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Object perception seems effortless to us, but it depends on

intensive neural processing across multiple stages in ventral

pathway visual cortex. Shape information at the retinal level is

hopelessly complex, variable and implicit. The ventral pathway

must somehow transform retinal signals into much more

compact, stable and explicit representations of object shape.

Recent findings highlight key aspects of this transformation:

higher-order contour derivatives, structural representation in

object-based coordinates, composite shape tuning

dimensions, and long-term storage of object knowledge. These

coding principles could help to explain our remarkable ability to

perceive, distinguish, remember and understand a virtual

infinity of objects.
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Introduction
The world is familiar and comprehensible to us because

we recognize and understand the objects it contains. We

identify, distinguish and evaluate objects based on their

shapes, which range from simple (letters and numbers) to

extremely complex (faces). This is one of the most

computationally daunting tasks the brain performs, owing

to the complexity and variability of the input data (retinal

images of objects) and the high dimensionality of object

shape. It seems trivial or even transparent to us only

because one of the two major pathways in visual cortex [1]

is dedicated to continuously processing object infor-

mation with extraordinary accuracy and rapidity [2��].
This object-processing pathway (also known as the ven-

tral, temporal or ‘what’ pathway) transforms retinal signals

into object representations that are explicit enough to

support our vivid appreciation of object structure, com-

pact enough to be stored in memory, and stable enough to

generalize across different viewing conditions (Figure 1).

The neural algorithms that make this possible are not yet

understood, and it has proven difficult to duplicate human
Current Opinion in Neurobiology 2007, 17:140–147
visual performance using computer vision systems at the

present stage.

The ventral pathway runs from primary visual cortex (V1)

and secondary visual cortex (V2) through area V4 and then

into a series of further processing stages in ventral occipi-

totemporal cortex. In humans, these further stages include

area V8 [3] (alternatively labeled V4 by some authors), the

lateral occipital complex [4], and parts of the fusiform and

parahippocampal gyri [5,6]. The general functionality of

these areas can be studied using functional magnetic

resonance imaging (fMRI), which has revealed, for

example, regions specialized for face, body and scene

processing [6–8]. Algorithmic-level shape processing can

be studied using electrode recordings in monkeys, which

have similar visual capacities and a highly analogous

organization of ventral visual cortex (V1, V2, V4 and

multiple stages in inferotemporal cortex [IT], including

face and body patches) [9]. Here, we review human and

monkey experiments from the past two years that shed

light on how the ventral pathway transforms retinal signals

into useful object representations.

Higher-order contour derivatives
It is well-established that the first stage in the ventral

pathway transformation involves the extraction of local

orientation and spatial frequency information [10]. Orien-

tation is a first-order derivative that efficiently encodes

elongated contrast regions that correspond to object con-

tours. As a result, the transformation that occurs in V1

maximizes sparseness (minimizes the number of active

neurons) in the representation of natural images [11,12].

This constitutes a major step towards more compact

representation of useful object information.

At subsequent processing stages in area V2, area V4 and

posterior IT, neurons process progressively larger image

regions. On these larger scales, contour orientation is

more likely to change, either gradually (broad curves)

or abruptly (sharp curves or angles). There is now sub-

stantial evidence that ventral pathway neurons explicitly

encode these orientation changes in terms of higher-order

contour derivatives. Earlier experiments [13] showed that

V4 neurons can exhibit combined selectivity for orien-

tation and curvature (rate of change in orientation, a

second-order derivative; V4 neurons can even be sensitive

to spirality, a third-order derivative [14]). For example, a

given V4 neuron might respond most strongly to curved

convex boundaries that project toward the right. Recent

experiments indicate that curvature processing begins by

the V2 level [15,16] and that curvature representation is

prominent across multiple higher stages in IT [17,18]. As
www.sciencedirect.com
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Figure 1

Transformation in the ventral pathway. The initial representation at the

retinal level of even a simple shape such as the letter ‘J’ is distributed

across many neurons. The shape information in this representation is

implicit (i.e. difficult to read or decode): it would take many

computational steps to determine that any given set of input values on

these retina-like 30 � 30 arrays (black/gray/white pixel pattern, left)

corresponds to a J. (Just looking at the pattern is cheating — you are

using the computational power of your own ventral visual pathway to do

the decoding.) Finally, the representation of a J at this level is extremely

variable: the set of active neurons changes completely depending on

size and position of the letter. Here, three different views are shown (left).

