

Department of Environmental and Occupational Health Sciences

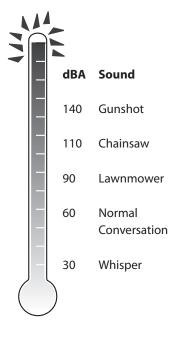
Contents

Introduction	1
What is noise?	2
Safe noise levels	2
What happens if you are exposed	
to too much noise?	3
What we found in our research	5
Average noise exposures and hearing	
protector use for insulation workers	5
Task and tool exposures for insulation workers	6
Noise exposures for all trades	8
How insulation workers can prevent hearing loss	10
Recommendations	10
Summary	11
For additional information	12

Introduction

Many construction workers complain that they can't hear as well as they used to, and statistics back them up. Insulation workers and other construction workers are exposed to noises loud enough to cause permanent noise-induced hearing loss. In Washington state, construction workers are five times more likely to file workers' compensation claims for hearing loss than are workers in all occupations combined.

This report from the University of Washington looks at the noise exposures of insulation workers and makes recommendations applicable to their specific needs. It is based on six years of research in the construction trades. Since 1997, university researchers have collected information on noise exposures of construction workers in the Puget Sound area. We now have almost 900 full-shift measurements on workers from 11 trades, including 37 measurements on insulation workers.

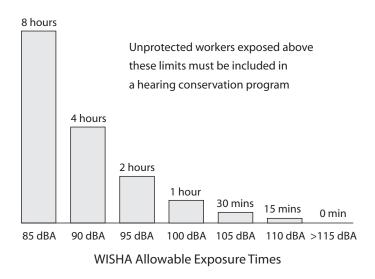

What is noise?

Noise is unwanted sound. Noise levels are measured on a decibel scale (dBA), which matches the ear's sensitivity to sound. A whisper is about 30 dBA, normal conversation is 60–70 dBA, and power tools are often between 90–110 dBA. If two people at arm's length must raise their voices to be heard, the noise level is above 85 dBA. Figure 1 shows the decibel levels of some familiar sounds.

Safe noise levels

Our noise measurements are based on the legal noise standard of the Washington Industrial Safety and Health Act (WISHA). In Washington state, the Permissible Exposure Limit (PEL) allows an 8-hour, full-shift average exposure of 85 dBA.* For every 5 dBA increase above this level, the allowable exposure time is cut in half (see figure 2 on page 3). Workers with a full-shift average exposure above 85 dBA are required to wear hearing protection devices (either earplugs or earmuffs). They also must be included in a hearing conservation program in which they receive annual hearing tests and training on noise exposure and hearing loss. Workers must always use hearing protection when levels exceed 115 dBA.

Figure 1.
Decibel levels (dBA)
of familiar sounds



^{*} The federal Occupational Safety and Health Administration (OSHA) PEL for construction noise is an eight-hour average of 90 dBA.

What happens if you are exposed to too much noise?

Noise exposures that are loud enough and last long enough can damage nerves in the inner ear, causing permanent and irreversible hearing loss. This damage can result from repeated exposure to levels above 85 dBA (such as years of working around construction noise without hearing protection), or from as little as one exposure above 140 dBA. Workers who have suffered hearing loss often become socially isolated because they can't communicate easily with others. They also may not be able to hear warning signals, which can lead to accidents and injuries. Our measurements show that most construction tasks and tools generate noise levels that require use of hearing protection. However, we found many situations in which workers rarely or never use hearing protection. This gap in hearing protector use puts insulation workers at risk for hearing loss.

What we found in our research

Of the 887 full-shift noise measurements we made, 37 were on insulation workers. The majority were from commercial construction sites, with the remainder from industrial, residential, road, bridge, and highway work sites. The type and size of work sites are important factors in noise levels. The largest sites generally have the highest exposure levels.

Average noise exposures & hearing protector use for insulation workers

Table 1 shows information from our full-shift measurements on insulation workers. The average level measured was 75.3 dBA. However, nearly one in five measurements was above 85 dBA, the WISHA 8-hour allowable limit. Above this level, hearing protectors are required. Very few measurements were above 90 dBA. We found that insulation workers used hearing protectors less then 20% of the time that their exposure levels were above 85 dBA. More than one fifth of all measurements also included exposure above 115 dBA. Even though hearing protectors are always required above 115 dBA, they were used only about 1% of the time. One possible reason that hearing protectors were used less at 115 dBA than at 85 dBA is that very high exposure levels are usually shorter in duration than lower levels, so workers may not have enough time or warning to put on hearing protectors.

