High severity fire

- Mod severity fire: 25-70% mortality
- High severity fire: >70% mortality

A	= Dry Mixed	Camifan	D	E	+	G	н		K	L	- 440	N	Behave	P	Q	5	U	V	W	Behave out	arche.	AB	AC	-
attiway:	= DIY Wilxed	contrer				Canopy	Canoni						bestave	inputs						penave out	puts			
State	Season Bin	FBFM	Structure	Canopy cover (%)	Canopy height (m)	base height (m)	Bulk Density (kgm3)	Mortality tree species	DBH cm	1-hr (%)	10-hr (%)	100-hr (%)	Live herb (%)	Live woody (%)	Foliar (%)	20-ft windspeed (kph)	Air temp (°C)	Slope steepnes s (%)	Flame length (m)	Fire type	Probability of mortality (%)		Flame Length Bins	
1A		NB9	BG	1	2.1	0	0.00019								1 - 1							łow	mod	7
2A	1a	G\$1	SI	18	6.4	0.6	0.03200	PIPO	5	7	8	10	34	75	90	8	12	35	0.7	PASSIVE	10	< 0.75	>0.75 < 0.85	>
2A	16									4	5	7	19	68	90	13	33	35	0.9	PASSIVE	79			
2A	2a									5	6	9	61	98	120	8	21	35	0.6	SURFACE	10			
2A	2b	-	-							4	5	7	51	78	120	10	26	35	0.8	PASSIVE	31			
2A.	2c									4	4	6	37	65	120	11	39	35	0.9	PASSIVE	80			
2A	2d									3	3	5	36	60	120	16	46	35	1.1	PASSIVE	80			
2A	3a									8	8	12	45	92	90	6	14	35	0.6	PASSIVE	8			
2A	36									4	5	8	30	65	90	11	34	35	0.9	PASSIVE	79			
ЗА	19	2	SEOC	34	14.6	0.1	0.02980	PIPO	28	7	8	10	34	75	90	8	12	35	1.2	PASSIVE	12	< 1.25	>1.25 < 1.4	>1
3A	1b									4	5	7	19	68	90	13	33	35	1.4	PASSIVE	70			
3A	2a									5	6	9	61	98	120	. 8	21	35	1.2	PASSIVE	19			
3A.	2b									4	5	7	51	78	120	10	26	35	1.3	PASSIVE	36			
3A	2c									4	4	6	37	65	120	11	39	35	1.4	PASSIVE	80			
3A	2d									3	3	5	36	60	120	16	46	35	1.6	PASSIVE	80			
ЗА	3a									8	8	12	45	92	90	6	14	35	1.1	PASSIVE	11			
3A	36									4	5	8	30	65	90	11	34	35	1.4	PASSIVE	71			
4A	1a	TU5	UR	34	19.8	1	0.02750	PIPO	36	7	8	10	34	75	90	8	12	35	1.5	PASSIVE	11	< 1.6	>1.6<1.8	>1
4A	16									4	5	7	19	68	90	13	33	35	1.8	PASSIVE	75			
4A	2a						1			5	6	9	61	98	120	8	21	35	1.5	PASSIVE	16			
4A	2b									4	5	7	51	78	120	10	26	35	1.7	PASSIVE	40			
4A	2e									4	4	6	37	65	120	11	39	35	1.8	PASSIVE	80			
4A	2d									3	3	5	36	60	120	16	46	35	2.1	PASSIVE	80			
4A	3a									8	8	12	45	92	90	6	14	35	13	PASSIVE	9			
4A	3b									4	5	8	30	65	90	11	34	35	1.8	PASSIVE	76			
5A	1a	TUS	YFMS	45	27.4	1	0.02750	PIPO	46	7	8	10	34	75	90	8	12	35	15	PASSIVE	8	< 1.75	>1.75 < 1.85	>1
5A	1b			_		-		-	-	-	-	-	19	68	90	13	33	35	1.8	PASSIVE	38	-		-

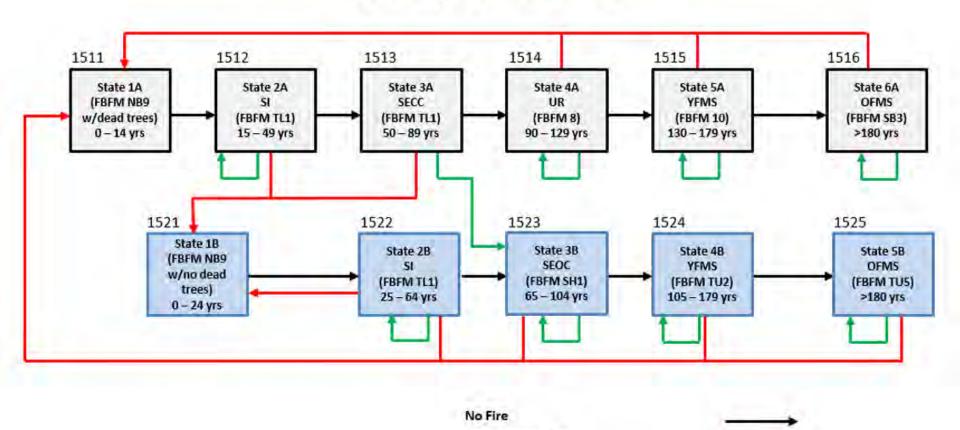
Cold Dry Conifer STMs

State 1A: Post-fire bare ground. Fuel model NB9. 0-14 yr.

State 4A: Understory reinitiation. Fuel model TU5. 90-129 yr.

State 2A: Stand initiation. Fuel model GS1. 15-49 yr.

State 5A: Young forest multi-story. Fuel model TU5. 130-179 yr.



State 3A: Stem exclusion closedcanopy. Fuel model 2. 50-89 yr.

State 6A: Old forest multi-story. Fuel model TU5. ≥ 180 yr.