The ventral pathway must transform this abstruse representation into

one that is much more compact, explicit and stable. This figure

schematizes a transformation into a simple structural representation, in

which the J would be represented by just two activity peaks, one

corresponding to the vertical straight line at the top right and the other

corresponding to the curved horizontal line at the bottom. (The 3 � 3 grid

of panels represents object-centered position; curvature and orientation

are plotted recursively within this grid.) This review article discusses

recent evidence for structural coding and other transformation

processes that could lead to object representations that are compact,

explicit and stable enough to support our remarkable perceptual

capacities.
in V4, inferotemporal neurons exhibit combined selectiv-

ity for curvature and orientation of contour fragments,

curvature tuning is signed (i.e. cells respond differentially

to convex and concave contours), and the representation

is biased towards higher curvature values [18,19].

Because curvature signals efficiently encode even larger

contour fragments that encompass multiple orientations,

they represent a further step towards compact object

representation. They also explicitly encode a fundamen-

tal aspect of shape that has strong perceptual valence for

human observers [20–23]. For example, a recent study

demonstrates that, contrary to standard theory, texture

boundaries do not depend exclusively on orientation

discontinuities: curvature discontinuities alone produce

striking texture boundaries, reflecting the strong repres-

entation of curvature at the neural level [24]. It has also

recently been shown that similar curvatures in close

spatial proximity interfere perceptually [25], consistent

with the idea of coarse basis-function coding of curvature

at the neural population level [26].
www.sciencedirect.com
Structural representation in object-based
coordinates
Many theories of shape processing [27,28] are based on

the idea of structural representation — that is, shape

description in terms of object parts and their positional

and connectional relationships. Structural codes are com-

pact, because even complex shapes comprise a manage-

able number of parts. Structural codes are highly

generative, because even a limited basis set of different

elements can be combined in so many ways. Thus, a finite

number of neurons that encode object parts can represent

a virtual infinity of object shapes, in the same way that

just 26 letters of the alphabet can represent millions of

words. Explicit representation of object structure would

also explain our immediate cognitive access to infor-

mation about parts and their relationships: if asked to

describe an object, we usually talk about its parts and

how they are put together. Finally, structural representa-

tions could be more stable across changes in viewing

conditions. A key tenet of most structural theories is

that part relationships are represented in a spatial refer-

ence frame centered on the object itself. This would

require a major transformation of position information

from the original retinotopic reference frame, but it would

confer stability across changes in object position.

Additionally, stability across viewing distance could be

achieved if the reference frame scaled with object size,

and stability across viewing angle could be achieved if the

reference frame rotated with some definable axis in the

object itself.

Electrode recording experiments in the monkey ventral

pathway have yielded evidence of structural representa-

tion in an object-centered reference frame. V4 neurons

tuned for contour fragment orientation and curvature are

also strongly sensitive to the object-relative position of

contour fragments [19]. For example, a given V4 neuron

might respond to objects that have convex curvature at

the bottom right (e.g. a lowercase ‘b’) but not to those that

have convex curvature at the top right (e.g. a lowercase

‘p’). Structural coding in an object-based reference frame

is even more prominent at the next processing stage in

posterior IT, where neurons integrate information about

multiple contour fragments (typically 2–4) [17]. The

example cell in Figure 2a is sensitive to concavities

oriented towards the lower right and concavities oriented

towards the lower left. (This was determined by fitting

response functions across a large number of stimuli not

shown here.) As in V4, the same local contour information

evokes strong responses in a variety of global shape

contexts (top rows, Figure 2a). Also as in V4, responses

are acutely sensitive to object-relative position: the same

configuration of two concavities evokes little or no

response when it appears to the right of object center

rather than to the left (Figure 2a, bottom rows). In more

anterior parts of IT, sensitivity to object-relative position

seems to be organized at the columnar level [29�]. Most
Current Opinion in Neurobiology 2007, 17:140–147
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Figure 2

Structural representation of shape in object-centered coordinates. (a) Tuning for object-centered position of contour fragments. This posterior

inferotemporal cell was tested with a set of 1882 stimuli comprising different combinations of contour elements that varied in curvature, orientation

and relative position (for details, see [17]). The best-fitting response function (which yielded a correlation of 0.89 between observed and predicted

response rates) revealed strong selectivity for a combination of concave contour fragments oriented towards the lower right and towards the

lower left (highlighted in green). The cell was highly sensitive to the position of these contour elements relative to the object. It responded

strongly to concavities at the left of object center (bright green), as exemplified by the average response (gray histogram) to the stimuli in the

top two rows. (The black curve is the response profile predicted by the best-fitting model; the light gray shading indicates the 500 ms

stimulus-presentation period.) The cell responded only weakly to the same concavities at the right (dark green; bottom two rows). This tuning for

object-relative position was consistent across changes in absolute position of the stimuli. Object-centered position coding is crucial for stable

structural representation. (b) Temporal evolution of multipart configuration signals. At early time points after stimulus onset (near 100 ms), this

posterior inferotemporal cell responded to stimuli that contained lower-left oriented concavities (blue segments, top two rows), upper-left oriented

concavities (blue segments, middle two rows) or both (green segments, bottom two rows). Thus, the shape information conveyed by the cell