Table 1. Work shift noise level information on 37 insulation workers

Average full-shift noise level 75.3 dBA
Average length of measured work shifts 8 hr 8 min
% of full-shift average levels above 85 dBA 18%
% of full-shift average levels over 90 dBA 3%
% of work shifts with any noise above 115 dBA 21%
Average % time hearing protectors used above 85 dBA 14%
Average % time hearing protectors used above 115 dBA 1%

Task and tool exposures for insulation workers

We measured noise levels for each task reported by insulation workers, along with the percent of time that they used hearing protectors when levels were above 85 dBA (see table 2). None of the measured tasks had an average level above 85 dBA (the level above which workers should have worn hearing protection). Similarly, we measured noise levels for the tools that insulation workers reported using (see table 3 on page 7).

Table 2. Tasks, in order of increasing average noise level

Tasks	Average noise level (dBA)	Maximum noise level (dBA)	% time hearing protection worn when needed
Sheet Metal Work	77.8	104.3	0%
Applying Insulation by Hand	83.0	108.9	6%
Break, Rest, Lunch, Cleanup	83.3	100.6	0%
"Other" Tasks	83.4	103.8	56%
Manual Material Handling	84.6	104.2	0%

Although noise levels exceeded 85 dBA for four of the nine tools used, insulation workers rarely reported using hearing protection. In fact, workers *never* used hearing protection while using any of the tools that had average noise levels about 85 dBA. None of the tasks or tools had an *average* noise level above 115 dBA, which would require use of hearing protectors, no matter how short the exposure.

Table 3. Tools, in order of increasing average noise level

Tools	Average noise level (dBA)	Maximum noise level (dBA)	% time hearing protection worn when needed
Staple Gun, Stapler	79.4	107.5	0%
Manlift, Lift Equipment	81.4	107.5	0%
No Tool	82.8	104.4	27%
Other Hand Power Tool	84.4	107.9	0%
Hammer, Mallet, Sledge	84.8	117.8	0%
Screw Gun, Drill Motor	85.1	110.5	0%
"Other" Tools	85.3	109.1	0%
Hand Power Saw	89.3	107.0	0%
Welding, Cutting Equipment	93.2	108.2	0%

Noise exposures for all trades

The average full-shift noise exposure level for *all workers in all trades* was 81.4 dBA. The percentage of full-shift measurements by trade that exceeded the WISHA 8-hour allowable limit of 85 dBA is shown in Table 4. The trades with the most exposures above the WISHA limit were operating engineer and cement mason (46% of full-shift measurements were above 85 dBA), while sheet metal workers had the fewest exposures above the WISHA limit (11% above 85 dBA).

The trade with the highest average work shift exposure was operating engineer (84.6 dBA); insulation workers had the lowest average work

Table 4. Percent of work shifts above WISHA 8-hour standard (in order of increasing percentages), percent of time hearing protection was used above 85 dBA, and average full shift noise level (by trade)

Trade	% of 8-hour work shifts > 85 dBA	% of time > 85 dBA hearing protection used	Average full-shift noise level (dBA)
Sheet Metal Worker	11%	66%	79.0
Insulation Worker	18%	14%	75.3
Tilesetter	20%	12%	76.0
Electrician	20%	18%	79.9
Bricklayer	26%	49%	82.6
Masonry Restoration	37%	56%	82.7
Carpenter	40%	43%	82.2
Ironworker	40%	13%	82.9
Laborer	44%	NA	83.6
Cement Mason	46%	8%	79.3
Operating Engineer	46%	70%	84.6
All Trades	34%	39%	81.4

shift exposure (75.3 dBA). About one-third of full-shift measurements for all trades were above the WISHA limit for workers not using hearing protectors. Even "quiet" trades such as electricians and insulation workers sometimes had full-shift measurements that were above the WISHA limit. Overall, workers in all trades reported using hearing protection less than 40% of the time they were exposed above 85 dBA, and about one-third of the time they were exposed at the much higher level of 115 dBA. Operating engineers had the highest use of hearing protection and cement masons had the lowest. For laborers, "NA" means hearing protection use was not evaluated.

How insulation workers can prevent hearing loss

Construction workers in *all* of the trades we examined have the potential for high exposure to noise. Although construction workers make up only 7% of the Washington state workforce, they file more than 21% of all accepted workers' compensation hearing-loss claims. The preferred way to prevent hearing damage is to reduce noise at its source. However, earplugs and earmuffs will always be necessary for some construction activities.