Cold Dry Conifer Model

Low severity fire

Moderate and high severity fire

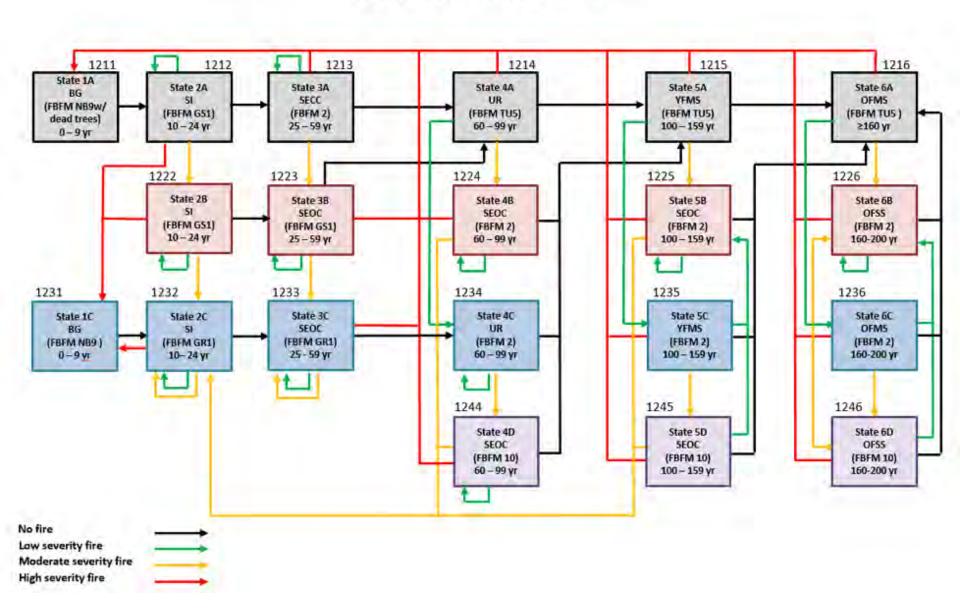
Dry Mixed Conifer STMs

State 1A: Post-fire bare ground. Fuel model NB9. 0-9 yr.

State 4A: Understory reinitiation. Fuel model TU5. 60-99 yr.

State 2A: Stand initiation. Fuel model GS1. 10-24 yr.

State 5A: Young forest multi-story. Fuel model TU5. 100-159 yr.

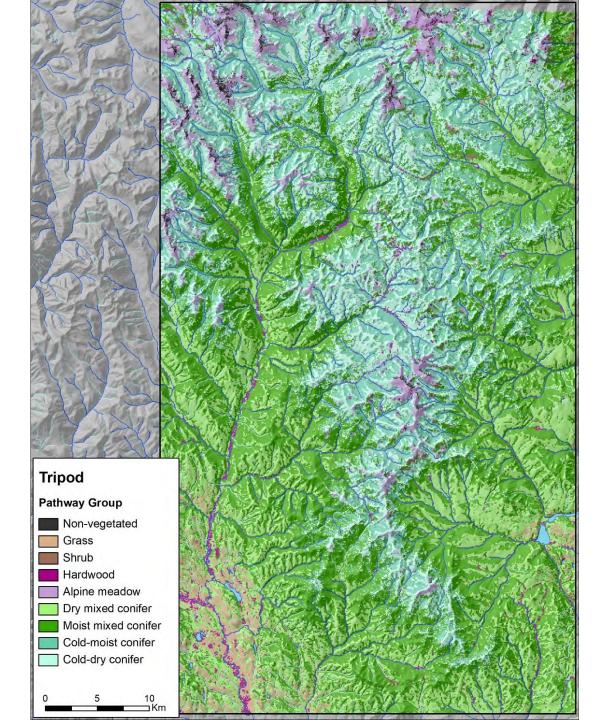


State 3A: Stem exclusion closedcanopy. Fuel model 2. 25-59 yr.

State 6A: Old forest multi-story. Fuel model TU5. 80-120 yr.

Dry Mixed Conifer Model

State and Transition Models of semi-arid forest landscapes in western North America: fire and fuel pathways



Authors: Susan Prichard, Bob Gray, Richy Harrod, Paul Hessburg, Nicholas Povak, and Brion Salter

AGENDA

Agenda	Details	Presenter
0800 - 0820	Introduction to the Reburn Project	Prichard
0820 - 0840	Vegetation and fire dynamics	Gray
0840 – 0900	Wildland fire management scenarios	Prichard
0900 - 0920	Climate change and landscape resilience	Prichard
0920 - 0940	Discussion	Gray & Prichard
0940 – 1000	Break and load into vans	ALL

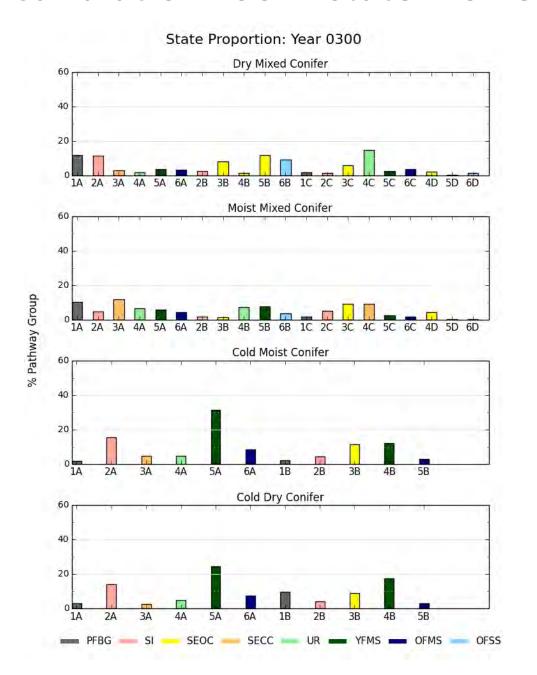
Base Landscape Development

Pathway Group Map Development

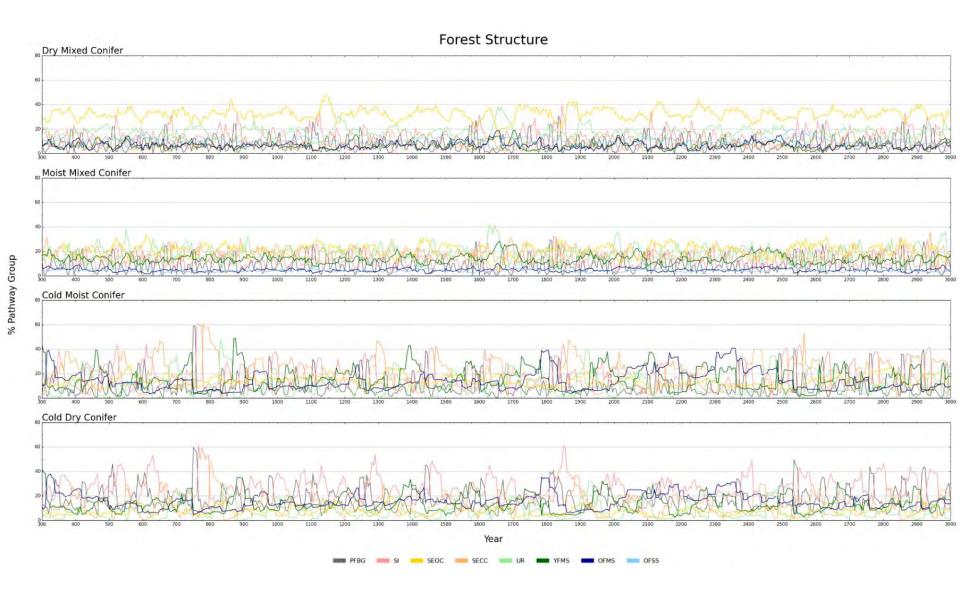
- 1) Spatially represented Pathway Groups across the study area (LANDFIRE base map reclassified to pathway groups and states).
- 2) Fine-tuned using aspect and topographic ridgetop and valley-bottom settings for all forest types/pathway groups.
- 3) For high-elevation forests used biophysical setting to differentiate high-elevation cold-dry and cold-moist and also between lower elevation dry-mixed conifer and moist-mixed conifer.

