

Wood Chemistry PSE 406/Chem E 470

Lecture 8 Hemicellulose II

PSE 406 - Lecture 8

Class Agenda

- Arabinogalactans
- Minor Species
 - » Glucans
 - » Galactans
 - » Pectins
- Starch
- Chitin

PSE 406 - Lecture 8 2

Arabinogalactan

- Minor hemicellulose except in Larch
 - » 10-20% of Larch
 - » 0.5-3% of other woods
- DP ~ 220
- Branches: Nearly every galactose in backbone attached 1→6 to:
 - $\approx \beta$ -D-Galactopyranose
 - $\approx \alpha\text{-L-Arabinofuranose}\,,\,\beta\text{-L-Arabinopyranose}$
 - $\approx \beta$ -D-Glucopyranosyluronic acid

Text

PSE 406 - Lecture 8

Waad Shami

Arabinogalactan

 $R = {\tt galactopyranose} \ {\tt or} \ L\text{-}{\tt Arabinofuranose} \ {\tt or} \ D\text{-}{\tt glucopyranosyluronic} \ {\tt acid}$

PSE 406 - Lecture 8

Pectins

- Often described as water soluble extractives, not as hemicelluloses.
- Found in middle lamella and primary cell wall.
- Pectins is a class of several compounds
 - » Galactans (discussed on next slide)
 - » Galacturonans:
 - Rhamnogalacturonan: α 1→4 galacturonic acid backbone with rhamnose 1/8 units, sidechain of galcturonic units
 - » Arabinans
 - 90% arabinose linked α 1 $\!\to\!5$

PSE 406 - Lecture 8

Vood Chemis

Galactans

- Very minor component in normal and tension wood. Can be major (10%) component of compression wood.
- Galactan from Tamarack
 - » 200-300 β 1 \rightarrow 4 galactopyranose backbone, 1/20 1 \rightarrow 6 galacturonic acid
- Rhamnoarabinogalactan
 - » Sugar Maple
 - » Gal:Ara:Rha (1.7:1:0.2)
- Many other varieties

PSE 406 - Lecture 8

ood Chemistr

Glucans

- Glucans are very minor components in wood.
 - » The major representatives of this group are starch and callose.
 - Starch
 - Amylose:1 \rightarrow 4 α -D-Glucopyranose
 - • Amylopectin: 1 \rightarrow 4-D-Glucopyranose + 1 \rightarrow 6 α D Glucopyranose
 - Callose 1→3 β-D-Glucopyranose

PSE 406 - Lecture 8

Callose

- Callose is found in very minor amounts in wood.
 - » Small granular hemicelluloses found in a few isolated locations.
- Polymer of $1\rightarrow 3$ β -D-Glucopyranose

PSE 406 - Lecture 8

Starch in Plants

- · Starch serves as an energy reserve in plants.

 - High concentrations of starch are found in seeds, bulbs, and tubers.
 Starch can be as high as 70-80% of certain tubers and seeds.

 Wood contains minor amounts of starch in the
- amounts of starch in the form of granules in living parenchyma cells.
 - » Typical amounts: 0.2 -0.6% of total wood
 - » Sapwood >3%

PSE 406 - Lecture 8

11

Chemical Composition of Starch Wood Chemistry

- Plants contain two types of starch, linear (helix) amyloses and branched amylopectins.
- The amounts of each of these starch types present is plant dependent.
 - » Typical amounts are 25% amylose, 75% amylopectin
 - » Mutant species can have from 50-90% amylose

PSE 406 - Lecture 8

10

Amylose

- $\bullet \ \ 1{\to}4\ \alpha\text{-D-Glucopyranose}$
- Because of the bonding, this molecule forms a helix
 - » It takes 6 gluopyranose units for each turn
 - » Addition of iodide to amylose results in a deep blue color. It is believed to be due to a complex of I5 within the polyglucoside
 - » Amylose is not water soluble

PSE 406 - Lecture 8

Amylopectin

- 1→4 αD-Glucopyranose 1→6 α D Glucopyranose
- Amylopectin is a branched polymer
 - » Branching inhibits helix formation
 - » This starch is therefore somewhat water (hot) soluble.

PSE 406 - Lecture 8

12

Isolation of Starch

- From tubers (potato, tapioca, etc.)
 - » Wet tuber is ground fine.
 - » Hot water dissolves soluble fraction of tuber.
 - » Insoluble starch is separated from the liquid phase.
 - » Starch is dried.
- From corn
 - » The skin and the germ (oil containing portion) are mechanically removed from the kernel after soaking in water. Isolation of the starch is then similar to tubers.

PSE 406 - Lecture 8

13

Chitin

• Cellulose type polymer found in insects and crustaceans; used in making the hard exoskeletons (~30%). Second or third most

- abundant biopolymer.

 » Second most abundant if you study this kind of thing for a living.
- » Third most if you are a lignin chemist.

PSE 406 - Lecture 8

Chitin Structure

- Chitin is an amino polysaccharide

 - It is a literal polymer of 1→4 β-D-Glucopyranose units just like cellulose
 The difference is that the hydroxyl group of C2 has been replaced by an amide group

PSE 406 - Lecture 8

15