# Cosmic Radiation and Shielding



#### Overview

- What is Cosmic Radiation?
- Health Effects
- Detectors in Space
- Shielding
- Questions







## Cosmic Radiation

- High-energy protons and atomic nuclei
- Originate from supernovae and solar events
- Earth's magnetic field and atmosphere provide shielding
- Inflicts damage on electronics and living organisms

## Health Effects

- Astronauts on Apollo mission reported seeing flashes of light
- Sufficient energy to change or break DNA molecules
- Acute: diarrhea, nausea, vomiting, central nervous system damage, death
- Long term: cataracts, cancer, sterility, mutated genes in offspring







### ALTEA

- The Anomalous Long Term
   Effects in Astronauts'
   Central Nervous System
- Astronauts on the ISS wore the helmet for 90 minutes during tests
- 6 particle detectors
   measure the trajectory,
   energy, and type of
   particle passing through
   the brain
- April 2006 October 2007

#### **PAMELA**

- The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics
- Permanent magnet spectrometer
- High precision and sensitivity
- On board of a Russian satellite launched in 2006
- Circular orbit at 570 km (354 miles)







#### **LRO**

- The Lunar Reconnaissance
   Orbiter carries 7 different
   instruments
- The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) characterizes the lunar radiation environment and biological impacts
- Tests models of radiation effects and shielding
- Launched in June of 2009
- LRO orbits the Moon at 50km (31 miles)

#### **RAD**

- NASA's Curiosity rover is equipped with a Radiation Assessment Detector
- Preparation for human exploration
- Measures and identifies all high-energy radiation at the surface of Mars
- Uses a stack of silicon detectors and a crystal of cesium iodide
- Small, lightweight, and energy efficient
- Launched November of 2011
- Landed August of 2012





# Results from RAD

| RAD Measurement                                         | Mars Surface    | MSL Cruise      | Units                                             |
|---------------------------------------------------------|-----------------|-----------------|---------------------------------------------------|
| Charged Particle Flux                                   |                 |                 |                                                   |
| (A * B)                                                 | 0.64 ± 0.06     | 1.43 ± 0.03     | cm <sup>-2</sup> s <sup>-1</sup> sr <sup>-1</sup> |
| Fluence Rate (B)                                        | 1.84 ± 0.34     | 3.87 ± 0.34     | cm-2 s-1                                          |
| Dose Rate (Tissue-like)                                 |                 |                 |                                                   |
| (E detector)                                            | 0.21 ± 0.04     | $0.48 \pm 0.08$ | mGy/day                                           |
| Avg. Quality Factor <q></q>                             | 3.05 ± 0.26     | 3.82 ± 0.30     | (dimensionless)                                   |
| Dose Equivalent Rate                                    | $0.64 \pm 0.12$ | $1.84 \pm 0.30$ | mSv/day                                           |
| Total Mission Dose Equivalent<br>(NASA Design Reference | 320 ± 50        | 662 ± 108       | mSv                                               |
| Mission, DRM)                                           | (500 days)      | (2x180 days)    |                                                   |

| Depth below<br>Surface | Effective<br>Shielding<br>mass (g/cm <sup>2</sup> ) | GCR Dose<br>Rate<br>(mGy/yr) | GCR Dose<br>Equiv. Rate<br>(mSv/yr) |
|------------------------|-----------------------------------------------------|------------------------------|-------------------------------------|
| Mars Surface<br>(RAD)  | 0                                                   | 76                           | 232                                 |
| -10 cm                 | 28                                                  | 96                           | 295                                 |
| -1 m                   | 280                                                 | 36.4                         | 81                                  |
| -2 m                   | 560                                                 | 8.7                          | 15                                  |
| -3 m                   | 840                                                 | 1.8                          | 2.9                                 |

## Shielding

#### **Passive**

 Use a sufficient amount of material to absorb the energy from the cosmic radiation

#### **Active**

 Produce a magnetic field that is big enough and strong enough to deflect cosmic radiation



## **Passive Shielding**

- Cannot use materials of high atomic number
- Problem: can generate secondary radiation
- Best materials: liquid hydrogen, water, and polyethylene have high hydrogen count
- Shield effectiveness drops as shield thickness increases



## **Passive Shielding**



- Provides only 130 to 175 days of protection depending on material
- A mission to Mars would be approximately 200 days each direction
- Passive shielding alone will not provide sufficient protection

## **Active Shielding**

- Recent breakthroughs with superconducting magnets make this more attainable
- Smaller and lighter than normal magnets required to produce such a field
- The Space Radiation
   Superconducting Shield
   (SR2S) project is working on
   a superconducting toroid
   magnet 10 m long and 12.8
   m in diameter
- Magnesium diboride superconducts at 10 Kelvin





### Solution



**Figure 8.20.** Open-Ended Cylinder Model with 5.1 g/cm<sup>2</sup> Al Shielding (r<sub>i</sub> = 4m) a) Annual Dose Equivalent, b) Maximum Mission Duration to 150 mSv Limit

 Using both passive and active shielding together may provide the best protection for astronauts

# Questions?