	Pathway		Max Time	FBFM							
StateID	Group	State	in State	Name	FBFM	CC	СН	СВН	CBD	FRST_SS	Structure
1111	NoPath	1A	9999	NB9	99	0	0.0	0.0	0.0000	20	BG - rock/water/ice
1121	NoPath	1B	9999	GR4	104	0	0.0	0.0	0.0000	17	herbland
1131	NoPath	1C	9999	GS2	122	0	0.0	0.0	0.0000	18	shrubland
1141	NoPath	1D	9999	TU1	161	60	15.0	5.0	0.1314	19	hardwoods
1151	NoPath	1E	9999	TU1	161	0	0.0	0.0	0.0000	17	montane meadow
1211	DMC	1A	10	NB9	99	1	2.1	0.0	0.0019	20	PFBG
1212	DMC	2A	15	GS1	121	18	6.4	0.6	0.0320	10	SI
1213	DMC	3A	35	2	2	60	14.6	0.8	0.0298	12	SECC
1214	DMC	4A	40	TU5	165	34	19.8	1.0	0.0275	13	UR
1215	DMC	5A	60	TU5	165	45	27.4	1.0	0.0275	14	YFMS
1216	DMC	6A	9999	TU5	165	55	36.6	1.5	0.0320	15	OFMS
1222	DMC	2B	15	GS1	121	15	5.5	0.6	0.0205	10	SI
1223	DMC	3B	35	GS1	121	25	13.7	1.5	0.0228	11	SEOC
1224	DMC	4B	40	2	2	30	18.3	1.0	0.0259	11	SEOC
1225	DMC	5B	60	2	2	40	27.4	2.0	0.0275	11	SEOC
1226	DMC	6B	40	2	2	55	36.6	3.0	0.0275	16	OFSS
1231	DMC	1C	10	NB9	99	1	2.1	0.0	0.0019	20	PFBG
1232	DMC	2C	15	GR1	101	15	5.5	0.6	0.0205	10	SI
1233	DMC	3C	35	GR1	101	25	13.7	1.5	0.0228	11	SEOC
1234	DMC	4C	40	2	2	30	18.3	1.0	0.0259	13	UR
1235	DMC	5C	60	2	2	40	27.4	1.5	0.0275	14	YFMS
1236	DMC	6C	40	2	2	55	36.6	1.0	0.0275	13	UR
1244	DMC	4D	40	10	10	34	19.8	1.5	0.0275	11	SEOC
1245	DMC	5D	60	10	10	45	27.4	1.5	0.0275	11	SEOC
1246	DMC	6D	40	10	10	55	36.6	2.5	0.0320	16	OFSS

Model Selection

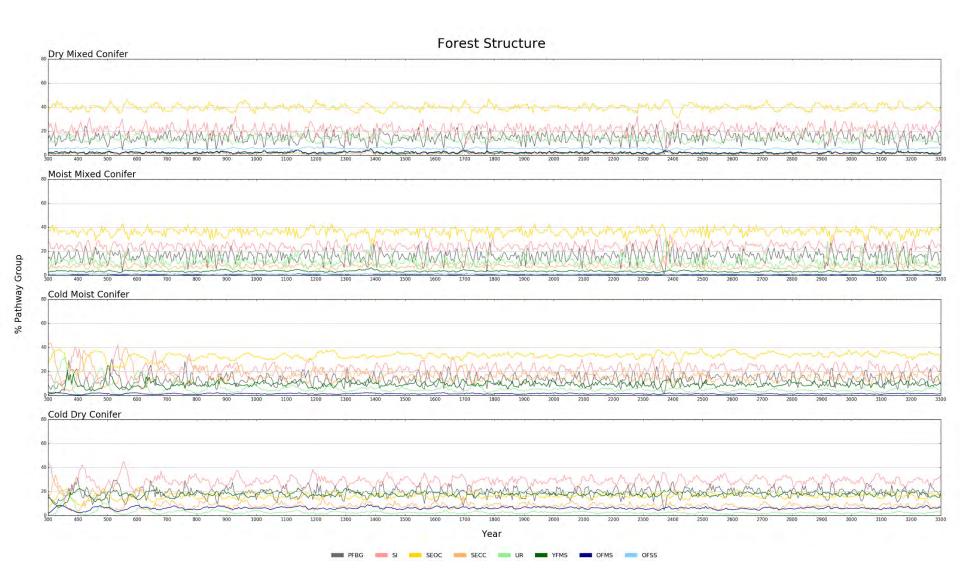

FSPro

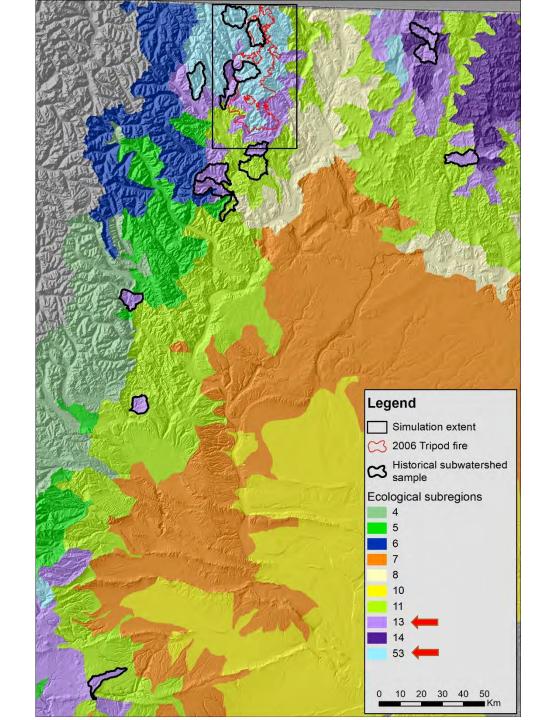
- Allows for daily ERC, wind speed and direction to vary across burn period.
- Some stochasticity allowed in fire progression.
- Command line version was available, allowing us to integrate into geospatial modeling framework.
- Commonly used in WFDSS our implementation was more of a hybrid between FSPro and MTT that ran a single fire but varied weather across the burn period.