during this period was relatively ambiguous. By 200 ms after stimulus onset, the cell was responsive only to stimuli containing both contour

elements, and thus provided an explicit signal for a configuration of two apposed concavities defining a narrow, diagonally-oriented neck. The

blue and green curves show the linear and nonlinear factors that predicted these two phases. Similarly, across the population, ambiguous linear

signals dominate early responses and explicit nonlinear signals emerge over the course of �60 ms, presumably through network processes

that refine the representation of multipart configurations (for details, see [31]).
strikingly, neurons in the superior temporal sulcus

that are involved in representing body motion seem to

operate in a reference frame not only centered but also

oriented with respect to the body, because the same

motion can evoke responses across different body orien-

tations [30�].
Current Opinion in Neurobiology 2007, 17:140–147
At the V4 level, where most neurons represent individual

parts (contour fragments) and their object-centered posi-

tions, configurational relationships between parts are

implicit in the population response [26] — that is, they

could be inferred by comparing object-relative positions.

In IT, integration across part signals could generate
www.sciencedirect.com
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Figure 3
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explicit representations of multipart configurations (with

a concomitant gain in compactness). However, linear

summation of part signals would be inherently ambigu-

ous, because a given response level could correspond to a

variety of parts or part combinations. In fact, response

functions in posterior IT range from primarily linear to

primarily nonlinear, and there is a strong trend towards

greater nonlinearity across time following stimulus onset

[31]. The example cell in Figure 2b is sensitive to con-

cavities oriented towards the lower right and concavities

oriented towards the upper left. At early time points,

�100 ms following stimulus onset, this cell responds to

stimuli containing just one part or the other (upper rows)

in addition to stimuli containing both parts (bottom rows).

This early response phase can be accurately modeled as a

linear summation across two tuning regions in the contour

fragment domain (blue curve, bottom histogram). By

�200 ms, however, responses to individual parts drop

out, and the response function of the neuron resolves

into an explicit signal for the multipart configuration (of

two apposed concavities defining a narrow diagonal neck).

This later phase is captured by a nonlinear product term

based on the two tuning regions (green curve). Likewise,

across the neural population, linear summation dominates

at early time points, and nonlinear selectivity for multi-

part configurations evolves gradually, peaking near

200 ms after stimulus onset. The delayed emergence of

explicit signals for multipart configurations could explain

why shape judgments that depend on structural nuances
Evidence for a polar domain centered on the average face. (a)

Schematic representation of neural face space, with the mean or

average face at the center. Along radial directions (red ellipse), faces that

have the same basic identity or set of geometric characteristics would

become increasingly distinct or caricature-like. Along circumferential

directions (green annulus), face identity would change. (b) fMRI cross-

adaptation experiment in the fusiform face area (FFA). Successive

presentations of a single face stimulus (blue circle in a) evoke low activity

owing to response adaptation (blue bar). Successive presentations of

faces that differ in identity evoke higher activity because they stimulate

different neural populations (green bar). Successive presentations of

faces that have the same identity but different distinctiveness evoke

lower activity (red bar). This cross-adaptation between stimuli indicates

that the same neural population is being stimulated. Other experiments

in the same study show that overall activity increases with distance from

the average face. Together, these results suggest that any given FFA

neuron responds along one specific direction radiating outwards from

the average face, and that its response level encodes distinctiveness

along that direction. (c) The lack of a similar cross-adaptation difference

in early visual cortex (V1/V2) shows that the FFA results are not

explained by low-level stimulus factors (for further details, see [45]). (d)

An analogous experiment on individual neurons in monkey

inferotemporal cortex (IT). Each of the four subplots represents the

responses of one neuron. The colored balls indicate response rates for

the average face (center), for stimuli along radial morph lines leading

outwards towards four distinct faces, and for stimuli along

circumferential morph lines between the distinct faces. Dark red balls

correspond to low response rates, and red, orange, yellow and white

correspond to increasingly higher response rates (for details, see [46]).

Panels (a–c) are reproduced, with permission, from [45]; (d) is

reproduced, with permission, from [46].

Current Opinion in Neurobiology 2007, 17:140–147
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(e.g. recognizing individual faces) take longer than other

shape judgments [32,33].

Composite tuning dimensions for face
representation
Further integration can produce composite tuning dimen-

sions that summarize large amounts of geometric detail.

For example, our exquisite expertise in discriminating

faces must depend on high-level neurons that are sensi-

tive to complex combinations of simpler structural

parameters [34]. Face perception is so specialized that

face-selective regions of cortex can be identified at the

gross anatomical level. These regions seem to be truly

specialized for faces, and not just for general discrimina-

tory expertise [35] or configurational processing [36].