Almost one in five full-shift average measurements on insulation workers was above the WISHA standard for an 8-hour noise exposure. Unfortunately, insulation workers used hearing protection only about 14% of the time they were exposed above 85 dBA, and only 1% of the time they were exposed above 115 dBA. Insulation workers often got more noise exposure from activities going on around them than they did from their own work, and need to consider nearby activities as well as their own when choosing hearing protection.

Recommendations

Educational programs can help make insulation workers aware that some activities on the job site have potentially hazardous noise levels. Insulation workers in the construction industry should be enrolled in a hearing conservation program, and efforts should be made to reduce the noise levels of construction activities and to increase the use of hearing protection.

All hearing protectors are labeled with a Noise Reduction Rating (NRR), which is a laboratory estimate of how much noise the hearing protector will block. Typically, the NRR level is about two times higher than the protection most workers experience in actual use.

Almost all full-shift noise exposure measurements on insulation workers were below 90 dBA. To adequately protect against these average noise levels, we recommend hearing protectors with an NRR of 12 dB.

For most activities, an NRR higher than this will provide too much protection, interfering with normal communication and work. Workers who find that hearing protectors with a very high NRR (33 dB is the highest available) make it difficult to hear regular work sounds should try a different hearing protector with a lower NRR. On the other hand, workers exposed to very high levels of noise should use a hearing protector with a higher NRR. Workers exposed to intermittent noises should consider using earmuffs or banded earplugs, which can be removed and inserted quickly. A single type of hearing protector *will not* work for all workers and all exposure levels, so it is important to have several types and styles of hearing protectors available.

Summary

None of the measured construction tasks exposed insulation workers to noises above 85 dBA, which would warrant use of hearing protection. None of the measured tools involved exposures above 115 dBA, a level at which hearing protection is *always* required. We found that use of hearing protection ranged from never to 56% of the time, depending on task.

Four of the nine construction tools we measured exposed workers to noise levels above 85 dBA, and one—hammers and sledges—sometimes exceeded 115 dBA, the level at which hearing protection is always required. The insulation workers we studied *never* used hearing protection with any of the tools that had average noise levels above 85 dBA.

Workers exposed to loud noises without use of hearing protection risk losing their hearing. Properly worn hearing protection can prevent this loss. Training on the proper use of hearing protection is an important part of a hearing conservation program, and should take into account the need for construction workers to hear warning shouts and signals. In addition to providing hearing protectors and training, construction companies should look into reducing noise exposure levels by purchasing quieter equipment or shielding workers from the noisiest equipment.

For additional information

About the UW study and its results

University of Washington *Occupational Noise* Web site: http://depts.washington.edu/occnoise or contact the Field Research and Consultation Group at 206-543-9711 or cnstsafe@u.washington.edu

For more information about noise and its effects on hearing

NIOSH web page: http://www.cdc.gov/niosh/topics/noise/ or WISHA hearing conservation web site: http://www.lni.wa.gov/Safety/Topics/AtoZ/NoiseHearing/default.asp

For assistance in developing a hearing conservation program

Contact the WISHA consulting service for the nearest consultant http://www.lni.wa.gov/Safety/KeepSafe/Assistance/Consultation/default.asp or call 800-547-8367

Or contact Build It Smart, a local labor/management organization for the construction industry, at www.builditsmart.org or 360-596-9200

This research was conducted with funds from the National Institute for Occupational Safety and Health and would not have been possible without the generosity and assistance of the apprenticeship training programs, contractors, and construction workers who participated in the study.

This brochure was printed by the University of Washington Department of Environmental and Occupational Health Sciences with funds provided by the Washington state Medical Aid and Accident Funds. The research described in this brochure was conducted by Noah Seixas, PhD and Rick Neitzel, MS. The brochure was developed by Rick Neitzel, Noah Seixas, Cathy Schwartz, and Kathy Hall and printed by members of SEIU Local 925. This brochure may be reproduced providing credit is given to the Department of Environmental and Occupational Health Sciences, University of Washington. The contents may not be altered without the authors' permission.

Photos: Sebrina Somers, Rick Neitzel

Noise and Hearing Loss in Construction Study
Department of Environmental and Occupational Health Sciences
Health Sciences Building
Box 357234
Seattle, WA 98195-7234