Simulation Modeling Steps

- 1. Start fire season with year + 1 and any STM transitions.
- 2. Randomly select fire year (number of fires)
- 3. For each fire, randomly select Julian date for ignition (based on known distributions of events)
- 4. Spatially allocate fires using lightning probability map
- 5. Ignite each fire by date (drawn from weather stream data for that day)
- 6. Fire runs until two consecutive days of ERC < 55 (2 week maximum)
- 7. Burned pixels remain NB9 through fire season
- At end of fire season convert modeled flame lengths to burn severity and update state map


Calibration Tool – state movies


Tripod 3000-year Calibration and Spin Up


Tripod Year 300 - 1300

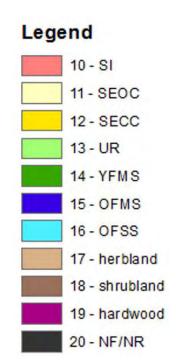
East Zone 3000-year Calibration and Spin Up

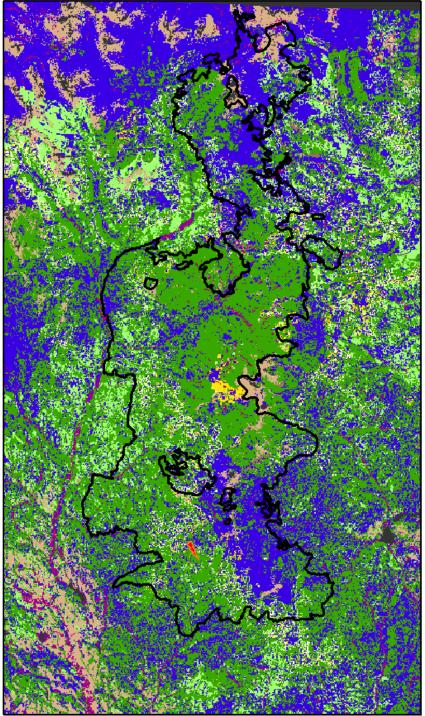
Reference Landscapes

Comparison with Historical Reference Landscapes

PWG	Structure	HRV_Median	HRV_min	HRV_10th	HRV_90th	HRV_max
DMC	PFSI	7.9	0.0	0.0	47.4	65.0
DMC	SEOC	20.0	0.0	1.4	47.9	49.9
DMC	SECC	0.4	0.0	0.0	8.6	17.0
DMC	UR	23.5	0.0	0.0	51.8	92.3
DMC	YFMS	4.2	0.0	0.0	19.3	43.2
DMC	OFMS	1.1	0.0	0.0	43.8	52.8
DMC	OFSS	0.0	0.0	0.0	11.6	22.4
MMC	PFSI	11.4	0.0	1.3	30.7	87.7
MMC	SEOC	10.2	0.7	2.1	25.3	37.8
MMC	SECC	7.2	0.0	0.1	38.2	90.4
MMC	UR	17.0	0.0	2.2	44.1	50.2
MMC	YFMS	5.5	0.0	0.0	32.6	71.6
MMC	OFMS	16.1	0.0	0.0	38.8	47.7
MMC	OFSS	1.3	0.0	0.0	14.3	20.0
CMC	PFSI	3.6	0.0	0.0	35.2	73.7
CMC	SEOC	5.1	0.0	0.0	14.6	56.3
CMC	SECC	4.9	0.0	0.0	49.1	81.8
CMC	UR	15.7	0.0	0.0	70.1	100.0
CMC	YFMS	0.0	0.0	0.0	52.0	100.0
CMC	OFMS	0.0	0.0	0.0	17.4	46.5
CMC	OFSS	0.0	0.0	0.0	2.4	53.5
CDC	PFSI	7.8	0.0	0.0	33.2	79.1
CDC	SEOC	14.3	0.0	0.0	48.3	100.0
CDC	SECC	0.4	0.0	0.0	21.2	73.6
CDC	UR	12.2	0.0	0.0	65.5	100.0
CDC	YFMS	0.0	0.0	0.0	33.9	41.2
CDC	OFMS	0.0	0.0	0.0	25.7	64.2
CDC	OFSS	0.0	0.0	0.0	16.1	35.8

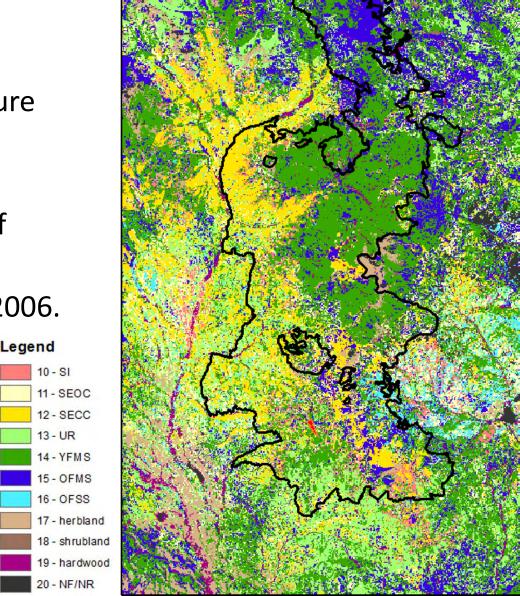
AGENDA

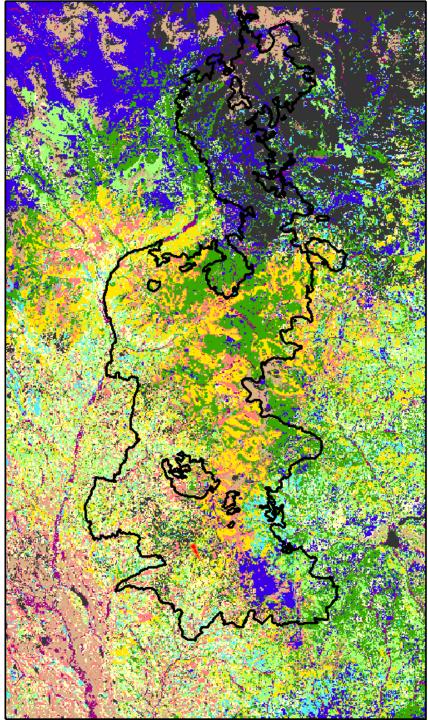

Agenda	Details	Presenter
1300 – 1330	Introductions	Prichard
	Project overview and meeting goals	
	Brief review of 2006 Tripod incident	
1330 - 1400	Review of wildland fire decision making	Dickinson /
	process	OkWen Fire Staff
1400 – 1415	BREAK	
1415 – 1445	State and transition models	Prichard
1445 – 1515	Base landscape development	Povak / Salter
1515 – 1545	Comparative wildland fire management	Hessburg
	scenarios	
1545 – 1630	Workshop goals, mock decision analysis of	All
	2006 Tripod Fire under alternative	
	landscapes	
1630 – 1700	Management applications	Prichard