They contain an overwhelming preponderance of face-

selective neurons [37��], and local electrical stimulation of

these areas evokes face percepts [38��]. (However, not

surprisingly, there is evidence that this powerful neural

machinery can be co-opted for other complex shape-

processing tasks [39].)

If geometric tuning dimensions are sufficiently complex,

we no longer have immediate cognitive access to the

underlying structural information. In describing faces, we

do not report exact distances between the eyes, nose

and mouth. Instead, we describe faces by category (e.g.
Figure 4

Explicit representation of learned object associations. This neuron was reco

clinical procedures to treat epilepsy (for details, see [57]). It responded stro

to the letter string ‘Pamela Anderson’ (but not to other face images or letter

Such neurons explicitly encode relationships between visually dissimilar obj

thus expanding our understanding of visual objects. Even someone newly e

between Pamela Anderson’s name and face. (The numbers above each stim

with permission, from [57].
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‘feminine’ and ‘Caucasian’) or by comparison (e.g.

‘similar to Pamela Anderson’). Such descriptions must

reflect highly composite dimensions developed through

exposure to many exemplars. The ‘morph lines’ between

exemplars would become the tuning dimensions in which

neurons encode identity [40]. Psychophysical exper-

iments demonstrate that this dimensionality can be

manipulated by controlling exposure to exemplars [41��].

One idea that has gained recent support is that face-

processing dimensions are defined relative to an ‘average’

face, learned through statistical integration across the

huge sample of faces we encounter during life. This

might explain the effectiveness of caricature in convey-

ing identity [42,43]. Psychophysical experiments have

shown that face adaptation biases perception in the

direction from the adapting face to the average face

[44]. Consistent with this, activity in the fusiform face

area (FFA) increases with distance (distinctiveness)

from the average face but not with distance from a

non-average face [45]. In addition, FFA responses

cross-adapt for stimuli that lie along the same direction

from the average face but not for stimuli that lie along

tangential directions (Figure 3). These fMRI results and

corresponding data at the single-cell level [46] suggest a

polar organization of face dimensionality centered on the

average face.
rded from the hippocampus of a human subject in the course of

ngly to different images of the actress Pamela Anderson and also

strings). Similar results were observed for many other neurons.

ects. We are extremely adept at learning such relationships and

xposed to American culture could quickly make the connection

ulus are not relevant to the results presented here.) Reproduced,

www.sciencedirect.com
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Long-term storage of object knowledge
Face perception is the extreme example of lifelong shape

learning, but other aspects of object perception likewise

depend on long-term memory and continual calibration.

Object perception is highly inferential: the visual system

learns inductive principles from the environment, taking

advantage of its peculiar properties to optimize coding.

For example, experience teaches that the most common

lighting direction is from above, and we take advantage of

that prior knowledge to derive three-dimensional shape

from shading patterns. Psychophysical measurements

show that even basic priors such as this can be adapted

by recent experience [47].

Long-term memory may also be critical for consistent

recognition of objects under changing viewing conditions,

especially across viewpoint rotations [48]. For moderate

rotations (up to �608), there seems to be a computational

mechanism for generalizing across views [49]. For larger

rotations, the retinal appearance of a given object can

change dramatically or even completely, and without

prior experience generalization is poor and neural selec-

tivity in IT is correspondingly low [50]. For these larger

rotations, generalization might depend on learning

temporal associations between multiple views of rotating

objects [51]. Even position invariance might depend on

such learned associations, because cross-position dis-

crimination can be disrupted by prior exposure to sub-

liminal changes in object shape during eye movements

[52�].

Ultimately, learned associations constitute the knowl-

edge that informs our understanding of objects. Pairwise

associations between objects are explicitly represented in

limbic structures such as perirhinal cortex [53,54], which

is densely interconnected with IT. Initial formation of

such associations might depend on the hippocampus,

where familiar objects are strongly represented [55]

and where changes in object selectivity are temporally

correlated with learning episodes [56]. Object associ-

ations at the single-neuron level have even been observed

in the human temporal lobe, where many neurons seem to

encode the connections between names and faces

(Figure 4) [57].

Concluding remarks
Transformation of object shape information in the ventral

pathway is one of the most computationally complex

tasks the brain performs. Correspondingly, it is one of

the most difficult processes to understand. At present, we

have only superficial knowledge of how object repre-

sentations become compact, explicit and stable enough

to support our remarkable perceptual abilities. At inter-

mediate stages of processing, we know that transform-

ations are geometric in nature, and include extraction of

higher derivatives and multipart structure in object-based

coordinates. At higher stages, transformations depend on
www.sciencedirect.com
long-term memory: neurons are tuned in composite

dimensions based on experience with familiar object

categories, and object knowledge is embodied by neurons

signaling learned associations. Further progress towards a

unified understanding of ventral pathway function will

require more quantitative analysis of geometric and mne-

monic information processing.
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