Wildland Fire Management Scenarios

- A) Complete absence of fire -- no ignitions
- B) Modern Suppression -- only fires that escape suppression
- Escaped wildfire threshold:
 - Ignition date between 135 and 304 (May 15 to Oct 31)
 - Minimum of 1 burnable pixel within ignition perimeter
 - Ignition day threshold to burning: ERC ≥ 67 and Wind ≥ 20 mph
- **C) Partial Suppression** -- managed wildfires in the late-summer and fall fire seasons and escaped wildfires (above)
 - Ignition date between 187 and 304 (July 5 to Oct 31)
 - ERC < 67 and Wind ≤ 10 mph within first 5 days
- D) No Suppression all ignitions that meet thresholds to burning:
 - Ignition date between 135 and 304 (May 15 to Oct 31)
 - Ignition day threshold to burning: ERC ≥ 55
 - Minimum of 1 burnable pixel within ignition perimeter

A) Complete absence of fire (no ignitions from 1940 to 2005)

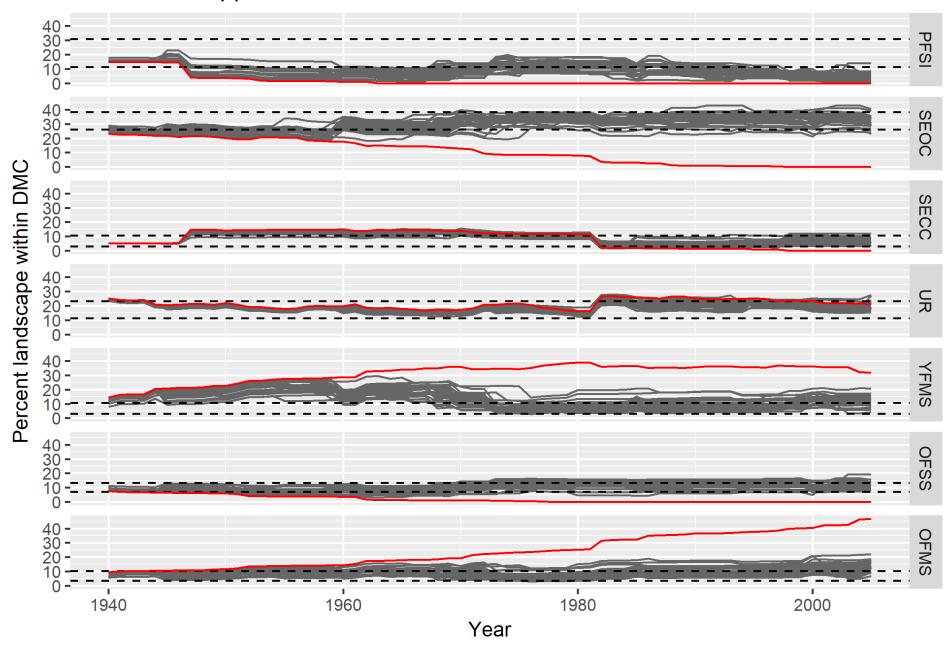

Homogenous landscape, mostly of young and old multi-storied forests.


B) Full Suppression (2% fires)

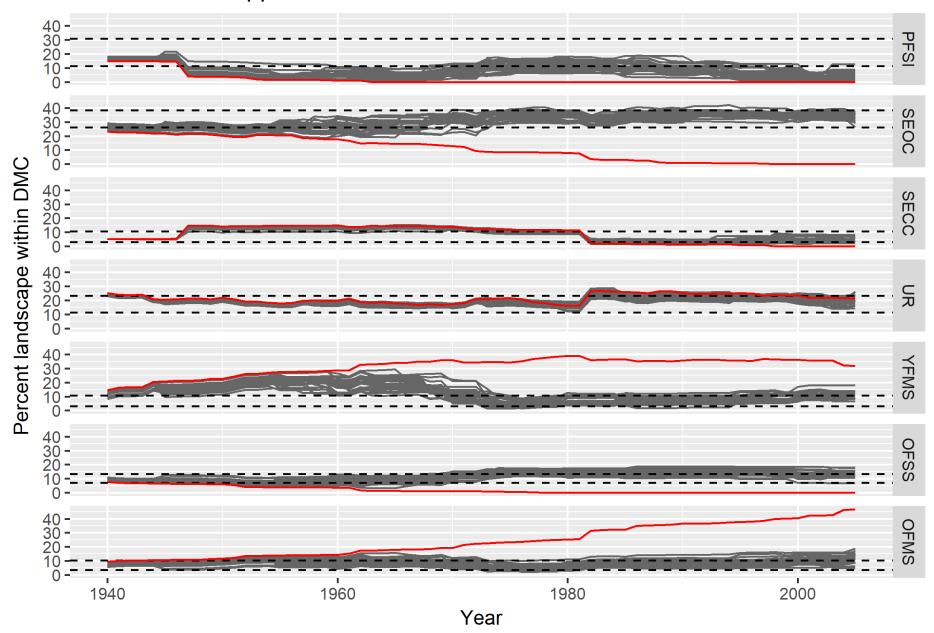
- General infilling of the landscape with more mature forests prior to 2006.
- In some iterations of this scenario, random draws of wind scenarios resulted in large, recent fires before 2006.

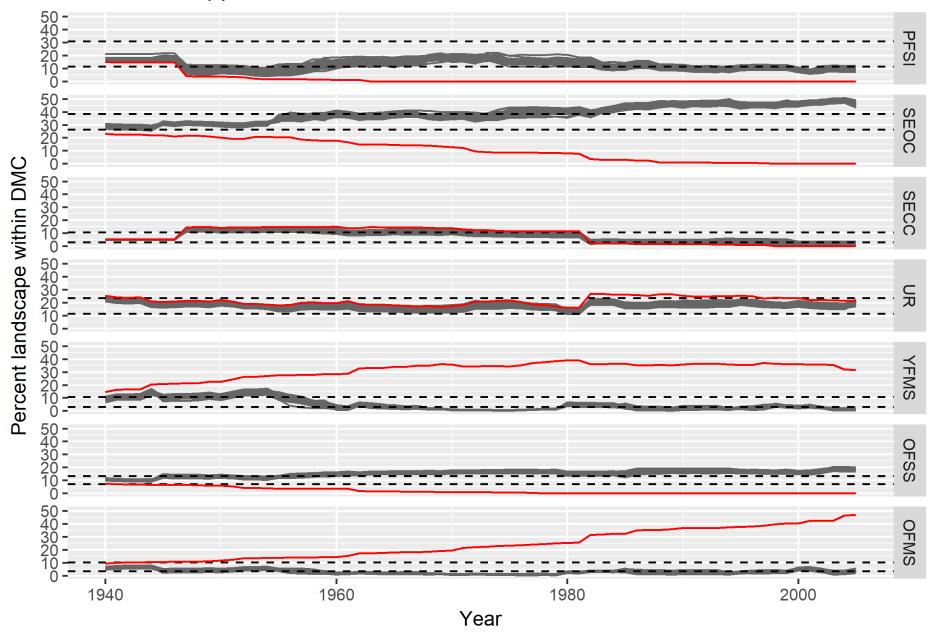
- C) Partial Suppression
- Finer-grain landscape mosaics at lower elevations that support dry, mixed conifer forests
- Large, recent fire in cool highelevation mixed conifer forests.

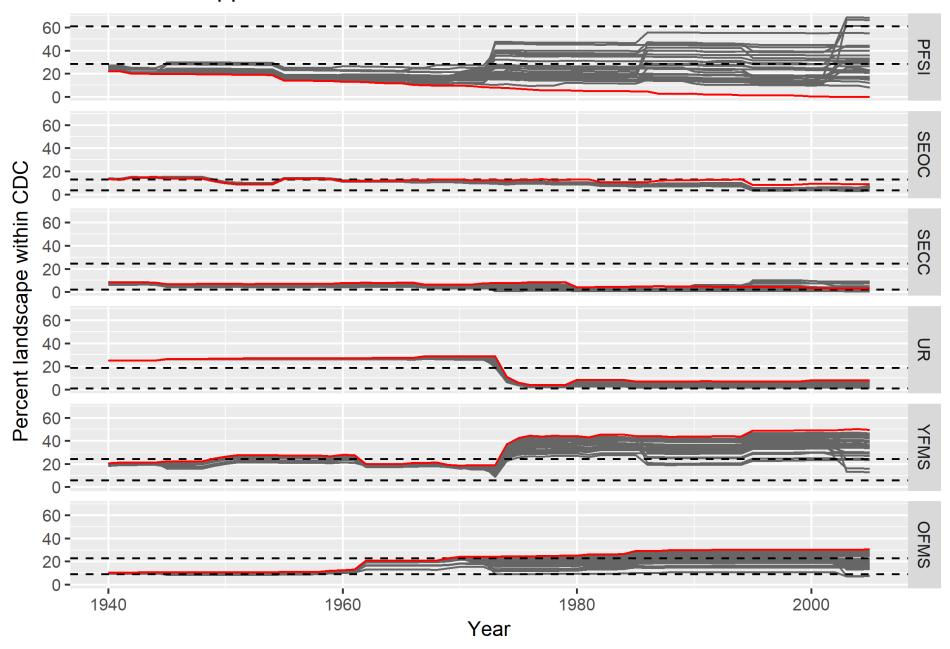


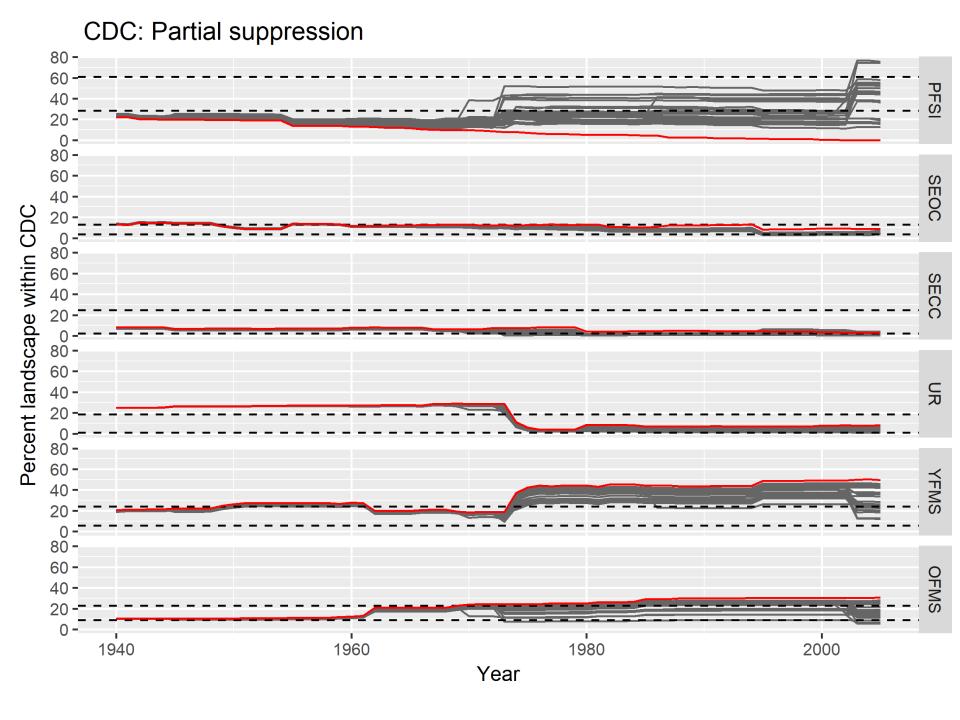

D. No suppression (let it burn)

- Landscape supports low percentage of mature forest
- Highest pixilation of any of the scenarios.
- Patches of young forest multistory and old forest multistory generally surrounded by recent burns (black pixels) and regenerating forest.

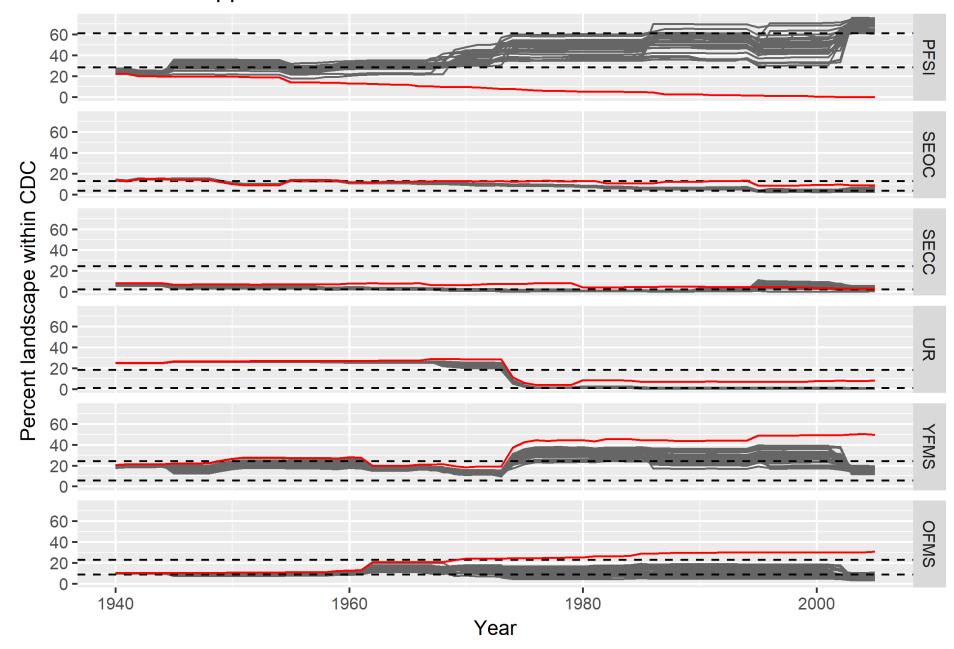



DMC: Full suppression


DMC: Partial suppression



DMC: No suppression



CDC: Full suppression

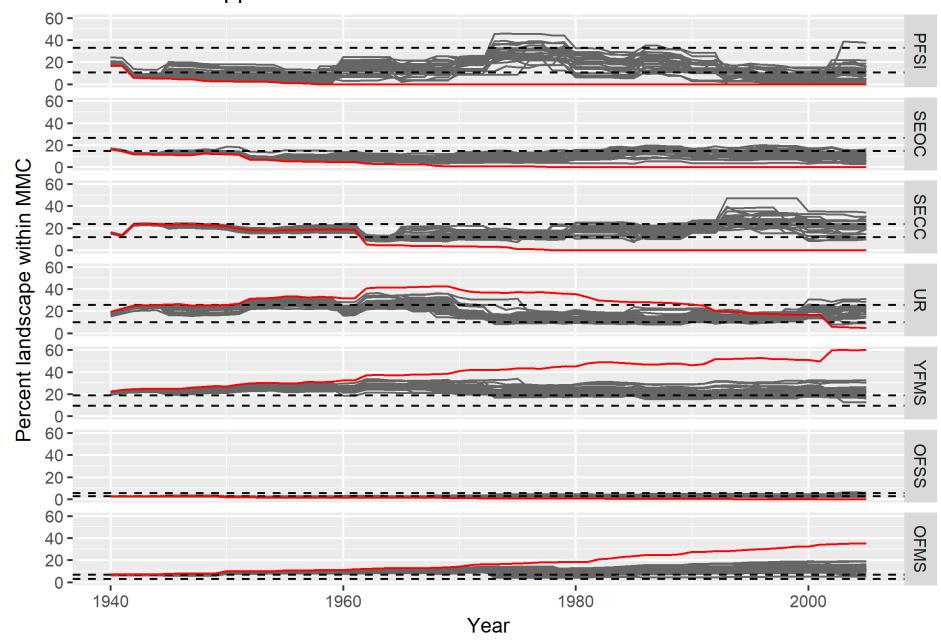
CDC: No suppression

AGENDA

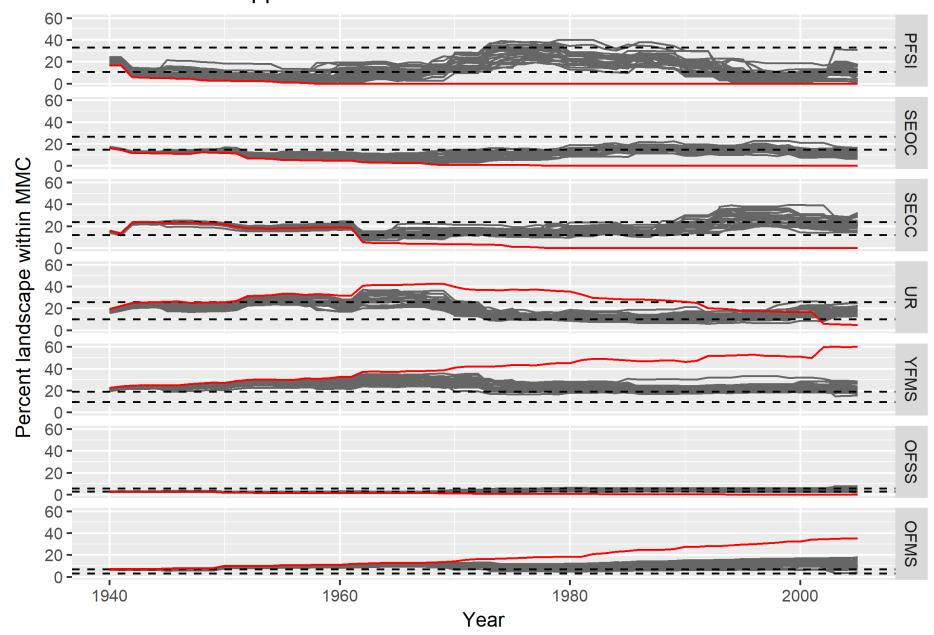
Agenda	Details	Presenter
1300 – 1330	Introductions	Prichard
	Project overview and meeting goals	
	Brief review of 2006 Tripod incident	
1330 - 1400	Review of wildland fire decision making	Dickinson /
	process	OkWen Fire Staff
1400 – 1415	BREAK	
1415 – 1445	State and transition models	Prichard
1445 – 1515	Base landscape development	Povak / Salter
1515 – 1545	Comparative wildland fire management	Hessburg
	scenarios	
1545 – 1630	Workshop goals, mock decision analysis of	All
	2006 Tripod Fire under alternative	
	landscapes	
1630 – 1700	Management applications	Prichard

Summary

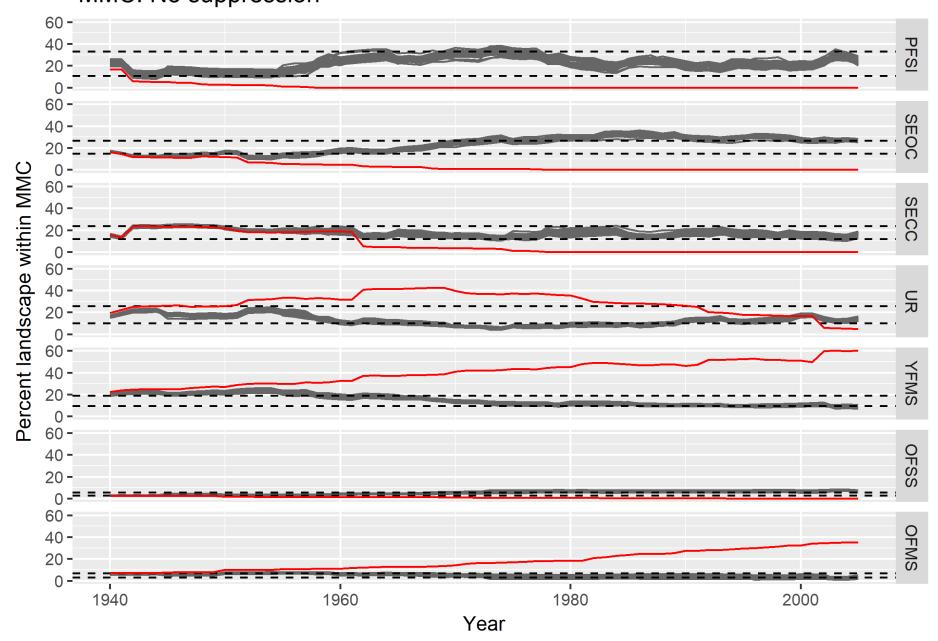
- 1) Proactive wildland fire management can reduce the likelihood of large-scale vegetation and fire regime shifts associated with large fires.
- 2) <u>No fire</u> and <u>Full Suppression</u> scenarios represent "boom and bust" landscapes -- continuous mature forests are capable of supporting large fire spread.
- 3) Managed wildfires and Let it Burn Scenarios have finer-grained patch mosaics and would potentially result in markedly different approaches to wildland fire management.

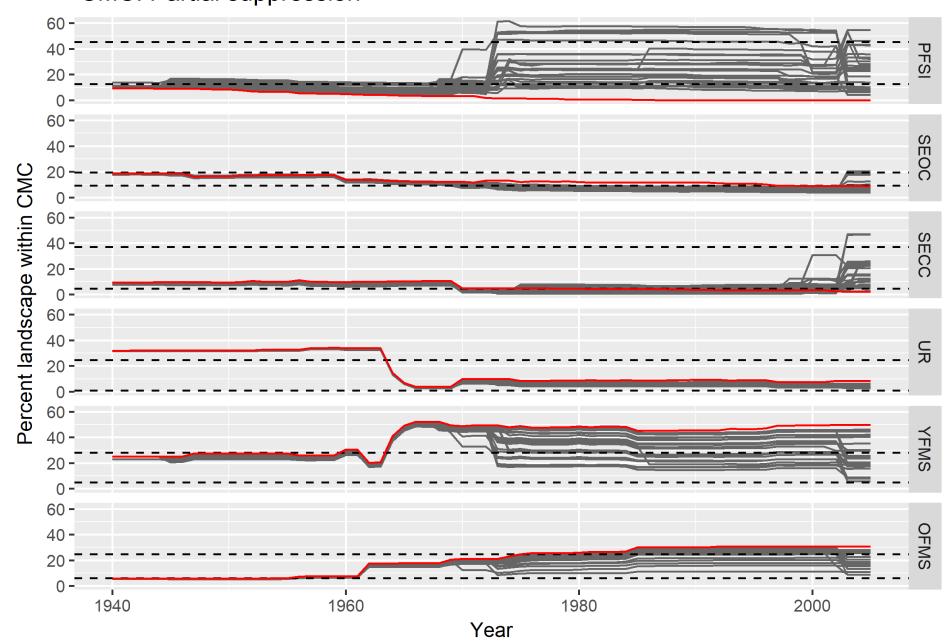

Management Applications

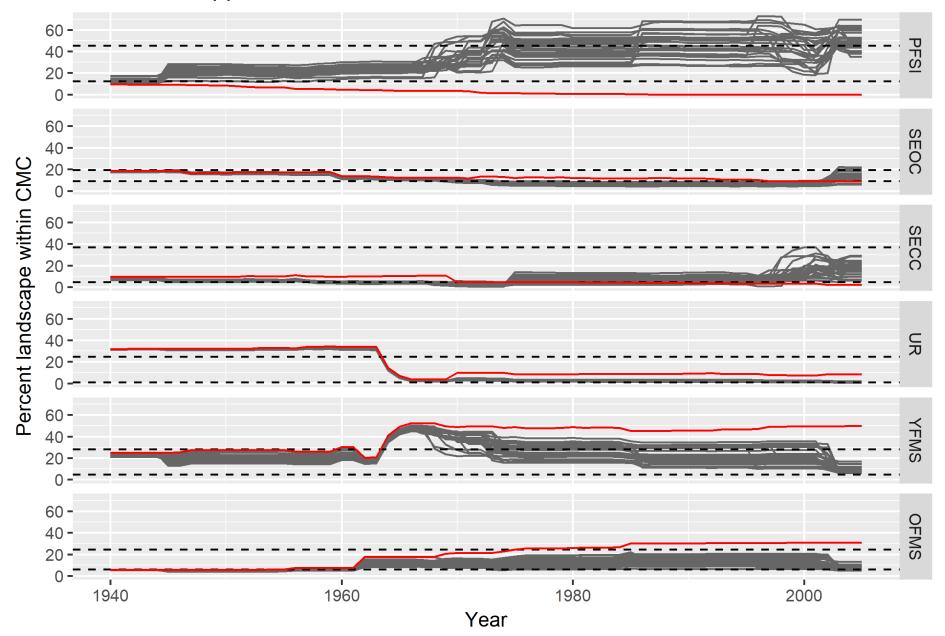
- 1) Wildfire management decision making use of patch mosaics in suppression operations and managed wildfires
- 2) Implications of wildland fire management scenarios for wildlife habitat (e.g., Canada Lynx)
- 3) Climate change evaluating resilience of landscapes
- 4) Carbon storage carrying capacity of landscapes under varying wildfire scenarios


Next Steps

- 1) Manager workshops
 Influence of burn mosaics on firefighting strategies,
 resource allocations
- 2) WFDSS training layers to explore management scenarios
- 3) State and Transition Models (further refinement)
- 4) Lessons learned (STM refinements, overfiring landscapes with anthropogenic fire)
- 5) Climate change landscape scenarios


MMC: Full suppression


MMC: Partial suppression


MMC: No suppression

CMC: Partial suppression

CMC: No suppression

